
A Randomized Caching Algorithm for Distributed
Data Access

Tianyu Zuo
School of Comp. Sci. & Eng.

Nanyang Technological University
Singapore

zuot0001@e.ntu.edu.sg

Xueyan Tang
School of Comp. Sci. & Eng.

Nanyang Technological University
Singapore

asxytang@ntu.edu.sg

Bu Sung Lee
School of Comp. Sci. & Eng.

Nanyang Technological University
Singapore

ebslee@ntu.edu.sg

Abstract—In this paper, we study an online cost optimization
problem for distributed data access. The goal of this problem is
to dynamically create and delete data copies in a multi-server
distributed system as time goes, in order to minimize the total
storage and network cost of serving access requests. We propose
an online algorithm with randomized storage periods of data
copies in the servers, and derive an optimal probability density
function of storage periods, which makes the algorithm achieve a
competitive ratio of 1+

√
2

2
. An example is presented to show that

the competitive analysis of our algorithm is tight. Experimental
evaluations using real data access traces demonstrate that our
algorithm outperforms the best known deterministic algorithm.

I. INTRODUCTION

Over the past decade, the world has witnessed rapid growth
in the amount of data created, captured, and consumed globally
[22]. Network-based applications often deploy geo-distributed
storage to facilitate data access and improve quality of ser-
vice. In distributed storage services such as clouds, a natural
problem arises as to minimize the overall cost of storing data
and serving their access requests. This service cost normally
includes the storage and network costs, because storing data
copies in servers and transferring data among servers both
consume resources and incur expenses for service providers
[15], [16]. Storage cost is typically proportional to the storage
period of the data copy in each server, and network cost is
proportional to the amount of network traffic when transferring
data [6], [12].

In this paper, we study a cost optimization problem for
distributed data access. Our goal is to manage data copies
in a distributed system, so that the requests for data access
can be satisfied with minimal service costs. A variety of
works have been done for different cost optimization targets
in distributed storage. Boukhelef et al. [3] proposed heuristic
algorithms to periodically optimize the placement of data
objects in two storage device classes, i.e., SSD and HDD, to
balance a trade-off between monetary cost and performance.
Mansouri et al. [14] developed data placement algorithms
in cloud storage services that offer two storage tiers with
different quality of service and prices, according to historical
user accesses. Veeravalli [24] studied a general problem of
migrating and caching shared data in a network of servers. He
applied dynamic programming to derive the optimal cost with
full knowledge of user requests in advance. Similar studies
of cost optimization by data placement and migration can

also be found in [8], [13], [20], with different models and
considerations of service level agreements.

However, the works mentioned above either assume prior
knowledge of user requests, or are only based on historical
data accesses which lack performance guarantees if the access
pattern changes. Thus, these methods may not effectively
tackle a practical scenario where future data access requests
are not known beforehand. Competitive analysis, referring to
an idea of guaranteeing a bound on the performance of an
online algorithm over all possible instances, can be applied to
deal with such uncertainty. In competitive analysis, a metric
called competitive ratio is used to measure the worst-case per-
formance of an online algorithm (without knowledge of future)
against the optimal offline solution (with full knowledge of
future) [2], [23]. There are some works in this line of research
for optimizing the total storage and network cost. Assuming
identical storage cost rates for all servers, Bar-Yehuda et al.
[1] designed an O(log δ)-competitive online algorithm, where
δ is the normalized diameter of the underlying network. Wang
et al. [25] proposed a 3-competitive online algorithm for a
multi-server system where all servers have the same storage
cost rate and transfer cost rate. Recently, they also considered
a system where servers may have distinct storage cost rates,
and developed a 2-competitive online algorithm [26].

Inspired by the above studies, we aim at improving the
performance of online algorithms, by incorporating random-
ization into the algorithm design. Randomization can make
considerable enhancement in the competitive ratio for many
online problems [9]–[11].

Our contributions are summarized as follows.
1) We propose an online algorithm with randomized storage

periods of data copies in the servers (Section IV).
2) To derive the optimal probability density function f(t)

of storage periods, we model and solve an optimization
problem. With the optimal f(t), our algorithm achieves
a competitive ratio of 1 +

√
2
2 ≈ 1.7 (Section V).

3) We present an example to show the tightness of compet-
itive analysis. Using real data access traces, we also ex-
perimentally demonstrate that our randomized algorithm
outperforms the state-of-the-art deterministic algorithm.

II. PROBLEM DEFINITION

We consider a system with n geo-distributed servers (or
sites) s1, s2, . . . , sn. A data object is hosted in the system



and copies of this object can be created, stored and deleted
in any servers.1 By normalization of related cost values, we
assume that storing a data copy in each server incurs a cost
of 1 per time unit. Whenever needed, the data object can also
be transferred among servers. A transfer of the object between
any two servers costs λ (λ > 0).

Requests to access the data object arise at different servers
as time passes, owing to computational tasks or instant user
requirements at local servers. When a request arises at a server
sj , if sj holds a data copy at that time, the request is served
locally. Otherwise, a transfer of the data object is needed from
other server whichever holds a copy, to serve the request at
sj . After serving the request, sj can keep (cache) the imported
copy for some time, in case another local request arises soon
afterwards. We denote the sequence of requests arising in the
system as ⟨r1, r2, . . . , rm⟩. For each request ri, we use ti to
denote the time when it arises. For simplicity, we assume that
all the requests in the sequence are ordered chronologically,
i.e., 0 < t1 < t2 < · · · < tm. Moreover, we use s[ri] to
represent the server where ri arises. We assume that initially
there is only one data copy in the system placed in server s1.
To facilitate algorithm design and analysis, we add a dummy
request r0 arising at server s1 at time 0. Note that r0 does not
incur any additional cost for serving the request sequence.

We aim to develop a randomized caching algorithm that
minimizes the expected total cost of storage and transfer in
the system, under the conditions that (1) all requests in the
sequence are served, and (2) there is at least one copy in the
system at any time. We focus on an online setting, i.e., the
arising time and location of each request remains unknown
until it arises. Our main metric for algorithm analysis is the
competitive ratio [2], meaning the worst-case ratio between
the (expected) cost generated by the (randomized) online
algorithm and the cost of the optimal offline strategy.

III. OPTIMAL OFFLINE COST

First, we analyze an optimal offline strategy, and propose
a method to allocate the total optimal offline cost to each
individual request, which forms a building block for the
competitive analysis of our proposed algorithm later.

A. Characteristics of An Optimal Offline Strategy

The exact form of an optimal offline strategy for a request
sequence is not straightforward to derive. Nevertheless, some
characteristics of it can be derived to facilitate our analysis.

Proposition 1. There exists an optimal offline strategy in
which for each transfer, there is a request at either the source
server or the destination server of the transfer.

The main idea to prove Proposition 1 is that if there is no
request at the source and destination servers, we can always
advance or delay the transfer to save or maintain the total cost.

1We do not consider any capacity limit in servers, since storage is usually of
large and sufficient capacity nowadays. Hence, we focus on the management
of one data object, as different objects can be handled separately.

Since the idea is straightforward, we omit a formal proof due
to space limitations.

To facilitate presentation, for each request ri, we define rp(i)
as the preceding request of ri arising at the same server s[ri].
If ri is the first request at its local server, both p(i) and tp(i)
are defined as −∞.

Proposition 2. There exists an optimal offline strategy with
the characteristic in Proposition 1 and that for each request
ri, if ri is served by a local copy, the copy is created no later
than rp(i).

Proof. In an optimal offline strategy satisfying Proposition 1,
suppose ri is served by a local copy, but the copy is created
later than rp(i). This implies that the copy must be created
by a transfer (see Figure 1(a)). By Proposition 1, there must
be a request rj at the source server of this transfer. Then, we
can replace the copy at s[ri] during (tj , ti) with a copy at
s[rj ] during (tj , ti), and delay the transfer to the time ti of ri
(see Figure 1(b)). This would not affect the service of other
requests, because all transfers originating from s[ri] during this
period can originate from s[rj ] instead. As a result, the total
cost does not change. In the new strategy, ri is served by a
transfer, and the characteristic in Proposition 1 is retained.

ri

rj

ri

rj

(a) original strategy (b) new strategy

rp(i) rp(i)
s[ri]

s[rj]

s[ri]

s[rj]

Fig. 1. Illustration for the proof of Proposition 2

The following feature says that if two successive requests
at the same server are sufficiently close in time, the server
should hold a copy between them.

Proposition 3. There exists an optimal offline strategy with the
characteristics in Propositions 1, 2 and that for each request
ri, if ti − tp(i) ≤ λ, server s[ri] holds a copy throughout the
period (tp(i), ti), so that ri is served by a local copy.

Proof. In an optimal offline strategy satisfying Propositions
1 and 2, if server s[ri] does not hold a copy throughout the
period (tp(i), ti), s[ri] must receive a transfer during (tp(i), ti)
in order to serve request ri, where the transfer cost incurred
is λ. Since ti − tp(i) ≤ λ, we can replace the transfer with
a copy at s[ri] during (tp(i), ti) without increasing the total
cost, while retaining the features in Propositions 1 and 2.

If a data copy is consistently stored in a server before and
after a time instant t, we say that this copy crosses time t.

Proposition 4. There exists an optimal offline strategy with
the characteristics in Propositions 1, 2, 3 and that for each
request ri, if ri is served by a transfer and no server holds a
copy crossing the time ti of ri, then (i) ri−1 and ri arise at
different servers; and (ii) the source server of the transfer is
s[ri−1] which keeps a copy since ti−1.



ri−1

ris[ri]

s[ri−1]

rjs[rj]

impossible case

Fig. 2. s[ri−1] must keep a copy since ti−1

ri

rj

(a) original strategy (b) better strategy

rh

s[ri]

s

s[rj]

ri

rj

rh

s[ri]

s

s[rj]

Fig. 3. The copy in s must serve a local request

riri−1

rh

(a) original strategy (b) better strategy

riri−1

rh
s

s[ri]

s

s[ri]

Fig. 4. ri−1 and ri arise at the same server

Proof. In an optimal offline strategy satisfying Propositions
1, 2 and 3, if the source server of the transfer to ri is
s[ri−1], (i) holds naturally. By assumption, since no server
holds a copy crossing ti, s[ri−1] must drop its copy after the
transfer. If s[ri−1] does not hold its copy since ti−1, the copy
must be created by a transfer after ti−1 (see Figure 2 for an
illustration). By Proposition 1, there must be a request rj at
the source server of this transfer. This leads to a contradiction,
because ri−1 and ri are two consecutive requests in the
sequence. Hence, s[ri−1] must hold its copy since ti−1, so
(ii) also holds.

Now suppose that the source server of the transfer to ri is
a server s other than s[ri−1]. By assumption, since no server
holds a copy crossing ti, s must drop its copy after the transfer.
It can be proved that the copy in s must be created no later
than the last request rh at s before ri. Otherwise, the copy in s
does not serve any local request at s, so the copy in s must be
created by a transfer (see Figure 3(a) for an illustration). By
Proposition 1, there must be a request rj at the source server of
this transfer. Then, we can replace the copy at s during (tj , ti)
with a copy at s[rj ] during (tj , ti), replace the transfer from
s to s[ri] with a transfer from s[rj ] to s[ri], and remove the
transfer from s[rj ] to s (see Figure 3(b)). This would not affect
the service of other requests, because all transfers originating
from s during this period can originate from s[rj ] instead. As a
result, the total cost is reduced, contradicting the optimality of
the strategy. Thus, the copy in s must be created no later than
the last request rh at s before ri. Note that since s ̸= s[ri−1],
we have h < i− 1.

If ri−1 and ri arise at the same server, we can replace
the copy at s during (ti−1, ti) with a copy at s[ri] during
(ti−1, ti) (see Figure 4). This replacement can save a transfer
cost of λ, which contradicts the optimality of the strategy.
Hence, ri−1 and ri must arise at different servers. Then, we
can replace the copy at s during (ti−1, ti) with a copy at
s[ri−1] during (ti−1, ti), and change the transfer for serving
ri to originate from s[ri−1] (see Figure 5 for an illustration).
This does not affect the total cost of the strategy, and both (i)
and (ii) hold in the new strategy. Meanwhile, the characteristics
in Propositions 1, 2 and 3 are retained in the new strategy.

Hereafter, an optimal offline strategy shall always refer to
one with the characteristics in Propositions 1, 2, 3 and 4.

B. Allocation of Optimal Offline Cost

Starting from the last request rm, we pick a set of storage
periods of data copies in an optimal offline strategy via

ri

ri−1

rh

(a) original strategy (b) new strategy
ri

ri−1

rh
s

s[ri−1]

s[ri]

s

s[ri−1]

s[ri]

Fig. 5. ri−1 and ri arise at different servers

rk

s

s[rk] rk

s

s[rk]

(a) original strategy (b) better strategy

rg rg
t

Fig. 6. Illustration of a data copy at s crossing time tk

backtracking to cover the time span of the request sequence.
We define a variable rk as the current request reached in

backtracking, and it is initialized as rm. During backtracking,
the storage periods of data copies picked always cover the
time span from rk onward.

If rk is served by a local copy, by Proposition 2, this copy
must be stored in server s[rk] from rp(k) to rk. We pick the
storage period (tp(k), tk) of the copy at s[rk], and update rk
as rp(k).

If rk is served by a transfer, we check whether there exists
a copy at some other server s ̸= s[rk] crossing tk. If so, we
can show that the copy at s must be stored till at least the first
local request rg at s after tk. Suppose this copy does not serve
any local request at s after tk (see Figure 6), then it can be
deleted earlier at tk, because all the outgoing transfers from
the copy at s after tk can originate from some other copies
(since the storage periods of data copies picked so far cover
the time span from rk onward). This reduces the total cost,
which contradicts the optimality of the strategy. Now since rg
is served locally, by Proposition 2, the copy at s[rg] is kept
from rp(g) to rg . We pick the storage period (tp(g), tg) of the
copy at s[rg], and update rk as rp(g).

If there is no data copy crossing tk, by Proposition 4, a copy
is kept in a server s[rk−1] ̸= s[rk] from tk−1 to tk, and rk is
served by a transfer from s[rk−1]. We pick the storage period
(tk−1, tk) of the copy at s[rk−1], and update rk as rk−1.

When rk goes to the dummy request r0, backtracking is
completed. Eventually, we collect a set of storage periods
of data copies covering the time span of request sequence.
Each storage period picked either (1) starts and ends with
two successive requests rp(i) and ri at the same server, or



(2) starts with a request ri−1, and ends with a transfer to
the next request ri. We refer to the request ri at the end
of the storage period as the end sentinel request, and use
Q1 and Q2 to denote the sets of end sentinel requests in
cases (1) and (2) respectively. Since all the storage periods
picked cover the time span of the request sequence, we have∑

ri∈Q1
(ti − tp(i)) +

∑
ri∈Q2

(ti − ti−1) ≥ tm − t0. Note
that for each ri ∈ Q2, since ri is served by a transfer in the
optimal offline strategy, by Proposition 3, it must hold that
ti − tp(i) > λ.

We allocate the total optimal offline cost to each request in
the sequence. For each end sentinel request ri, if ri ∈ Q1,
we allocate to ri the storage cost of the copy in server s[ri]
during (tp(i), ti). If ri ∈ Q2, we allocate to ri the storage cost
of the copy in server s[ri−1] during (ti−1, ti), and the transfer
cost of λ to serve ri.

For other requests that are not end sentinel requests, we use
RL to denote those requests ri with ti−tp(i) ≤ λ, and use RT

to denote those requests ri with ti− tp(i) > λ. By Proposition
3, each request ri ∈ RL is served locally by the copy kept
in s[ri] from tp(i) to ti. Hence, we allocate the cost of the
storage period (tp(i), ti) to each ri ∈ RL. Recall that we have
picked a set of storage periods that covers the whole time span.
Thus, to optimize the total cost, each request ri ∈ RT should
be served by a transfer from the copy associated with one of
the storage periods picked (which incurs a transfer cost of λ),
since serving ri by a local copy kept from rp(i) to ri incurs
a storage cost larger than λ. Hence, we allocate the transfer
cost of λ to each ri ∈ RT .

We use OPT(ri) to denote the offline cost allocated to a
request ri and summarize the cost allocation as follows.

Proposition 5. The optimal offline cost allocated to a request
ri is given by

• ∀ri ∈ Q1: OPT(ri) = ti − tp(i);
• ∀ri ∈ Q2: OPT(ri) = (ti − ti−1) + λ, and it holds that
ti − tp(i) > λ;

• ∀ri ∈ RL: OPT(ri) = ti − tp(i), and it holds that ti −
tp(i) ≤ λ;

• ∀ri ∈ RT : OPT(ri) = λ, and it holds that ti− tp(i) > λ.

Since all the storage costs and transfer costs in the optimal
offline strategy have been allocated, the total optimal offline
cost is equal to

∑
1≤i≤m OPT(ri). Note that the dummy

request r0 is not allocated any cost.

IV. RANDOMIZED ONLINE ALGORITHM

A. Algorithm Design

The intuition of our algorithm design is that after serving
each request, the local server can hold its data copy for some
period of length t. We randomize this length t according to
some predefined distribution, and refer to such a period of t
as an intended storage period. If a request arises at a server
during the intended storage period, the local server renews the
copy for a new period according to the predefined distribution.
Otherwise, if no request arises during the intended storage

Algorithm 1 Randomized Caching
1: randomly generate a storage period t based on f(t);
2: initialize: c ← 1; E1 ← t; Ej ← −∞ for all 2 ≤ j ≤ n;

Kj ← 0 for all 1 ≤ j ≤ n; ▷ s1 holds a data copy
3: upon (a request ri arises at server sj at time ti) do
4: if ti ≤ Ej or Kj = 1 then ▷ sj holds a data copy
5: serve ri by the local copy in sj ;
6: else
7: serve ri by a transfer from any other server with

a copy;
8: create a copy in sj ;
9: c← c+ 1;

10: randomly generate a storage period t based on f(t);
11: Ej ← ti + t;
12: Kj ← 0;
13: upon (sj transfers the object to another server sk) do
14: if Kj = 1 then ▷ sj holds the only copy
15: drop the copy in sj ;
16: Kj ← 0;
17: c← c− 1;
18: upon (a copy expires in server sj at time Ej) do
19: if c = 1 then ▷ sj holds the only copy
20: Kj ← 1;
21: else
22: drop the copy in sj ;
23: c← c− 1;

period, the copy should be deleted when it expires. When the
intended storage periods of all servers expire, we let the server
with the last expiring copy continue to keep its copy so as to
maintain at least one copy in the system.2

Algorithm 1 shows the details of our randomized algorithm.
Ej denotes the expiration time of the intended storage period
in server sj . Kj is a binary tag to indicate whether server sj
keeps the local copy beyond its expiration time Ej . c records
the total number of servers holding data copies. Initially, only
server s1 has a data copy, so c = 1 (line 2).

When a request ri arises at a server sj , if sj holds a data
copy, ri is served locally (lines 4-5). Otherwise, ri is served
by a transfer from another server holding a copy (lines 6-9).
In both cases, after ri is served, we randomly generate an
intended storage period t according to a probability density
function f(t) (line 10). We let sj keep its data copy for a
period of length t, and clear its tag Kj (lines 11-12). We will
elaborate how to set f(t) in Section V.

During the intended storage period, if another request arises
at sj , sj renews the local copy for a new intended storage
period following f(t). When the intended storage period of sj
expires, if sj holds the only copy in the system, it continues to
keep the copy and activates its tag Kj (lines 19-20), meaning

2Note that while our strategy appears similar to TTL caching, our model is
different. Existing work on TTL caching often assumes a backend maintaining
a data copy permanently [4], [5], [7], [18], [19], [21]. In contrast, we do not
require any server to always keep a data copy. We consider a self-organized
system in which at least one copy is maintained somewhere at any time.



that the copy in sj is now beyond its intended storage period.
Otherwise, sj drops its copy (lines 21-23).

When server sj needs to transfer the object to another server
sk to serve a request at sk, if the copy in sj is beyond the
intended storage period (i.e., Kj = 1), sj drops its copy after
the transfer and clears its tag Kj (lines 14-17). Meanwhile,
a new copy will be created in sk so that the requirement of
maintaining at least one copy is met (lines 8-9).

To facilitate competitive analysis, we shall refer to a data
copy within the intended storage period as a regular copy, and
a copy beyond that period as a special copy. Apparently, each
regular copy immediately follows a request.

B. Allocation of Online Cost

We present a method to allocate the total cost produced by
Algorithm 1 (referred to as the online cost) to each individual
request. As illustrated in Figure 7, we categorize all requests
into four types based on how they are served in Algorithm 1.
For each request ri served by a transfer, the regular copy after
rp(i) must have expired before ri arises. At the time of the
transfer, if the copy in the source server is a regular copy, ri
is called a Type-1 request; if the copy in the source server is
a special copy, ri is called a Type-2 request. For each request
ri served by a local copy, when serving ri, if the copy is a
regular copy, ri is called a Type-3 request; if the copy is a
special copy, ri is called a Type-4 request.

ri
rp(i) riri

rp(i)

Type-1 Type-4Type-2 Type-3

regular copy

rirp(i) rp(i)

regular copy

regular copy

regular copy regular copy
regular copyspecial copy

special copy

Fig. 7. Illustration of different request types in our online algorithm

In the example of Figure 8, r1, r2, r3, r5 and r7 are Type-1
requests, r4 and r6 are Type-2 requests, r8 is a Type-3 request,
and r9 is a Type-4 request.

s1

s2

s3

s4

r2

r5

r1

r3

r4

r6

r7

r9

regular

regular regular

regular regular

regular

special

special

regular

r8

regular

special
r0

Fig. 8. An example of our online algorithm (each request and its allocated
online cost are shown in the same color)

Note that since the intended storage periods of regular
copies are randomly generated in Algorithm 1, given a request
sequence, the type of each request ri is not definite. Thus, we
focus on studying the expected online cost.

The total online cost of Algorithm 1 consists of three parts:
(1) the storage cost of regular copies; (2) the storage cost of
special copies (if any); and (3) the cost of transfers (if any).

Storage cost of regular copies. By the algorithm definition,
there is a regular copy after each request. We allocate the stor-
age cost of the regular copy after a request to the succeeding
request arising at the same server. That is, for each request
ri, we allocate to ri the storage cost of the regular copy after
rp(i) (see Figure 8). Since this regular copy cannot be longer
than the period (tp(i), ti), its expected storage cost is∫ ti−tp(i)

0

t · f(t) dt+
∫ ∞

ti−tp(i)

(ti − tp(i)) · f(t) dt. (1)

The regular copy after the last request at each server is
treated specially. Given a request sequence ⟨r1, r2, . . . , rm⟩,
after serving the final request rm, a regular copy is created in
server s[rm]. Among this regular copy and all other regular
copies that exist after rm, the copy expiring the latest would
switch to a special copy and stay infinitely. We shall not
account for the cost of the regular copy created after rm
and the special copy that stays infinitely. The rationale is that
the storage periods of these two copies do not overlap and
they are both entirely beyond rm. They are considered to be
in existence for maintaining at least one copy in the system
beyond rm. In an optimal offline strategy, no copy needs to
be stored beyond rm. Thus, we do not account for the cost of
the aforesaid two copies by Algorithm 1.3

The storage costs of the remaining regular copies after the
last requests at the servers are allocated to the first requests
at the servers. Specifically, if there are n servers receiving
requests, there will be n − 1 remaining regular copies after
the last requests at the servers (other than that after rm). Note
that the first request at each server (except s1 with the initial
copy) must be served by a transfer because no copy was stored
in the server. Since there are n− 1 such first requests in total,
we allocate the storage costs of the aforesaid n − 1 regular
copies to these n− 1 first requests (one regular copy for each
request). That is, each first request is conceptually seen as
infinitely away from its preceding request at the same server
and thus must be served by a transfer. As illustrated in Figure
8, the first requests r1, r2 and r3 are allocated with the storage
costs of the regular copies after r7, r4 and r5 respectively.

The expected storage cost of the regular copy after the
last request at each server is

∫∞
0

t · f(t) dt, since there is
no succeeding request at the same server. Recall that if ri is
the first request at a server, we define tp(i) = −∞. Thus, the
storage cost of the regular copy allocated to each first request
can also be represented by (1).
Storage cost of special copies. By the definition of Algorithm
1, a special copy occurs when some server s holds the only
copy in the system at the expiration of its regular copy. In this
case, the regular copy switches to become the special copy
and is held until the next request arises. This implies that a
special copy must be the only copy in the system. Thus, we
have the following propositions.

3If we insist in considering these two copies, their storage costs can be
bounded by the storage cost of a data copy in any server beyond rm in the
optimal offline strategy. Hence, it would not affect the correctness of our
competitive analysis.



Proposition 6. The storage periods of any two special copies
do not overlap. Moreover, the storage period of any special
copy does not overlap with that of any regular copy.

Proposition 7. A special copy does not cross the time of any
request and can exist only between two consecutive requests.

By Propositions 6 and 7, each special copy must be con-
tained within one of the storage periods picked via backtrack-
ing in Section III-B. Thus, we allocate the storage cost of each
special copy to the end sentinel request of the storage period
that contains it.

According to this principle, for each end sentinel request
ri ∈ Q1, we allocate to it the storage costs of all special
copies that appear within (tp(i), ti) (see Figure 8, assuming
r4, r6, r9 ∈ Q1). By Algorithm 1, there is a regular copy
of randomized storage period up to ti − tp(i) after rp(i). By
Proposition 6, all special copies appearing within (tp(i), ti) do
no overlap with this regular copy, and they are also mutually
non-overlapping. Hence, the expected total storage cost of all
special copies within (tp(i), ti) is bounded by∫ ti−tp(i)

0

(ti − tp(i) − t) · f(t) dt. (2)

For each end sentinel request ri ∈ Q2, we allocate to it the
storage costs of all special copies that appear within (ti−1, ti),
whose total must be bounded by ti − ti−1. Note that if ri is
served by the regular copy after rp(i) (i.e., ri is a Type-3
request, which happens with probability

∫∞
ti−tp(i)

f(t) dt), no
special copy exists during (ti−1, ti) ⊂ (tp(i), ti) by Proposition
6. Hence, the expected total storage cost of all special copies
within (ti−1, ti) is bounded by

(ti − ti−1) ·
∫ ti−tp(i)

0

f(t) dt. (3)

Transfer cost. If a request ri is served by a transfer (i.e.,
ri is a Type-1/2 request), we allocate to ri the cost λ of
the transfer (see Figure 8). Since ri is possibly served by a
transfer only when the regular copy after rp(i) expires before
ri arises (which happens with probability

∫ ti−tp(i)
0

f(t) dt),
the expected transfer cost allocated to ri is bounded by

λ ·
∫ ti−tp(i)

0

f(t) dt. (4)

Note that this is an upper bound because ri can also be a
Type-4 request (served by a local special copy) if the regular
copy after rp(i) expires before ri arises.

We use Online(ri) to denote the online cost allocated to a
request ri and summarize the cost allocation by adding up (1)
and (4) as well as (2) or (3).

Proposition 8. The online cost allocated to a request ri is
bounded by

• ∀ri ∈ Q1: Online(ri) ≤
∫ ti−tp(i)
0

(ti−tp(i)+λ)·f(t) dt+∫∞
ti−tp(i)

(ti − tp(i)) · f(t) dt;
• ∀ri ∈ Q2: Online(ri) ≤

∫ ti−tp(i)
0

(ti − ti−1 + t + λ) ·
f(t) dt+

∫∞
ti−tp(i)

(ti − tp(i)) · f(t) dt;

• ∀ri ∈ RL ∪RT : Online(ri) ≤
∫ ti−tp(i)
0

(t+λ) · f(t) dt+∫∞
ti−tp(i)

(ti − tp(i)) · f(t) dt.

Since all the storage costs and transfer costs by Algorithm
1 have been allocated, the total online cost is bounded by∑

1≤i≤m Online(ri). Note that the dummy request r0 is not
allocated any cost.

V. OPTIMAL f(t) AND COMPETITIVE ANALYSIS

A. Formulation and Solution of An Optimization Problem

We aim to derive an optimal probability density function
f(t) to minimize the competitive ratio of our randomized
online algorithm. Recall that the total optimal offline cost
is
∑

1≤i≤m OPT(ri) and the total online cost is at most∑
1≤i≤m Online(ri). Hence, the competitive ratio is bounded

by
∑

1≤i≤m Online(ri)/
∑

1≤i≤m OPT(ri). It is not easy
to optimize this ratio directly. Our approach is to examine
the ratio Online(ri)/OPT(ri) for each individual request ri
separately and minimize the maximum such ratio among all
requests. We shall present an example to demonstrate the
tightness of our analysis and derivation in Section V-C.

To simplify presentation, we use x := tp(i) − ti to denote
the inter-request time between rp(i) and ri. By Propositions 5
and 8, we have:

• ∀ri ∈ Q1: Online(ri)
OPT(ri) ≤

∫ x
0
(x+λ)·f(t) dt+

∫ ∞
x

x·f(t) dt
x = 1 +

λ
x

∫ x

0
f(t) dt;

• ∀ri ∈ Q2: Online(ri)
OPT(ri) ≤∫ x

0
(ti−ti−1+t+λ)·f(t) dt+

∫ ∞
x

x·f(t) dt
(ti−ti−1)+λ , where x > λ;

• ∀ri ∈ RL: Online(ri)
OPT(ri) ≤

∫ x
0
(t+λ)·f(t) dt+

∫ ∞
x

x·f(t) dt
x , where

0 < x ≤ λ;
• ∀ri ∈ RT : Online(ri)

OPT(ri) ≤
∫ x
0
(t+λ)·f(t) dt+

∫ ∞
x

x·f(t) dt
λ , where

x > λ.
For each fixed x > λ, since (ti−ti−1)·

∫ x
0

f(t) dt

(ti−ti−1)
≤

1 ≤ 1
λ ·

(∫ x

0
(t+ λ) · f(t) dt+

∫∞
x

x · f(t) dt
)
, it

follows that
∫ x
0
(ti−ti−1+t+λ)·f(t) dt+

∫ ∞
x

x·f(t) dt
(ti−ti−1)+λ ≤

1
λ ·

(∫ x

0
(t+ λ) · f(t) dt+

∫∞
x

x · f(t) dt
)
. Thus, the above

bound on the ratio for a request in Q2 is no higher than the
bound on the ratio for a request in RT . Likewise, for each
fixed x ≤ λ, since

∫ x

0
(t + λ) · f(t) dt ≤

∫ x

0
(x + λ) · f(t) dt,

the above bound on the ratio for a request in RL is no
higher than the bound on the ratio for a request in Q1. Thus,
we shall focus on minimizing the bounds on the ratios for
requests in Q1 and RT only. Since the competitive ratio is
defined as the worst-case ratio over all problem instances,
we shall consider all possible values of inter-request time x.
Hence, we formulate the following optimization problem for
deciding the probability density function f(t).

minimize
f

C subject to

∀x > 0, 1 +
λ

x

∫ x

0

f(t) dt ≤ C, (5)

∀x > λ,
1

λ

(∫ x

0

(t+ λ) · f(t) dt+ x ·
∫ ∞

x

f(t) dt

)
≤ C, (6)



∫ ∞

0

f(t) dt = 1, (7)

∀t ≥ 0, f(t) ≥ 0. (8)

In practice, it is not sensible to set an intended storage pe-
riod with infinite length. Thus, we shall restrict f(t) to a finite
range of [0, B], i.e.,

∫ B

0
f(t) dt = 1, where B > 0 is a variable

to be decided. In addition, the left hand side of (6) is non-
decreasing with respect to x because its first-order derivative
is f(x) + 1

λ

∫ B

x
f(t) dt ≥ 0. Hence, by taking x = B, (6) can

be reduced to
∫ B
0

(t+λ)·f(t) dt
λ = 1 +

∫ B
0

t·f(t) dt
λ ≤ C. Then,

the optimization problem can be rewritten as

minimize
B,f

C

subject to ∀0 < x ≤ B, 1 +
λ

x

∫ x

0

f(t) dt ≤ C, (9)

1 +

∫ B

0
t · f(t) dt
λ

≤ C, (10)∫ B

0

f(t) dt = 1, (11)

∀t ≥ 0, f(t) ≥ 0. (12)

We solve this optimization problem in two steps. First, for
each fixed B, we derive an optimal f(t) to minimize C. Then,
we solve the problem by deriving the optimal value of B.

To derive an optimal f(t) given B, we assume intuitively
that the left hand side of constraint (9) is a constant: 1 +
λ
x

∫ x

0
f(t) dt = C ′ for all 0 < x ≤ B, where C ′ is a constant.4

Taking the second-order derivative of both sides with respect
to x, we have f ′(x) = 0, which implies that f(x) is a constant.
By constraint (11), we have f(t) = 1

B for all 0 < t ≤ B.
Substituting f(t) = 1

B into constraint (9), we have C ≥
1 + λ

B . We also substitute this f(t) into constraint (10) and
get C ≥ 1+ B

2λ . Hence, finding the optimal B to minimize C
is equivalent to minimizing max

{
1 + λ

B , 1 + B
2λ

}
.

It is easy to see that the optimal B =
√
2λ such that 1+ λ

B =
1+ B

2λ . Hence, the optimal probability density function f(t) is
given by f(t) = 1√

2λ
for all 0 ≤ t ≤

√
2λ. When taking this

f(t) and B, the corresponding objective value C = 1 + λ
B =

1+ B
2λ = 1+

√
2
2 , i.e., our randomized online algorithm has a

competitive ratio of 1 +
√
2
2 .

B. Proof of Optimality

Now we prove that the probability density function f(t) de-
rived above is an optimal solution, i.e., the minimum possible
value of C is 1 +

√
2
2 .

We prove it by contradiction. Assume that there exists
another probability density function g(x) defined over a fi-
nite range of [0, B′], which makes the objective value Cg

strictly lower than 1 +
√
2
2 in the optimization problem, i.e.,

Cg = max
x∈[0,B′]

{
1 + λ

x

∫ x

0
g(t) dt, 1 +

∫ B′
0

t·g(t) dt
λ

}
< 1 +

√
2
2 .

4To verify the correctness of this approach, we shall formally prove that
the f(t) derived is optimal in Section V-B.

If B′ ≤
√
2λ, when taking x = B′, we have 1 +

λ
B′

∫ B′

0
f(t) dt = 1 + λ

B′ ≥ 1 +
√
2
2 , which implies that

Cg ≥ 1 +
√
2
2 . Hence, it must hold that B′ >

√
2λ.

Since Cg < 1 +
√
2
2 , we must have 1 + λ

x ·
∫ x

0
g(t) dt <

1 + λ
x ·
∫ x

0
f(t) dt = 1 +

√
2
2 for all 0 < x ≤

√
2λ, which is

equivalent to
∫ x

0
g(t) dt <

∫ x

0
f(t) dt for all 0 < x ≤

√
2λ.

Let I = {(p1, q1), (p2, q2), . . . , (pz, qz)} denote the set of
all maximal intervals within [0,

√
2λ] such that f(t) > g(t) or

f(t) < g(t) holds consistently within each (pi, qi) ∈ I , where
0 ≤ p1 < q1 ≤ p2 < q2 ≤ · · · ≤ pz < qz ≤

√
2λ. We further

divide I into two subsets I+ and I−, where f(t) > g(t) within
each (pi, qi) ∈ I+ and f(t) < g(t) within each (pi, qi) ∈ I−.

By the definition of I , we have:

Observation 1. In the period of [0,
√
2λ]\I , f(t) = g(t).

Observation 2.
z∑

i=1

∫ qi
pi
(f(t)− g(t)) dt =

∫ B′
√
2λ

g(t) dt.

Proof. Since
∫√

2λ

0
f(t) dt =

∫ B′

0
g(t) dt = 1, by

Observation 1, we have
∫√

2λ

0
f(t) dt −

∫ B′

0
g(t) dt =∑z

i=1

∫ qi
pi

(f(t)− g(t)) dt+
∫ B′
√
2λ

(0− g(t)) dt = 0.

Observation 3. For each k ∈ {1, 2, . . . , z}, it holds that∑k
i=1

∫ qi
pi

(f(t)− g(t)) dt > 0.

Proof. This can be proved by contradiction. If∑k
i=1

∫ qi
pi
(f(t) − g(t)) dt ≤ 0, it implies that∫ qk

0
f(t) dt ≤

∫ qk
0

g(t) dt by Observation 1, which contradicts
that

∫ x

0
g(t) dt <

∫ x

0
f(t) dt for all 0 < x ≤

√
2λ.

We would like to show that
∫ B′

0
t ·g(t) dt >

∫√
2λ

0
t ·f(t) dt

to derive a contradiction, that is to prove that
∫√

2λ

0
t ·

(f(t)− g(t)) dt <
∫ B′
√
2λ

t·g(t) dt, or equivalently
∑z

j=1

∫ qj
pj

t·
(f(t)− g(t)) dt <

∫ B′
√
2λ

t ·g(t) dt. For each interval (pi, qi) ∈
I+, we define ui := qi; for each (pi, qi) ∈ I−, we define
ui := pi. Note that 0 ≤ u1 ≤ u2 ≤ · · · ≤ uz ≤

√
2λ, as all

the intervals in I are indexed in ascending order. With these
definitions, we have
z∑

i=1

∫ qi

pi

t·(f(t)− g(t)) dt <

z∑
i=1

ui ·
∫ qi

pi

(f(t)− g(t)) dt. (13)

We can further show by induction that the right hand side
of (13) is bounded by uz ·

∑z
i=1

∫ qi
pi
(f(t)− g(t)) dt.

• The base case is obvious: u1 ·
∫ q1
p1

(f(t)− g(t)) dt ≤
u1 ·

∫ q1
p1

(f(t)− g(t)) dt.
• Suppose for some 1 < k < z, we have

k∑
i=1

ui·
∫ qi

pi

(f(t)− g(t)) dt ≤ uk ·
k∑

i=1

∫ qi

pi

(f(t)− g(t)) dt.

• Then, for k + 1, we have

k+1∑
i=1

ui ·
∫ qi

pi

(f(t)− g(t)) dt



≤uk ·
k∑

i=1

∫ qi

pi

(f(t)− g(t)) dt+ uk+1 ·
∫ qk+1

pk+1

(f(t)− g(t)) dt

(by induction hypothesis)

≤uk+1 ·
k+1∑
i=1

∫ qi

pi

(f(t)− g(t)) dt

(by Observation 3 and uk ≤ uk+1).

• Therefore, we have
z∑

i=1

ui ·
∫ qi

pi

(f(t)−g(t)) dt ≤ uz ·
z∑

i=1

∫ qi

pi

(f(t)−g(t)) dt. (14)

By (13) and (14), we have
z∑

i=1

∫ qi

pi

t · (f(t)− g(t)) dt ≤ uz ·
z∑

i=1

∫ qi

pi

(f(t)− g(t)) dt

= uz ·
∫ B′

√
2λ

g(t) dt (by Observation 2)

≤
√
2λ ·

∫ B′

√
2λ

g(t) dt (since uz ≤
√
2λ)

≤
∫ B′

√
2λ

t · g(t) dt (since
√
2λ < B′).

By the above inequality and Observation 1, we have
∫ B′

0
t ·

g(t) dt ≥
∫√

2λ

0
t · f(t) dt. This implies that 1+

∫ B′
0

t·g(t) dt
λ ≥

1 +
∫ √

2λ
0

t·f(t) dt
λ = 1 +

√
2
2 and hence, Cg ≥ 1 +

√
2
2 , which

leads to a contradiction.
To conclude, the probability density function f(t) = 1√

2λ

for all 0 ≤ t ≤
√
2λ is an optimal solution, which gives

the lowest possible value of C = 1 +
√
2
2 in the optimization

problem of Section V-A.

C. A Tight Example

We construct an example to show that the competitive ratio
1+

√
2
2 of Algorithm 1 under the f(t) derived is tight. Consider

n servers s1, s2, . . . , sn and a sequence of n + 1 requests
r1, r2, . . . , rn+1. Requests r1 and rn+1 arise in server s1 at
times 0 and 2

√
2λ + ϵ respectively, where ϵ > 0 is a small

value. Requests r2, r3, . . . , rn arise in servers s2, s3, . . . , sn
respectively within a short period of ϵ after time

√
2λ.

r1

r2

rn+1√
2λ

√
2λ

Algorithm 1 optimal offline strategy

r3

r4

rn

r1

r2

rn+1√
2λ

s1

s2

s3 r3

r4

rn

s4

sn

√
2λ

s1

s2

s3

s4

sn

Fig. 9. A tight example

As shown in Figure 9, by Algorithm 1, s1 keeps a regular
copy after r1 for a randomized period following f(t). This
regular copy must expire before r2 arises, because the longest

possible storage period of the regular copy is
√
2λ. Since s1

keeps the only copy when the regular copy expires, it continues
to keep the copy until r2 arises, and serves r2 by a transfer to
s2. Then, s1 drops the copy, and s2 keeps a regular copy for
a randomized period after r2.

Right after a copy is created in s2, a bunch of requests
r3, r4, . . . , rn arise at s3, s4, . . . , sn within a short period of
ϵ, so they are all served by transfers from s2.5 Then, all these
servers keep regular copies for randomized periods. Hence,
the online cost produced till rn is at least

√
2λ+ (n− 1) · λ.

All n−1 regular copies in s2, s3, . . . , sn will expire before
rn+1 arises. The copy that expires the latest (e.g., the regular
copy in s4 in Figure 9) will switch to a special copy and
be kept until rn+1 arises to serve rn+1 by a transfer. Thus,
the storage cost in the server with the latest expiring regular
copy is at least

√
2λ. The total storage cost of all the other

regular copies is
∑n

i=2 Xi − max{X2, X3, . . . , Xn}, where
Xi denotes the intended storage period of the regular copy in
si. Thus, the total storage cost in s2, s3, . . . , sn is

∑n
i=2 Xi−

max{X2, X3, . . . , Xn}+
√
2λ.

Following the f(t) derived, the expectation of each Xi is
E(Xi) =

∫√
2λ

0
t√
2λ

dt =
√
2
2 λ.

Since the random variables X2, X3, . . . , Xn are independent
and identically distributed, the cumulative distribution function
of Y := max{X2, X3, . . . , Xn} is

FY (y) = P (max{X2, X3, . . . , Xn} ≤ y)

= P (X2 ≤ y) · P (X3 ≤ y) · · · · · P (Xn ≤ y)

=

(∫ y

0

1√
2λ

dt

)n−1

=

(
y√
2λ

)n−1

.

Therefore, the probability density function of Y is fY (y) =

F ′
Y (y) =

(n−1)·yn−2

(
√
2λ)n−1

. Hence, the expectation of Y is

E(Y ) =

∫ √
2λ

0

y · fY (y) dy =
n− 1

n
·
√
2λ.

Thus, the expected total storage cost in s2, s3, . . . , sn is

E

(
n∑

i=2

Xi −max{X2, X3, . . . , Xn}+
√
2λ

)

= (n− 1) ·
√
2

2
λ− n− 1

n
·
√
2λ+

√
2λ.

Finally, the transfer cost to serve rn+1 is λ. So, the expected
total online cost is 2

√
2λ+n ·λ+(n− 1) ·

√
2
2 λ− n−1

n ·
√
2λ.

In the optimal offline strategy, s1 keeps its copy until serving
rn+1 locally, and all the requests r2, r3, . . . , rn are served by
transfers. Thus, the total optimal offline cost is at most 2

√
2λ+

ϵ+ (n− 1) · λ. Hence, the online-to-optimal cost ratio of this
example is at least

2
√
2λ+ n · λ+ (n− 1) ·

√
2
2 λ− n−1

n ·
√
2λ

2
√
2λ+ ϵ+ (n− 1) · λ

5These requests arise in close time proximity to r2, so we can assume that
they all arise before the regular copy in s2 expires.



Fig. 10. Uniform request distribution Fig. 11. Zipf request distribution with β = 1 Fig. 12. Zipf request distribution with β = 2

=
(1 + 1

n ) ·
√
2λ+ n · λ+ (n− 1) ·

√
2
2 λ

2
√
2λ+ ϵ+ (n− 1) · λ

→ 1 +

√
2

2
(as ϵ→ 0 and n→∞).

Note that this example can be extended to a request se-
quence of arbitrary length by repeating r1, r2, . . . , rn (i.e.,
treating rn+1 as r1 of a new cycle). Hence, the competitive
ratio 1 +

√
2
2 of our algorithm is also asymptotic.

VI. EXPERIMENTAL EVALUATION

We conduct simulation experiments to evaluate our pro-
posed algorithm, using the object storage traces provided by
IBM [17]. Similar performance trends are observed for the
results of different traces. In this section, we present the results
of the trace named “IBM Object Store Trace Number 066”.
The trace records over 700,000 read requests made to 5031
different objects in a cloud-based storage service over 7 days in
the year of 2019. The most popular object has 1548 requests,
while the least popular object has 1 request only. We treat one
second as one time unit. To include the storage costs of all
regular copies by our algorithm, we simulate the time span of
7 days plus

√
2λ time units, since the longest possible storage

period of a regular copy is
√
2λ. The requests of each object

are distributed over 10 different servers at random following a
uniform distribution or a Zipf distribution (where each request
is assigned to server si with probability i−β/

∑10
j=1 j

−β and
β is a parameter). Initially, one copy of each object is placed
in server s1. We compare our randomized online algorithm
with the following algorithms.

• Algorithm of Wang et al.: It is a state-of-the-art determin-
istic online algorithm from [26], which is 2-competitive.
The main idea is for each server to hold a copy after every
local request for some period over which the storage cost
equals the transfer cost. If there is only one copy in the
system and there is no request for a sufficiently long
period, the copy is moved to the server with the lowest
storage cost rate to save cost.

• Always-cache algorithm: For every object, a copy is
created in each server upon its first local request. The
copy is never deleted afterwards, so that all subsequent
requests arising at the same server are served locally.

• No-cache algorithm: A copy of each object is always kept
in server s1. Other servers never keep any copy of objects,
so their local requests are all served by transfers from s1.

We experiment with different settings of the transfer cost λ
from 100 to 1,000,000, and record the total online cost of each
algorithm over the aforesaid time span. For our randomized
algorithm, we run it for 20 times and compute the average
online cost. The 95% confidence interval of the experimental
results was calculated to be within 1 percent of the mean.
We normalize the online costs of different algorithms by the
optimal offline cost derived from dynamic programming [25].

Figures 10 to 12 show the results. The online-to-optimal cost
ratio of the no-cache algorithm rises rapidly with increasing
transfer cost, because all the requests arising at servers other
than s1 are served by transfers. In contrast, by creating an
object copy permanently whenever the object is accessed,
the always-cache algorithm has its cost ratio dropping with
increasing transfer cost. These two baselines have much higher
cost ratios than Wang et al.’s algorithm and our algorithm.
Comparing the latter two, Wang et al.’s deterministic algorithm
has a higher online-to-optimal cost ratio than our randomized
algorithm for all settings of transfer cost. The main reason is
that in Wang et al.’s algorithm, each server keeps an object
copy for at least λ time after serving a local request. The
associated storage cost of λ is greater than the expected
cost

√
2
2 λ of a regular copy in our algorithm. The relative

performance of the algorithms is similar for uniform and
Zipf request distributions. In summary, our proposed algorithm
outperforms all the other algorithms compared.

VII. CONCLUSION

In this paper, we have proposed a randomized online
algorithm for caching data to optimize the service cost of
distributed data access. Our algorithm can achieve a compet-
itive ratio of 1 +

√
2
2 , which is better than the state-of-the-art

deterministic algorithm. We also show that this ratio is tight
and asymptotic for our algorithm by presenting an example.
Experimental evaluations using real data access traces confirm
that our algorithm outperforms deterministic algorithms.

ACKNOWLEDGMENT

This work is supported by the Ministry of Education, Singa-
pore, under its AcRF Tier 2 (Awards MOE-T2EP20121-0005
and MOE-T2EP20122-0007) and Tier 1 (Award RG23/23).



REFERENCES

[1] Reuven Bar-Yehuda, Erez Kantor, Shay Kutten, and Dror Rawitz.
Growing half-balls: Minimizing storage and communication costs in
cdns. In Proceedings of the 39th International Colloquium on Automata,
Languages, and Programming, pages 416–427, 2012.

[2] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis, volume 53. Cambridge University Press Cambridge, 1998.

[3] Djillali Boukhelef, Jalil Boukhobza, Kamel Boukhalfa, Hamza
Ouarnoughi, and Laurent Lemarchand. Optimizing the cost of DBaaS
object placement in hybrid storage systems. Future Generation Com-
puter Systems, 93:176–187, 2019.

[4] Edith Cohen and Haim Kaplan. Aging through cascaded caches:
Performance issues in the distribution of web content. In Proceedings
of the 2001 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM), pages 41–53, 2001.

[5] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don
Towsley. Performance evaluation of hierarchical TTL-based cache
networks. Computer Networks, 65:212–231, 2014.

[6] Jiehui Ju, Jiyi Wu, Jianqing Fu, Zhijie Lin, and Jianlin Zhang. A survey
on cloud storage. Journal of Computers, 6(8):1764–1771, 2011.

[7] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. Modeling TTL-
based Internet caches. In Proceedings of the 22nd IEEE Conference on
Computer Communications (INFOCOM), pages 417–426, 2003.

[8] Konstantinos Kalpakis, Koustuv Dasgupta, and Ouri Wolfson. Optimal
placement of replicas in trees with read, write, and storage costs. IEEE
Transactions on Parallel and Distributed Systems, 12(6):628–637, 2001.

[9] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP
acknowledgement and other stories about e/(e-1). In Proceedings of
the 33rd ACM Symposium on Theory of Computing, pages 502–509,
2001.

[10] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Ow-
icki. Competitive Randomized Algorithms for Nonuniform Problems.
Algorithmica, 11(6):542–571, 1994.

[11] Ali Khanafer, Murali Kodialam, and Krishna P.N. Puttaswamy. The
constrained ski-rental problem and its application to online cloud cost
optimization. In Proceedings of the 32nd IEEE Conference on Computer
Communications (INFOCOM), pages 1492–1500, 2013.

[12] Mingyu Liu, Li Pan, and Shijun Liu. Cost optimization for cloud storage
from user perspectives: Recent advances, taxonomy, and survey. ACM
Computing Surveys, 55(13s):1–37, 2023.

[13] Ying Liu, Qiang He, Dequan Zheng, Xiaoyu Xia, Feifei Chen, and Bin
Zhang. Data caching optimization in the edge computing environment.
IEEE Transactions on Services Computing, 15(4):2074–2085, 2020.

[14] Yaser Mansouri and Abdelkarim Erradi. Cost optimization algorithms
for hot and cool tiers cloud storage services. In Proceedings of IEEE
International Conference on Cloud Computing, pages 622–629, 2018.

[15] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. Data
storage management in cloud environments: Taxonomy, survey, and
future directions. ACM Computing Surveys, 50(6):1–51, 2017.

[16] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho,
Monique J. Morrow, and Paul A. Polakos. A comprehensive survey
on fog computing: State-of-the-art and research challenges. IEEE
Communications Surveys & Tutorials, 20(1):416–464, 2018.

[17] Effi Ofer, Danny Harnik, and Ronen Kat. Object storage traces: A
treasure trove of information for optimizing cloud workloads, 2021.
https://www.ibm.com/cloud/blog/object-storage-traces, last accessed on
2023-07-20.

[18] Xueyan Tang and Samuel T. Chanson. Analysis of replica placement
under expiration-based consistency management. IEEE Transactions on
Parallel and Distributed Systems, 17(11):1253–1263, 2006.

[19] Xueyan Tang, Huicheng Chi, and Samuel T. Chanson. Optimal replica
placement under TTL-based consistency. IEEE Transactions on Parallel
and Distributed Systems, 18(3):351–363, 2007.

[20] Xueyan Tang and Jianliang Xu. QoS-aware replica placement for content
distribution. IEEE Transactions on Parallel and Distributed Systems,
16(10):921–932, 2005.

[21] Xueyan Tang, Jianliang Xu, and Wang-Chien Lee. Analysis of TTL-
based consistency in unstructured peer-to-peer networks. IEEE Trans-
actions on Parallel and Distributed Systems, 19(12):1683–1694, 2008.

[22] Petroc Taylor. Amount of data created, consumed, and stored 2010-2020,
with forecasts to 2025, 2022. https://www.statista.com/statistics/871513/
worldwide-data-created/#statisticContainer, last accessed on 2023-06-
16.

[23] Vijay V. Vazirani. Approximation Algorithms. Springer Science &
Business Media, 2013.

[24] Bharadwaj Veeravalli. Network caching strategies for a shared data dis-
tribution for a predefined service demand sequence. IEEE Transactions
on Knowledge and Data Engineering, 15(6):1487–1497, 2003.

[25] Yang Wang, Shuibing He, Xiaopeng Fan, Chengzhong Xu, and Xian-He
Sun. On cost-driven collaborative data caching: A new model approach.
IEEE Transactions on Parallel and Distributed Systems, 30(3):662–676,
2018.

[26] Yang Wang, Yong Zhang, Xinxin Han, Pengfei Wang, Chengzhong Xu,
Joseph Horton, and Joseph Culberson. Cost-driven data caching in the
cloud: An algorithmic approach. In Proceedings of the 40th IEEE
Conference on Computer Communications (INFOCOM), pages 1–10,
2021.


