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Abstract—Thanks to billions of users in online social networks
(OSNs), viral marketing becomes one of the most effective
promotion channels for various new products or campaigns.
Influence maximization is a classic problem in viral marketing,
which has been extensively studied in the past two decades.
Existing algorithms for influence maximization, however, mostly
focus on single machine processing. To address the influence
maximization problem on a massive scale, we design distributed
algorithms via a cluster of machines, which can effectively
speed up the computation while maintaining the state-of-the-art
(1− 1/e−ε)-approximation guarantee. Our distributed algorithms
consist of two building blocks: (i) distributed reverse influence
sampling, and (ii) element-distributed maximum coverage. We
carry out extensive experiments on real datasets with millions
of nodes and billions of edges to demonstrate the scalability of
our distributed algorithms for both influence maximization and
maximum coverage. In particular, our distributed algorithms
accelerate the state-of-the-art IMM algorithm by 31×–56× times
using a machine with 64 cores.

Index Terms—Influence maximization; Distributed algorithms;
Online social networks

I. INTRODUCTION

Online social networks (OSNs) attract billions of users to
share information and communicate. According to statistics,
Facebook has almost 2.9 billion monthly active users as of
the second quarter of 2021 [52], which is more than one
quarter of the world population. Leveraging the word-of-mouth
effects, information can be disseminated widely and rapidly
through OSNs. Viral marketing is such a typical application
in which the demands for new products, campaigns, ideas
and innovation are built up virally, i.e., propagating through
OSNs as people make recommendations to their friends and
followers [16]. Nowadays, thanks to the large number of users
in OSNs, the market of OSN is growing steadily. Specifically,
Oberlo [49] estimates that the total social media advertising
spending by US companies is expected to exceed $44 billion in
2021. Zenith [64] claims that social media ad spend is expected
to grow by 25% annually to reach $137 billion in 2021.

To initiate viral information propagation, a set of influential
OSN users can serve as seeds who are usually offered a special

promotion deal or even paid by advertisers. The number of seed
users is normally constrained by the marketing costs (typically
by a small constant k). Kempe et al. [33] are the first to
formulate this problem as a constrained optimization problem
referred to as influence maximization by introducing two
basic diffusion models: independent cascade (IC) and linear
threshold (LT) models. The influence maximization problem
aims to identify a set of k seed users that can produce the largest
expected size of influence cascade. Kempe et al. [33] show that
influence maximization is NP-hard in general, and propose a
simple and elegant greedy algorithm that can achieve (1− 1/e)-
approximation due to the submodularity and monotonicity [46]
of the influence spread under the IC and LT models. Since then,
a plethora of techniques have been proposed to improve the
efficiency or effectiveness of influence maximization [1, 6, 9–
13, 15, 18, 19, 21–23, 25, 29, 32, 37, 39, 42, 47, 50, 51, 54–
56, 60, 61, 63, 66, 67].

One major challenge for influence maximization is that it is
#P-hard to compute the exact influence spread under both the
IC [10] and LT [11] models. Some sampling methods, such as
Monte-Carlo simulation [33] and reverse influence sampling
(RIS) [6], are used for influence estimation. The state-of-the-
art influence maximization solutions [55, 60, 61], which can
provide an approximation ratio of (1− 1/e − ε), are based
on the RIS approach. It is a double-edged sword to conduct
sampling on a massive scale. Intuitively, more samples can
help understand the information propagation better and thus
make it easier to select the most influential users. On the other
hand, it is highly challenging to process enormous datasets
of samples. In particular, it may consume a huge amount of
computational resources, e.g., CPU and memory, to estimate
the influence spread for large-scale OSNs, which may not be
feasible for a single regular machine.

To cope with massive amounts of data, a natural idea
is to develop algorithms in a distributed manner to share
the workload among multiple machines and accelerate the
computation. Kim et al. [34] propose a scalable and par-
allelizable influence maximization algorithm, referred to as



Independent Path Algorithm (IPA), for the IC model. Chang
et al. [7] propose another parallel algorithm, called Community-
based Max Degree (CMD) algorithm, for the IC model.
However, these algorithms are heuristics that have unbounded
approximation ratio.

Some recent work [43, 48] has designed scalable algorithms
for influence estimation of a given seed set that can be
implemented in distributed computation frameworks such as
MapReduce. These algorithms are based on Monte-Carlo
simulation which must start from the seed set given. However,
for influence maximization, the seed sets whose influence
spreads need to be estimated are not known in advance and
are dynamically determined by the seed selection process.
Therefore, it is hard to apply these distributed influence
estimation algorithms for influence maximization. In this paper,
we aim to develop distributed algorithms with (1− 1/e− ε)-
approximation for influence maximization.

We consider a distributed implementation of RIS. That
is, each machine independently generates random reverse
reachable (RR) sets. Based on RIS [6], influence maximization
is transformed to maximum coverage. Specifically, consider
the set-element paradigm of maximum coverage. For each RR
set, its index is mapped to an element, while for each node,
the indexes of all the RR sets containing this node are mapped
to a set. Unlike the set-distributed maximum coverage (which
distributes the sets to a cluster of machines) [3, 4, 35, 44, 45],
distributed-RIS-based seed selection needs element-distributed
maximum coverage (which instead distributes the elements
to the machines). We develop a new framework for element-
distributed maximum coverage, which can provide the exact
(1− 1/e)-approximation and hence return (1− 1/e − ε)-
approximate solutions for influence maximization.

In summary, we make the following contributions:
• We devise a NEWGREEDI algorithm that can provide the

exact (1− 1/e)-approximation for maximum coverage in
an element-distributed manner.

• We propose DIIMM that integrates distributed RIS and
NEWGREEDI with the state-of-the-art IMM algorithm to
return (1− 1/e− ε)-approximate solutions for influence
maximization.

• We carry out extensive experiments on real datasets with
millions of nodes and billions of edges to demonstrate the
scalability of our distributed algorithms for both influence
maximization and maximum coverage.

Organization. Section II defines the problem of influence
maximization. Section III elaborates our distributed algorithms
for influence maximization and maximum coverage. Section IV
presents the experimental evaluation. Section V reviews the
related work. Finally, Section VI concludes the paper.

II. PRELIMINARIES

This section introduces the concept of influence spread, and
formally defines the problem of influence maximization. For
ease of reference, Table I summarizes the notations that are
frequently used.

TABLE I: Frequently used notations.

Notation Description

G = (V,E) a social network with node set V and edge set E
n,m the numbers of nodes and edges in G, respectively
k the number of seed nodes to select
ℓ the number of distributed machines
ε, δ the parameters for the approximation guarantee
σ(S) the influence spread of a node set S
OPT the maximum influence spread of any size-k node set S
R,R a random RR set and a set of RR sets
{R1, . . . ,Rℓ} a set of RR sets distributed across ℓ machines
θ the number of RR sets
FR(S) the fraction of RR sets in R that are covered by S

A. Influence Spread

An OSN is abstracted as a directed graph G = (V,E) with
a set V of nodes and a set E of edges, where |V | = n and
|E| = m. The nodes represent users in social media and the
edges represent connections among users, e.g., friendship on
Facebook or followship on Twitter. For each directed edge
⟨u, v⟩ ∈ E, we say that v is an out-neighbor of u, and u is an
in-neighbor of v.

To facilitate discussion, we focus on two basic and widely
adopted diffusion models, i.e., the independent cascade (IC)
and linear threshold (LT) models [33]. In the IC and LT models,
each edge ⟨u, v⟩ is associated with a propagation probability
pu,v, representing the probability for u to influence v. Given
a set of seed nodes S, the influence propagation initiated by
S is modeled as a discrete-time stochastic process as follows.
Initially at time slot 0, the seed nodes S are activated and the
other nodes are inactive. Suppose that node u is first activated
at slot i, then u has a single chance to activate each outgoing
neighbor v at time slot i+ 1, after which u remains active
but cannot further activate any other nodes. This influence
propagation process continues until no more inactive nodes can
be activated. The difference between the IC and LT models
lies in the details of node activation:

• IC model. When a node u first becomes activated, it has
a single chance to activate each inactive neighbor v with
a probability pu,v . After that, u stops activating any other
nodes.

• LT model. It requires the propagation probabilities to
satisfy

∑
u∈N in

v
pu,v ≤ 1, where N in

v denotes the set
of node v’s in-neighbors. Each node v uniformly and
randomly selects a threshold λv from the interval [0, 1]. An
inactive node v becomes activated only if

∑
u∈Ain

v
pu,v ≥

λv , where Ain
v ⊆ N in

v denotes the set of v’s in-neighbors
that are activated.

Let σ(S) denote the expected number of nodes activated by
the seed set S via the above process, which is known as the
influence spread of the seed set S.

Example 1. Fig. 1 shows a social media and three of its
possible influence propagation processes initiated by the seed
set {v1}. Under both the IC and LT models, nodes v2 and v3 are
guaranteed to be activated at time slot 1 as pv1,v2 = pv1,v3 = 1.



 3

 2
 1

1

1
 40.4

0.2

0.3

(a) A Social Media

 3

 2
 1  4

(b) Possible Propagation (i)

 3

 2
 1  4

(c) Possible Propagation (ii)

 3

 2
 1  4

(d) Possible Propagation (iii)

Fig. 1: A social media and three of its possible influence propagation processes initiated by the seed set {v1}.

In addition, there are three cases of influence propagation
depending on whether and how v4 is activated. Specifically, in
case (i), as shown in Fig. 1(b), all the three nodes v2, v3, v4
are directly activated by v1 at time slot 1; in case (ii), as
shown in Fig. 1(c), v2 and v3 are activated by v1 at time slot
1, and v4 is activated by v2 or v3 at time slot 2; and in case
(iii), as shown in Fig. 1(d), v2 and v3 are activated by v1 at
time slot 1 while v4 is not activated by any node.

Under the IC model, case (i) happens with a probability
of 0.4 when v1 successfully activates v4. Case (ii) happens
when v1 does not activate v4 at time slot 1 and either v2 or
v3 activates v4 at time slot 2. The probability for this case to
happen is (1 − 0.4) ×

(
1 − (1 − 0.3) × (1 − 0.2)

)
= 0.264,

where (1 − 0.3) × (1 − 0.2) is the probability that neither
v2 nor v3 activates v4. Similarly, case (iii) happens with a
probability of (1 − 0.4) × (1 − 0.3) × (1 − 0.2) = 0.336.
Consequently, the influence spread of {v1} can be calculated
as σ({v1}) = 0.4× 4 + 0.264× 4 + 0.336× 3 = 3.664.

The probability for each propagation case under the LT
model is different. Specifically, case (i) happens when the
random threshold λv4 is in the range of [0, 0.4], case (ii)
happens when 0.4 < λv4 ≤ 0.9, and case (iii) happens when
0.9 < λv4 ≤ 1. This indicates that the probabilities for the
three cases are 0.4, 0.5 and 0.1, respectively. As a consequence,
σ({v1}) = 0.4× 4 + 0.5× 4 + 0.1× 3 = 3.9. □

B. Influence Maximization

Given a graph G = (V,E) with a propagation probability
pu,v for each edge ⟨u, v⟩ ∈ E, the influence maximization
problem [33] is to seek for a set S of k nodes that maximizes
the influence spread σ(S). Formally,

argmax
|S|=k

σ(S). (1)

It is NP-hard to maximize the influence spread in general
[33]. Due to the submodularity and monotonicity of influence
spread [33], a greedy hill-climbing algorithm can return a
(1− 1/e− ε)-approximate solution with high probability [46],
where ε is an error threshold parameter. A large amount of
recent work [6, 55, 60, 61] aims to improve the efficiency for
achieving the same approximation guarantee. These algorithms
typically attempt to reduce the number of samples generated
for estimating the influence spread as its exact value is #P-
hard to compute under both the IC and LT models [10, 11].
Note that NP-hard (e.g., for decision problem) and #P-hard
(e.g., for counting problem) are different. Specifically, influence
maximization is NP-hard, even assuming the influence spread
of any seed set can be computed in polynomial time.

To address the efficiency issue for influence maximization
in large-scale OSNs, a natural idea is to develop distributed
algorithms. Some recent work [43, 48] has designed scalable
algorithms for influence estimation that can be implemented in
distributed computation frameworks such as MapReduce. These
algorithms generate samples in parallel by a group of machines
to estimate the influence spread of a given seed set S in a
distributed manner. Then, each machine returns an estimated
influence spread of S to a master machine which gathers the
information to calculate the final estimated influence spread of
S. However, it is hard to directly apply these algorithms for
distributed influence maximization. The main reason is that the
seed sets that need to be evaluated in influence maximization
are potentially large in number and they are not known in a
priori. In other words, an influence maximization algorithm may
need to query the estimated influence spread of any seed set S
on the samples. One straightforward solution is to gather all the
samples generated for influence estimation from a cluster of
machines in one machine. After that, we can run the greedy seed
selection algorithm on these samples in a single machine. Haque
and Banerjee [28] naively use such a strategy. However, each
machine may generate massive amount of samples so that it is
impossible for a single machine to load all the data generated by
a cluster of machines. Moreover, the communication cost is also
expensive as collecting all the data from a group of machines
to one machine can produce a huge amount of network traffic.

To address the above issues, in this paper, we aim to devise
distributed seed selection algorithms where the samples used
for estimating the influence spread are generated and stored
on a group of distributed machines.

III. DISTRIBUTED ALGORITHMS FOR INFLUENCE
MAXIMIZATION

Computing the exact influence spread σ(S) of a seed set S
has been shown to be #P-hard for both the IC and LT models
[10, 11]. To estimate the influence spread σ(S) of a seed set
S, some sampling methods have been proposed for unbiased
estimation such as the naive Monte-Carlo simulation [33] and
the advanced reverse influence sampling (RIS) approach [6].
These sampling methods can provide a bounded estimation
error which is controllable. Using the sampling methods, at a
high level, influence maximization algorithms consist of two
phases:

1) Sampling. This phase generates a number of samples
satisfying the approximation guarantee requirement.

2) Seed Selection. This phase applies a seed selection
algorithm (which is usually a standard greedy algorithm



due to the submodularity [46]) to construct a size-k node
set S that attempts to maximize the estimated influence
spread on the samples generated.

In what follows, we show that both phases can be implemented
in a distributed manner.

A. Distributed Reverse Influence Sampling
Kempe et al. [33] used the classical Monte-Carlo simulation

to estimate the influence spread, which is very inefficient. To
address the efficiency problem, Borgs et al. [6] introduced
a novel RIS approach to dramatically facilitate the influence
estimation.

Definition 1 (RR Set). A random reverse reachable (RR) set R
for a graph G is generated by 1) first selecting a random node
v ∈ V , 2) then sampling a random graph g from G according
to the diffusion model, 3) finally taking the set of nodes in g
that can reach v as R.

Under the IC and LT models, a random RR set can be
efficiently constructed. In particular, under the IC model, a
random RR set R on G can be constructed in three steps:

1) Select a node v uniformly at random from V .
2) Perform a stochastic breadth first search (BFS) that starts

from v and follows the incoming edges of each node. In
particular, for each node u encountered during the BFS,
we inspect the set Ein

u of incoming edges of u. For each
edge ⟨u′, u⟩ in Ein

u , we ignore the edge with 1 − pu′,u

probability; with the other pu′,u probability, we allow the
BFS to traverse from u to u′ (if u′ has not been traversed).

3) Insert into R all nodes that are traversed during the
stochastic BFS (including v).

Under the LT model, a random RR set R on G can also be
generated in three steps:

1) Select a node v uniformly at random from V .
2) Generate a random walk from v that follows the incoming

edges of each node. Specifically, at each step of the random
walk, we examine the set N in

u of in-neighbors of the
current node u, and stop the walk at u with probability 1−∑

w∈N in
u
pu′,u. With the other

∑
u′∈N in

u
pu′,u probability,

we sample a node u′ from a distribution f(u′) on N in
u

with f(u′) ∼ pu′,u, and walk to u′ (if u′ has not been
visited).

3) Insert all nodes visited in the random walk into R.

Example 2. Consider the OSN in Fig. 1(a), and assume that v4
is selected. Under the IC model, a random RR set {v1, v3, v4}
may be constructed by traversing nodes v1 and v3 through
edges ⟨v1, v4⟩ and ⟨v3, v4⟩ (with probability 0.2× 0.4× (1−
0.3) = 0.056). On the other hand, under the LT model, the
same random RR set {v1, v3, v4} can only be generated by a
path v4 → v3 → v1. □

Intuitively, for a random RR set generated from a randomly
selected node v, a diffusion process starting from a node in
the RR set should have a certain probability to activate v.
The following lemma formalizes the connection between the
influence spread and a random RR set.

Nodes

RR sets

Fig. 2: RR sets and maximum coverage.

Lemma 1 ([6]). Given a fixed seed set S ⊆ V , for a random
RR set R,

σ(S) = n · Pr[S ∩R ̸= ∅], (2)

where n = |V | is the total number of nodes.

Lemma 1 indicates that the influence spread of a seed set S is
proportional to the probability that S intersects with a random
RR set. We say that a seed set S covers a random RR set R if
S contains at least one node in R, i.e., S ∩R ̸= ∅. Given a set
R of random RR sets, let Λ(S) denote the coverage of S in
R which is the number of RR sets in R that is covered by S.
Then, by Lemma 1, it is easy to see that n · Λ(S)/|R| is an
unbiased estimation of S’s influence spread σ(S). Thus, given
a set of random RR sets generated for influence estimation, the
influence maximization problem is transformed into a maximum
coverage problem [17], which aims to select a set S of k nodes
to cover the maximum number of RR sets. Specifically, the node
set V and the RR sets (aka hyperedges) R form a hypergraph
H = (V,R). For a node v ∈ V and a hyperedge R ∈ R,
if v ∈ R, we say that v covers R. A set S ⊆ V covers a
hyperedge R if there is at least one node in S that covers R.
Thus, maximizing the estimated influence on a set of RR sets
is equivalent to selecting a subset S ⊆ V that maximizes the
number of RR sets in R covered by S.

Example 3. Fig. 2 shows an example of 6 random RR sets
generated, e.g., RR set R3 contains nodes {v1, v3}, node v1
covers RR sets R1, R3, R5, and node set {v1, v4} covers RR
sets R1, R3, R5, R6. Suppose that we aim to identify a set of 2
nodes to cover the maximum number of RR sets. It is easy to
see that selecting {v1, v2} can cover all the 6 RR sets, which
indicates that {v1, v2} is the optimal solution. □

We consider a simple distributed implementation of the
sampling phase with ℓ machines available. If θ random RR sets
are needed, each machine generates θ/ℓ RR sets concurrently.
Note that the total generation time is determined by the longest
one. However, when each machine generates a sufficiently large
number of RR sets, due to the randomness, the difference in
terms of generation time among all the machines is negligible
as shall be formally analyzed later.

B. New Framework for Distributed Maximum Coverage

Feige [17] has shown that there does not exist any (1− 1/e+
ε)-approximation algorithm running in polynomial time for
maximum coverage for any positive ε, unless P=NP. This
indicates that the naive greedy method that selects a set (a
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Fig. 3: Comparison between set-distributed approach and
element-distributed approach.

seed in our context) covering the maximum possible number of
new elements (RR sets in our context) in each iteration is the
best approximation algorithm for maximum coverage in that it
can return a (1− 1/e)-approximate solution. In this paper, we
utilize the greedy algorithm and implement it in a distributed
manner.

We consider the set-element paradigm, where a set cor-
responds to a node and an element corresponds to an RR
set sample. In this section, we analyze the deficiency of the
existing set-distributed approach, and propose a novel element-
distributed approach to cope with the context of influence
maximization. Fig. 3 shows how the set-distributed approach
and the element-distributed approach handle the simple example
of RR sets.

1) Deficiency of Set-Distributed Approach: Maximum cov-
erage is a typical application of submodular maximization. In
the past few years, a significant amount of research has studied
submodular maximization in a distributed fashion, such as
GREEDYSCALING [35], GREEDI [45], PSEUDOGREEDY [44],
RANDGREEDI [3], and PARALLELALG [4]. A key technique
used in these studies is composable core-sets (or its randomized
version) [44]. Table II summarizes the main results of the
existing work in our context, where θ is the number of RR
sets, ℓ is the number of machines, κ is the size of core-sets,
and k is the size of the target seed set. We note that the
existing composable core-sets approach cannot achieve the
exact (1− 1/e)-approximation unless a centralized machine
has a copy of all the RR sets which degenerates to centralized
maximum coverage.

More importantly, the composable core-sets approach uses
the conventional set-distributed strategy, which is incompatible
with distributed RIS. At a high level, the reason is that the
former distributes the nodes in the OSN to each machine
whereas the latter distributes the RR sets to each machine. In
other words, the former is set-distributed whereas the latter
is element-distributed. Specifically, to apply the composable
core-sets approach, if a node v is assigned to a machine si, all
the indexes I(v) of those RR sets covered by v should also be
managed by machine si. On the other hand, with the parallel
sample generation described above, each machine si has the
full information of all the RR sets generated by itself but it does

TABLE II: Summary of the state of the art via (randomized)
composable core-sets for distributed maximum coverage.

Algorithm Rounds Approximation

GREEDYSCALING [35] O
(
log(θ)/ε

)
1− 1/e− ε

GREEDI [45] 1
(1−e−κ/k)(1−1/e)

min{ℓ,k}
PSEUDOGREEDY [44] 1 0.545−O( 1

k
)

RANDGREEDI [3] 1 1
2
(1− 1/e)

PARALLELALG [4] O(1/ε) 1− 1/e− ε

not know whether a node v can cover any RR sets generated
by other machines. Therefore, in distributed RIS, the nodes
appearing in the same RR set R are recorded by one machine,
while in composable core-sets, all the indexes of RR sets
covered by the same node v must be recorded by one machine.
This implies that the set-distributed method requires gathering
all samples together. However, as discussed in Section II-B,
gathering all the samples generated for influence estimation
from a cluster of machines to one machine incurs some
fundamental issues—(i) it might be impossible for a single
machine to load all the data generated by a cluster of machines,
and (ii) the communication cost is expensive as collecting all
the data from a group of machines to one machine can produce
a huge amount of network traffic.

2) New Solution of Element-Distributed Approach: To
remedy the deficiency of the set-distributed approach that all
RR sets covered by a single node should be managed by a
single machine, in this paper, we propose a novel element-
distributed method NEWGREEDI (Algorithm 1) that is tailored
for distributed RIS. NEWGREEDI initially labels all the RR
sets as uncovered (line 2) and calculates the marginal coverage
∆(v) of every node v ∈ V by aggregating the marginals from
all machines (line 4). To implement the greedy algorithm
efficiently (which is linear to the total size of hyperedges), we
create a vector D of node lists to categorize each node by
its coverage. Specifically, each node v is assigned to the list
D(∆(v)) (line 5). We then scan the vector D in decreasing
order of coverage and find the node u with the largest marginal
coverage. To avoid unnecessary updates of D, we apply a
lazy-update strategy that moves node u to a new list only
when the recorded coverage is found outdated during the scan
(lines 9–11). If the recorded coverage of u in D is up-to-date,
we add u to S (line 12). The algorithm returns the solution
S when k nodes are selected (line 13). Otherwise, it updates
the marginal coverage for each node via a MapReduce-like
procedure (lines 14–22). In the map stage, each machine si
only updates the marginal coverages for those nodes affected
by selecting u as a new seed. Specifically, let Ri denote the
set of RR sets generated by machine si. Let Ii(u) denote a set
of indexes of RR sets that are covered by the new seed u on
machine si, i.e., Ii(u) := {j : u ∈ Ri,j∧1 ≤ j ≤ |Ri|}, where
Ri,j is the j-th RR set in Ri. We check through Ii(u) for the
RR sets newly covered by the new seed u. For each such RR
set Ri,j , the marginal coverage of all the nodes in Ri,j is to be
decreased. Then, each machine si just needs to respond with
a vector of tuples (⟨v1,∆i(v1)⟩, ⟨v2,∆i(v2)⟩, . . . ) to indicate



Algorithm 1: NEWGREEDI({R1, . . . ,Rℓ}, k)
Input: A set {R1, . . . ,Rℓ} of RR sets across ℓ

machines, seed size k
Output: A size-k seed set S

1 foreach machine si do
2 label all the RR sets in Ri as uncovered;
3 record the coverage ∆i(v) of every node v on

machine si;

4 compute (at the master machine) ∆(v)←
∑ℓ

i=1 ∆i(v)
for each v;

5 create a vector D such that D(d) is a list of nodes with
coverage d;

6 let d⋆ ← maxv∈V ∆(v);
7 for d← d⋆ to 1 do
8 foreach node u ∈ D(d) do
9 if d > ∆(u) then // outdated coverage

10 insert u to D(∆(u));
11 continue;

12 add u into S;
13 if k nodes are selected then return solution S;

// map stage
14 foreach machine si do
15 initialize an empty hash-map ∆i;
16 foreach RR set index j ∈ Ii(u) do
17 if the RR set Ri,j is uncovered then
18 foreach node v ∈ Ri,j do
19 if v /∈ ∆i then ∆i(v)← 0;
20 ∆i(v)← ∆i(v) + 1;

21 label Ri,j as covered;

// reduce stage
22 update ∆(v)← ∆(v)−∆i(v) for every si and

every v ∈ ∆i;

that the marginal coverage of each node vj is to be decreased by
∆i(vj). It can dramatically save the traffic compared to directly
responding with the new marginal coverages for all the nodes.
Finally, in the reduce stage, it aggregates the changes collected
from all the machines and updates the marginal coverages
accordingly (line 22).

We show that the NEWGREEDI algorithm (Algorithm 1)
can achieve the exact (1− 1/e)-approximation guarantee for
maximum coverage.

Lemma 2. The NEWGREEDI algorithm returns a (1− 1/e)-
approximate solution in a distributed fashion.

Proof. For each node v, let dv denote the index of v in D, i.e.,
v ∈ D(dv). Due to the submodularity, we know that dv ≥ ∆(v)
as the marginal coverage decreases along with the base set
S. Thus, for each node u added to S (line 12) and any node
v ∈ V \ S, ∆(u) = du ≥ dv ≥ ∆(v). In addition, let uj

be the j-th node selected and Sj = {u1, . . . , uj}. Due to the
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Fig. 4: Flowchart of DIIMM.

monotonicity and submodularity, we have

Λ(Sj) + k ·∆(uj+1) ≥ Λ(Sj) +
∑

v∈S◦\Sj

∆(v) ≥ Λ(S◦),

where S◦ denotes the optimal solution. Rearranging it yields

Λ(S◦)− Λ(Sj+1) ≤ (1− 1/k) ·
(
Λ(S◦)− Λ(Sj)

)
.

Recursively, we have Λ(S◦) − Λ(Sk) ≤ (1 − 1/k)k · Λ(S◦),
which concludes the lemma of Λ(Sk) ≥ (1−1/e) ·Λ(S◦).

There are a total of k iterations in NEWGREEDI. In many
applications, k is small (e.g., k is usually less than 100
for influence maximization to leverage the power of viral
marketing), making this approach practical for MapReduce
style computations.

C. Integrating with the State of the Art

There are several frameworks that are designed to provide
the (1− 1/e− ε)-approximation guarantee with probability at
least 1− δ for influence maximization, where ε, δ ∈ (0, 1) are
user-specified parameters. Among these frameworks, IMM [61],
SSA [47], OPIM-C [55], and SUBSIM [25] are the state-of-
the-art ones. Our distributed RIS and NEWGREEDI approaches
are compatible with all the aforementioned frameworks. By
applying our distributed techniques, these frameworks can
be horizontally scaled to handle OSNs of massive scale. In
what follows, we elaborate how to implement IMM [61] in a
distributed fashion using our proposed techniques. In particular,
IMM consists of two phases, i.e., sampling and node selection.
At a high level, IMM iteratively generates RR sets in the
sampling phase and derives the size-k maximum coverage set
in the node selection phase until a stopping condition is met
to yield the solution with good estimation quality.

Fig. 4 overviews the integration of distributed RIS and
NEWGREEDI with IMM [61], referred to as DIIMM. In a
nutshell, DIIMM first derives a lower bound LB of OPT
that is asymptotically tight, and then generates a number of
θ = λ∗/LB RR sets to construct the final solution S∗, where
OPT is the maximum influence spread of any size-k node
set and the choice of λ∗ will be given shortly. The rationale
behind is that a solution constructed with θ = λ∗/OPT random



Algorithm 2: DIIMM(G, ℓ, k, ε, δ)

Input: Graph G, number of machines ℓ, seed size k,
error threshold ε, and failure probability
threshold δ

Output: A size-k seed set S∗ that provides an
approximation ratio of (1− 1/e− ε) with
probability at least 1− δ

1 initialize Ri ← ∅ for every machine si and LB← 1;
2 let ε′ ←

√
2 · ε and δ′ be as defined in (7);

3 for t← 1 to log2 n− 1 do
4 let x← n/2t;
5 let θt ← λ′/x, where λ′ is as defined in (3);
6 each machine si adds (θt − θt−1)/ℓ new RR sets to

Ri;
7 let St ← NEWGREEDI({R1, . . . ,Rℓ}, k);
8 if n · FR(St) ≥ (1 + ε′) · x then
9 LB← n · FR(St)/(1 + ε′);

10 break;

11 let θ ← λ∗/LB, where λ∗ is as defined in (6);
12 each machine si adds (θt− θt−1)/ℓ new RR sets to Ri;
13 let S∗ ← NEWGREEDI({R1, . . . ,Rℓ}, k);
14 return S∗;

RR sets via the greedy approach for maximum coverage can
provide an approximation guarantee of 1− 1/e − ε with at
least 1 − δ probability [61]. However, recall that it is NP-
hard to obtain OPT. To ensure at least λ∗/OPT RR sets
are generated, we find a tight lower bound LB of OPT
and generate a number of λ∗/LB RR sets. Both stages are
implemented in a distributed fashion utilizing our distributed
RIS and NEWGREEDI approaches.

Algorithm 2 presents the pseudo-code of DIIMM. To find a
tight lower bound LB of OPT (lines 1–10), DIIMM initially
sets LB = 1, a parameter ε′ =

√
2 · ε and a parameter δ′

as defined in (7), and iteratively increases the RR set number
until a satisfactory solution is identified. Specifically, in the t-th
iteration, a total number of θt = λ′ · 2t/n RR sets (including
the RR sets generated in the previous iterations) are generated
across ℓ machines (lines 4–6), where

λ′ =
(2 + 2

3ε
′) ·

(
ln
(
n
k

)
+ ln(2/δ′) + ln log2 n

)
· n

ε′2
. (3)

Based on these RR sets, a solution St is constructed via our
NEWGREEDI algorithm (line 7). Let FR(St) be the fraction
of RR sets in R that are covered by St. When St’s estimated
influence spread n · FR(St) is no less than (1 + ε′) · n/2t
(line 8), n · FR(St)/(1 + ε′) is chosen as a lower bound of
OPT (line 9). Tang et al. [61] show that such a lower bound
LB is close to OPT with a high probability.

After a lower bound LB of OPT is obtained, DIIMM then
generates a number of θ = λ∗/LB random RR sets in a
distributed manner and applies NEWGREEDI to construct the
final solution S∗ (lines 11–13). Specifically, λ∗ is a function

of k, n, ε, and δ such that

α =
√
ln(2/δ′) + ln 2, (4)

β =
√

(1− 1/e) ·
(
ln
(
n
k

)
+ ln(2/δ′) + ln 2

)
, (5)

λ∗ = 2n ·
(
(1− 1/e) · α+ β

)2 · ε−2, (6)
δ′ is the root of ⌈λ∗⌉ · δ′ = δ. (7)

Note that in the original IMM algorithm [61], δ′ = δ. However,
Chen [8] has pointed out that there is a subtle issue in the
martingale analysis of the IMM algorithm. Setting the parameter
δ′ as defined in (7) can fix the issue [8], which requires minor
changes on the algorithm (line 2) and incurs a slight penalty
on the running time of the algorithm.

Similar to IMM [8, 61], DIIMM can provide the following
strong theoretical guarantees.

Theorem 1. The DIIMM algorithm returns a (1− 1/e− ε)-
approximate solution with at least 1− δ probability.

Proof. For any size-k set S being independent of R, we have

Pr[n · FR(S) ≥ (1 + ε′) · x ∧OPT < x]

≤ Pr[n · FR(S) > σ(S) + ε′ · x | OPT < x]

≤ e
− (ε′x/n)2λ′/x

(2+2ε′/3)σ(S)/n = e−
x ln δ′′
σ(S) ≤ δ′′,

where δ′′ = δ′/(2
(
n
k

)
log2 n) and the second inequality is due

to martingale inequalities [61]. Similarly,

Pr[n · FR(S) > (1 + ε′) ·OPT∧OPT ≥ x]

≤ Pr[n · FR(S) > σ(S) + ε′ ·OPT | OPT ≥ x]

≤ e
− (ε′ OPT /n)2λ′/x

(2+2ε′/3)σ(S)/n = e−
OPT2 ln δ′′

σ(S)x ≤ δ′′.

In addition, OPT < LB only if (i) condition n · FR(St) ≥
(1 + ε′) · x is met in any iteration t such that OPT < x, or
(ii) OPT < n

1+ε′ · FR(St) when OPT ≥ x, no matter what
St is. Thus, since there are

(
n
k

)
size-k node sets and the total

iterations with OPT < x is at most log2 n− 1, by the union
bound, Pr[OPT < LB] ≤

(
n
k

)
· log2 n · δ′′ = δ′/2 ≤ δ/2.

It is known that when a fixed number θ of random RR sets
are generated such that θ ≥ λ∗/OPT, the greedy algorithm
returns a (1−1/e−ε)-approximate solution with probability at
least 1− δ′/2 [61]. By Lemma 2, our NEWGREEDI algorithm
obtains the same solution as the greedy algorithm. In addition,
when OPT ≥ LB so that θ ≥ λ∗/OPT, we have Pr[σ(S∗) <
(1 − 1/e − ε) · OPT] ≤ ⌈λ∗⌉ · δ′/2 = δ/2, as the possible
setting of θ is an integer in the range of [1, ⌈λ∗⌉] (line 11).

Putting it together, the lemma is proved.

The main difference between DIIMM and IMM lies in
the way that they generate RR sets to construct the solution.
In particular, DIIMM generates RR sets (lines 6 and 12)
and constructs the solution (lines 7 and 13) in parallel by
a group of ℓ machines. Recall that NEWGREEDI initially
calculates the marginal coverage ∆(v) of every node v ∈ V
by aggregating the marginals from all machines (line 4 of
Algorithm 1), which may require each machine to directly



respond with the coverages for all the nodes. Alternatively,
whenever NEWGREEDI is called after generating new RR
sets, each machine si can initially respond with a vector of
tuples (⟨v1,∆i(v1)⟩, ⟨v2,∆i(v2)⟩, . . . ) to indicate the coverage
∆i(vj) of each node vj over the newly generated RR sets. Then,
for each node v, aggregating its marginals in such tuples as
well as its coverage for the previously generated RR sets gives
v’s new coverage. As DIIMM calls NEWGREEDI multiple
times (lines 7 and 13), this approach is able to further save
communication traffic.

D. Complexity Analysis

In what follows, we analyze the communication complexity
and time complexity of the NEWGREEDI (Algorithm 1) and
DIIMM (Algorithm 2) algorithms.

Communication Complexity. We consider a master-slave
paradigm of distributed framework. In particular, for each
call of NEWGREEDI, each slave machine needs to re-
spond to the master machine with a vector of tuples
(⟨v1,∆i(v1)⟩, ⟨v2,∆i(v2)⟩, . . . ) for k times. The length of
such a vector is at most n, where n is the number of nodes in G.
Thus, the communication complexity of NEWGREEDI for each
slave (resp. the master) machine is O(kn) (resp. O(ℓkn), where
ℓ is the number of machines). In addition, the communication
overhead of DIIMM is determined by the call of NEWGREEDI.
There are at most log2 n calls of NEWGREEDI by DIIMM.
Therefore, the total communication complexity of DIIMM for
each slave (resp. the master) machine is O(kn log2 n) (resp.
O(ℓkn log2 n)).

Time Complexity. We first analyze the time complexity of
NEWGREEDI. It is easy to see that for each hyperedge R, the
link between a node v and an RR set R can be visited at most
twice, i.e., one for forward visit (line 16 of Algorithm 1) and
the other for backward visit (line 18 of Algorithm 1). Thus,
the time complexity of NEWGREEDI for machine si is linear
to the total size of its hyperedges, i.e., O(

∑
R∈Ri

|R|). Let
EPS be the expected size of an RR set, which is given in the
following lemma.

Lemma 3. Under the triggering model [33] (which generalizes
both the IC and LT models), the expected size of a random
RR set is

EPS =
1

n

∑
v∈V

σ({v}), (8)

where n is the number of nodes.

Proof. For any given node v and a random RR set R, by
Lemma 1, we have

σ({v}) = n · Pr[{v} ∩R ̸= ∅]. (9)

Thus,

1

n

∑
v∈V

σ({v}) =
∑
v∈V

Pr[{v}∩R ̸= ∅] =
∑
R

(Pr[R]·|R|) = EPS.

Hence, the lemma is proved.

Lemma 3 shows that the expected size of a random RR set is
the average influence spread of the nodes in V . When the RR
sets R are randomly and uniformly distributed to ℓ machines
(i.e., |Ri| = |R|/ℓ), NEWGREEDI requires each machine to
take an expected time of O(EPS|R|/ℓ).

The computation overhead of DIIMM is incurred by (i) the
generation of RR sets, and (ii) the execution of NEWGREEDI.
The time required to generate a random RR set R is O(w(R)),
where w(R) denotes the number of edges in G that point to
the nodes in R. Observe that w(R) ≥ |R|. Thus, the time
complexity of DIIMM relies on the generation of RR sets.
Let EPT be the expected value of w(R). Previous work
[60] shows that the expected time required to generate a
random RR set is O(mn E[σ({v∗})]), where n is the number
of nodes, m is the number of edges, and v∗ is a node selected
randomly from V with probabilities proportional to their in-
degrees. On the other hand, similar to the analysis of IMM in
[61], when δ ≤ 1/2, DIIMM generates an expected number
of O

(
(k lnn + ln(1/δ))nε−2/OPT

)
RR sets. In addition,

E[σ({v∗})] ≤ OPT. Putting it all together with Wald’s
equation [62] shows that DIIMM requires each machine to
take an expected time of O

(
(k lnn+ ln(1/δ))(n+m)ε−2/ℓ

)
.

In addition to the expected time complexity, we show in the
following that the workload is asymptotically balanced across
a group of distributed machines. The analysis is based on the
concept of martingales [14] that can circumvent the dependency
of RR sets. A martingale is a sequence of random variables
X0, X1, X2, . . . with finite means such that the conditional
expectation of Xi given X0, X1, . . . , Xi−1 is equal to Xi−1.
The following lemma gives the concentration bounds for
martingales.

Lemma 4 ([14]). Let X0, X1, X2, . . . be a martingale satisfy-
ing Xi −Xi−1 ≤ ai +M and Var[Xi | X0, X1, . . . , Xi−1] ≤
σ2
i for any i ∈ [1, T ], where Var[·] denotes the variance of a

random variable. Then, for any γ > 0, we have

Pr
[
XT − E[XT ] ≥ γ

]
≤ e

− γ2

2(
∑T

i=1
(σ2

i
+a2

i
)+Mγ/3) .

According to Lemma 4, we have the following corollary.

Corollary 1. Let R1, R2, . . . be a sequence of random RR
sets. Let EPS be the expected size of a random RR set. For
any γ > 0, we have

Pr
[∑T

j=1
|Rj | ≥ T EPS+γ

]
≤ e−

γ2

2n(T EPS+γ/3) , (10)

Pr
[∑T

j=1
|Rj | ≤ T EPS−γ

]
≤ e−

γ2

2nT EPS . (11)

Proof. Let Y0 = 0 and Yi =
∑i

j=1(|Rj | − EPS). Since each
|Rj | is a random variable with a mean of EPS, it holds that
E[Yi] = 0 and E[Yi | Y0, . . . , Yi−1] = Yi−1, which indicates
that Y0, Y1, Y2, . . . is a martingale. In addition,

Yi − Yi−1 = |Ri| − EPS,

and Var[Yi | Y0, . . . , Yi−1] = Var[|Ri|] = E[|Ri|2]− E2[|Ri|].



Since |Ri| ≤ n, we have

Yi − Yi−1 ≤ n− EPS,

and Var[Yi | Y0, . . . , Yi−1] ≤ nEPS−EPS2.

By Lemma 4, we have

Pr
[∑T

j=1
|Rj | ≥ T EPS+γ

]
= Pr

[
YT ≥ E[YT ] + γ

]
≤ e

− γ2

2(T (nEPS−EPS2)+(n−EPS)γ/3) ≤ e−
γ2

2n(T EPS+γ/3) .

Similarly, −Y0,−Y1,−Y2, . . . is a martingale satisfying

(−Yi)− (−Yi−1) = EPS−|Ri| ≤ EPS,

and Var[−Yi | −Y0, . . . ,−Yi−1] ≤ nEPS−EPS2 .

When γ > T EPS, the inequality of
∑T

j=1|Rj | ≤ T EPS−γ
cannot hold. Meanwhile, when γ ≤ T EPS, by Lemma 4,

Pr
[∑T

j=1
|Rj | ≤ T EPS−γ

]
= Pr

[
− YT ≥ E[−YT ] + γ

]
≤ e

− γ2

2(T (nEPS−EPS2)+EPS γ/3) ≤ e−
γ2

2nT EPS .

Hence, the proof is completed.

Consider that γ = εT EPS for ε ∈ (0, 1). Then, according
to Corollary 1, we have In particular, we can obtain that

Pr
[∑T

j=1
|Rj | ≥ (1 + ε)T EPS

]
≤ e−

ε2T EPS
2n(1+ε/3) ,

and Pr
[∑T

j=1
|Rj | ≤ (1− ε)T EPS

]
≤ e−

ε2T EPS
2n .

This shows that the total size of hyperedges is in the range of
[1−ε, 1+ε] times the expectation with high probability, which
implies the time complexity of NEWGREEDI for each machine
is asymptotically equal to its expected time complexity.

Similarly, for DIIMM, we have

Pr
[∑θ

j=1
w(Rj) ≥ (1 + ε)θEPT

]
≤ e−

ε2θ EPT
2m(1+ε/3) ,

and Pr
[∑θ

j=1
w(Rj) ≥ (1− ε)θEPT

]
≤ e−

ε2θ EPT
2m

Thus, the computation time of DIIMM is concentrated to
its expected time within a factor of [1 − ε, 1 + ε] with high
probability.

IV. EXPERIMENTS

This section experimentally evaluates the scalability of
our distributed algorithms for influence maximization and
maximum coverage. We implement our algorithms using Open
MPI1 on a cluster of machines consisting of 17 work nodes
each with an Intel Core 2.7GHz CPU (Skylake) and 48GB
memory and connected to other nodes via 1Gbps switch. One
machine works as the master and the others work as slaves.
We also carry out experiments on a large-memory server with

1https://www.open-mpi.org/

TABLE III: Datasets.

Dataset #nodes #edges Type Avg. degree

Facebook 4.0K 88.2K Undirected 43.7
Google+ 107.6K 13.7M Directed 254.1
LiveJournal 4.8M 69.0M Directed 28.5
Twitter 41.7M 1.5G Directed 70.5

multiple CPU cores implemented using Microsoft MPI2. The
server is equipped with an Intel Xeon 2.2GHz CPU, 12TB
memory and 80 cores. All the algorithms are implemented in
C++.

A. Experimental Setup

Datasets. We evaluate our algorithm on four real datasets
with up to millions of nodes and billions of edges including
Facebook, Google+, LiveJournal and Twitter. The Facebook,
Google+ and LiveJournal datasets are available at [38], and
the Twitter dataset is obtained from [36]. Table III shows the
details of each dataset.

Algorithms. For influence maximization, the state-of-the-art
algorithms, including IMM [61], SSA [47], OPIM-C [55]
and SUBSIM [25], can all be implemented in a distributed
manner using our approaches. To demonstrate the scalability
of our distributed algorithms, we mainly report the results of
distributed implementation of IMM, referred to as DIIMM.
In particular, we measure the running time of DIIMM under
different numbers of machines or cores. Note that no matter
how many machines or cores are used, the influence spread of
DIIMM is the same as that of IMM [61]. Thus, we do not show
the influence spread in the experiments. Moreover, to show
the general applicability of our approach, we also report the
results of distributed implementation of SUBSIM [25] under
the IC model.

For maximum coverage, we compare our NEWGREEDI
algorithm against GREEDI [45]—a state-of-the-art composable
core-sets approach. In GREEDI, each slave machine maintains
an equal partition of all nodes and greedily selects κ nodes to
submit to the master machine, and then the master machine
merges the selected nodes from all partitions to yield a final
set of size k. We set κ = k in our implementation such that
GREEDI achieves an approximation guarantee of (1−1/e)2

min{ℓ,k} [45].
For fair comparison, NEWGREEDI and GREEDI start with
element-distributed data and set-distributed data respectively
in favor of their schemes.

Parameter Settings. For influence maximization, we use
both the IC and LT diffusion models. We set the propagation
probability pu,v of each edge ⟨u, v⟩ to the reciprocal of v’s in-
degree, which is a setting frequently adopted by existing studies
[10, 33, 61]. By default, we set the seed set size k = 50, the
error threshold ε = 0.01 and the failure probability δ = 1/n.
For each parameter setting, we run each algorithm for 10 times
and report the average measurement.

2https://docs.microsoft.com/en-us/message-passing-interface/
microsoft-mpi

https://www.open-mpi.org/
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
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Fig. 5: Running time of DIIMM for IM under IC model using a cluster of machines.
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Fig. 6: Running time of DIIMM for IM under IC model using a multi-core server.
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Fig. 7: Running time of distributed SUBSIM for IM under IC model using a multi-core server.

TABLE IV: The size of RR sets under the IC model.

Dataset #RR sets Total size

Facebook 8.2M 70.8M

Google+ 37.7M 118.3M

LiveJournal 215.6M 2.2G

Twitter 31.5M 558.5M

For maximum coverage, we consider each graph G = (V,E)
as a collection of |V | sets over |V | elements with a total size
of |E|, where the |V | and |E| values of each dataset are given
in Table III. Specifically, the universal node set V is mapped
to the ground set of elements V , and the collection of all the
neighbors of a node u in G is mapped to a hyperedge Nu. Our
aim is to find k users from V with the maximum size of their
neighbor union. We set k = 50 by default.

B. Results for Influence Maximization

IC Model. We first evaluate our algorithms for influence
maximization. Table IV shows the number of RR sets and
the total size of RR sets generated under the IC model for the
datasets tested.

Fig. 5 shows the running times, including the overall
execution time and the breakdown of generation time of RR sets,
computation time and communication time, on various datasets

under the IC model when different numbers of machines are
used. Note that the running time is plotted in logscale. Note
also that the state-of-the-art IMM algorithm is compared as
a baseline where 1 machine is used. As expected, the total
running time almost reduces in inverse proportion to the number
of cores. Specifically, when 4 machines are used, the speedup
ratio is around 3.5× upon the vanilla IMM algorithm, and when
16 machines are used, the speedup ratio becomes around 14×.
In fact, the major running time is spent for generating RR sets.
This is because the number of edges traversed by the stochastic
BFS is much more than the number of nodes traversed (i.e., the
total size of all RR sets generated) according to the sampling
procedure given in Section III-A, where the former determines
the generation time of RR sets and the latter determines the
computation time and communication time. Since our method
generates RR sets via distributed RIS, it can save time in
inverse proportion to the number of machines. In addition,
we also explore the computation time and communication
time of our NEWGREEDI algorithm (after the RR sets are
generated) on various graphs under the IC model. The results
also show an inversely proportional trend for the computation
time while the communication time increases along with the
number of machines. Compared with the computation time,
the communication time is usually an order of magnitude less,
which is negligible.
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Fig. 8: Running time of DIIMM for IM under LT model using a cluster of machines.
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Fig. 9: Running time of DIIMM for IM under LT model using a multi-core server.
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Fig. 10: Results for maximum coverage using a multi-core server.

Fig. 6 shows the results for the large-memory server with
multiple cores. Note that the number of cores is also shown
in logscale. The results are generally similar to those for a
cluster of machines. We observe that when 64 cores are used,
the speedup ratios upon the vanilla IMM algorithm are 56×,
45×, 43× and 31× on the Facebook, Google+, LiveJournal and
Twitter datasets respectively, which indicates that the parallel
efficiency of our distributed techniques are generally good. In
addition, we also obverse that the communication overhead is
still significantly less than the computation time even when
64 cores are used. These results demonstrate the scalability of
proposed distributed algorithms for influence maximization.

Fig. 7 shows the results of distributed implementation of
SUBSIM using the large-memory server with multiple cores.
SUBSIM utilizes a subset sampling technique to improve the
efficiency of RR set generation so that the overall running
time is significantly reduced. As expected, our distributed
implementation of SUBSIM achieves a similar speedup ratio
to that of DIIMM over IMM, which demonstrates the general
applicability of our approach.

LT Model. Fig. 8 and Fig. 9 show the results of running time
under the LT model. The performance trends observed from
Fig. 5 and Fig. 6 are generally applicable to Fig. 8 and Fig. 9
as well. The major differences lie in that the total running
time under the LT model is shorter than that under the IC

model under the same setting (see Fig. 8 and Fig. 9) as it
takes less time to generate a random RR set under the LT
model than that under the IC model. (We have described how
to efficiently construct a random RR set under the IC and LT
models in Section III-A, which is also mentioned and analyzed
in previous work [1, 55]).

Remark. A key difference of the state-of-the-art RIS-based
influence maximization algorithms, including IMM [61],
SSA [47], OPIM-C [55] and SUBSIM [25], lies in the number
of RR sets generated or sampling procedure for each RR set.
As a result, our distributed techniques are expected to achieve a
similar speedup ratio as of IMM for other sequential algorithms
such as SSA, OPIM-C and SUBSIM, as evidenced by Fig. 7.

C. Results for Maximum Coverage

We further run experiments of maximum coverage to
compare our NEWGREEDI algorithm against a state-of-the-art
composable core-sets approach of GREEDI. Fig. 10(a) shows
that our NEWGREEDI algorithm can be easily applied to data
at a massive scale when a number of cores collaborate together
to process the job. In particular, we observe from Fig. 10(b)
that on the four datasets, the speedup ratio is around 3.5×
upon the standard sequential greedy algorithm when 4 cores
are used. Furthermore, when 64 cores are used, the speedup
ratio becomes 18× on the Twitter dataset and 10× on the



LiveJournal and Google+ datasets respectively, whereas the
speedup ratio on the Facebook datasets is slightly lower, as
the running time is very short, i.e., less than 0.01 second. The
parallel efficiency is slightly reduced when more cores are used,
since the communication time increases along with the number
of cores but the total running time is still dominated by the
computation time. Moreover, we can see that compared with
GREEDI, our method shows a better parallel efficiency with
shorter running time and remarkably larger speedup ratio when
multiple cores are used. In addition, we also plot the coverage
ratio of GREEDI to our NEWGREEDI algorithm in Fig. 10(c).
Note that our method can always obtain the same coverage as
the centralized greedy method. As can be seen, the coverage
achieved by GREEDI decreases with the growing number of
cores and is significantly less than our NEWGREEDI algorithm
especially when a large number of cores are used. These results
demonstrate the parallel efficiency and effectiveness of our
element-distributed NEWGREEDI algorithm.

V. RELATED WORK

Domingos and Richardson [16] are the first to study
viral marketing in OSNs from an algorithmic perspective.
Kempe et al. [33] then formulate influence maximization as
a discrete optimization problem that targets at finding a size-
k seed set with the largest influence spread. They propose
a (1− 1/e − ε)-approximation greedy algorithm for several
influence diffusion models (e.g., the de facto IC and LT models),
by utilizing Monte-Carlo simulation. Since then, there has been
considerable research on improved algorithms for influence
maximization [1, 6, 9–13, 15, 18, 19, 21–23, 25, 29, 32, 37,
39, 42, 47, 50, 51, 54–56, 60, 61, 63, 66, 67]. In particular, a
long line of work [9–11, 15, 23, 32, 34, 39, 42, 54, 56, 63]
develops heuristics that are lightweight for influence estimation
at the cost of foregoing worst-case guarantees. In contrast,
more recent work [6, 25, 47, 55, 60, 61] focuses on designing
advanced (1− 1/e− ε)-approximation algorithms, leveraging
reverse influence sampling (RIS) [6]. In this paper, we aim
to implement RIS-based algorithms in a distributed fashion
that can horizontally scale to OSNs of massive scale. Our
distributed algorithms can be easily adapted to accelerate
the greedy heuristics for many influence-based applications
beyond influence maximization, such as targeted influence
maximization focusing on activating targeted users [40], multi-
objective influence maximization considering multiple empha-
sized groups [20], budgeted influence maximization where
each node is associated with a distinct cost [5, 39], revenue
maximization optimizing the total payment of advertisers to
the OSN owner [2, 27], profit maximization combining the
benefit of influence spread with the cost of seed selection or
information propagation [53, 57, 58], seed minimization with
a given amount of influence spread to achieve [24, 41, 65],
and their variants under the adaptive setting [26, 30, 31, 59].
In particular, similar to influence maximization, the solutions
to the aforementioned problems also (i) generate RR sets, and
(ii) construct a seed set via a greedy search, which can be
accelerated by our proposed approach.

Another line of related work lies in distributed maximum
coverage. In fact, in RIS-based influence maximization, for each
RR set, its index is mapped to an element. For each node, the
indexes of all the RR sets containing this node are mapped to a
set. In the past few years, a large body of research has studied
distributed maximum coverage (or its generalized form, i.e.,
submodular maximization) [3, 4, 35, 44, 45]. These studies are
based on the composable core-sets (or its randomized version)
technique [44] that distributes the sets to a cluster of machines,
referred to as set-distributed maximum coverage. Applying
set-distributed approach,unfortunately, is incompatible with
distributed RIS, which incurs some critical issues as analyzed
in Section III-B1. Instead, we propose a new framework tailored
for element-distributed maximum coverage since in RIS-based
influence maximization, each element (RR set) is maintained
by one machine whereas each set (node) may appear multiple
times in different machines. In addition, our element-distributed
maximum coverage algorithm NEWGREEDI in Algorithm 1
can ensure the exact (1− 1/e)-approximation which cannot be
achieved by any set-distributed maximum coverage algorithm
so far unless it degenerates to the centralized version.

VI. CONCLUSION

In this paper, we have implemented the advanced RIS-based
influence maximization algorithms in a distributed fashion. Our
distributed algorithms consist of two phases: (i) a sampling
phase that generates a number of samples satisfying the approx-
imation guarantee requirement in a distributed manner, and (ii)
a seed selection phase that is equivalent to element-distributed
maximum coverage. Our NEWGREEDI algorithm ensures
(1− 1/e)-approximation for element-distributed maximum
coverage. In addition, our DIIMM algorithm that integrates
distributed RIS and NEWGREEDI with the state-of-the-art
IMM algorithm returns (1− 1/e − ε)-approximate solutions
for influence maximization. With extensive experiments on real
datasets with up to millions of nodes and billions of edges,
we show that our solutions can horizontally scale to address
influence maximization and maximum coverage with massive
data. In fact, our distributed techniques can also accelerate other
sequential algorithms for influence maximization, such as SSA,
OPIM-C and SUBSIM, by a similar rate as of DIIMM to IMM.
Moreover, the greedy algorithms for many influence-based
applications, e.g., targeted/multi-objective/budgeted influence
maximization, revenue maximization, profit maximization, seed
minimization, etc., can be implemented in a distributed manner
via our approaches to further improve their efficiency.
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