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Abstract—Interactivity is a primary performance measure
for distributed interactive applications (DIAs) that enable
participants at different locations to interact with each other in
real time. Wide geographical spreads of participants in large-
scale DIAs necessitate distributed deployment of servers to
improve interactivity. In a distributed server architecture, the
interactivity performance depends on not only client-to-server
network latencies but also inter-server network latencies as well
as synchronization delays to meet the consistency and fairness
requirements of DIAs. All of these factors are directly affected
by how the clients are assigned to the servers. In this paper,
we investigate the problem of effectively assigning clients to
servers for maximizing the interactivity of DIAs. We focus on
continuous DIAs that change their states not only in response to
user operations but also due to the passing of time. We analyze
the minimum achievable interaction time for DIAs to preserve
consistency and provide fairness among clients, and formulate
the client assignment problem as a combinational optimization
problem. We prove that this problem is NP-complete. Four
heuristic assignment algorithms are proposed and evaluated
using real Internet latency data. The experimental results show
that our proposed greedy algorithm generally produces near
optimal interactivity and significantly reduces the interaction
time between clients compared to the intuitive algorithm that
assigns each client to its nearest server.

I. INTRODUCTION

Distributed Interactive Applications (DIAs) are networked
systems that enable participants at different locations to
interact with one another in real time. Since DIAs are
human-in-the-loop applications, improving the interactivity
of DIAs is critically important for supporting graceful in-
teractions among participants. The interactivity performance
is normally characterized by the duration from the time
when a participant issues an operation to the time when the
effect of the operation is presented to the same participant
or other participants [15]. This duration is referred to as
the interaction time between participants. Network latency
is known as a major barrier to achieving high interactivity
[9]. Increasing geographical spreads of participants in large-
scale DIAs is making distributed server deployment vital for
combating the network latency. Latency-driven distribution
of servers is essential even when there are no limitations on
the availability of server resources at one location [21].

In a distributed server architecture, the state of a DIA
(such as the virtual world in a multi-player online game) is
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Figure 1. Distributed server architecture.

often replicated across a group of geographically distributed
servers [3], [7]. As shown in Fig. 1, each participant, known
as a client, is assigned to one server and connects to the
server for sending user-initiated operations and receiving
updates of the application state. When issuing an operation,
a client first sends the operation to its assigned server.
Then, the server forwards the operation to all the other
servers. On receiving the operation, each server calculates
the new state of the application and sends a state update
to all the clients assigned to it. Thus, the clients interact
with one another through their assigned servers. The inter-
action time between any pair of clients must include the
network latencies between the clients and their assigned
servers, and the network latency between their assigned
servers. These network latencies are directly affected by
how the clients are assigned to the servers. In addition,
the interaction time is also influenced by the consistency
and fairness requirements of DIAs. Consistency means that
shared common views of the application state must be
created among all clients to support meaningful interactions
[9]. Fairness, on the other hand, is to ensure that all clients
have the same chance of participation regardless of their
network conditions [S], [17]. Maintaining consistency and
fairness in DIAs usually introduces artificial synchronization
delays in the interactions among clients [5], [8], [12], [16],
[18]. These synchronization delays are also dependent on the
assignment of clients to servers. Therefore, how to assign
the clients to the servers in DIAs is of crucial importance
to their interactivity performance.

In this paper, we investigate the problem of effectively
assigning clients to servers for maximizing the interactivity



of DIAs. We focus on continuous DIAs that change their
states not only in response to user-initiated operations but
also due to the passing of time [18]. Examples of continuous
DIAs include distributed virtual environments, distributed
interactive simulations and multi-player online games.

We start by mathematically modeling the interactivity
performance of continuous DIAs under the consistency and
fairness requirements. For any given client assignment, we
analyze the minimum achievable interaction time for DIAs
to preserve consistency and provide fairness among clients.
Based on the analysis, we formulate the client assignment
problem as a combinational optimization problem and prove
that it is NP-complete. Several heuristic assignment al-
gorithms are then proposed and experimentally evaluated
using real Internet latency data. The results show that the
proposed greedy assignment algorithms significantly reduce
the interaction time between clients compared to the intuitive
Nearest-Server Assignment algorithm that assigns each client
to its nearest server. The interactivity produced by the greedy
assignment algorithms is generally close to the optimum.

The rest of this paper is organized as follows. Sec-
tion II analyzes the minimum achievable interaction time
and formulates the client assignment problem. Section III
presents the NP-completeness result. Section IV proposes
four heuristic client assignment algorithms for improving the
interactivity of DIAs. The experimental setup and results are
discussed in Section V. Section VI summarizes the related
work. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION
A. System Model

We model the underlying network supporting a DIA by
a graph G = (V, E), in which V is the set of nodes and
E C V x V is the set of links between the nodes. A
length d(u,v) > 0 is associated with each link (u,v) € E,
representing the network latency between nodes u and v.
Let S C V be the set of servers in the network and C C V'
be the set of clients. Each client needs to be assigned to
a server in order to send user operations and receive state
updates. A client assignment is a mapping from C' to S,
where for each client ¢ € C, we denote by sa(c) € S as
the server that client c is assigned to.

The clients interact with one another through their as-
signed servers. Specifically, when a client ¢; issues an
operation, the effect of the operation is presented to another
client c; through the following process. First, ¢; sends
the operation to its assigned server sa(c;). Then, sa(c;)
forwards the operation to ¢;’s assigned server s4(c;) if they
are different. Finally, s 4(c;) executes the operation, possibly
after some artificial synchronization delay, and then delivers
the resultant state update to c;. In the above interaction
process, the paths from ¢; to s4(c;), from s4(c;) to s4(c;),
and from s 4(c;) to ¢; are involved. Similarly, if ¢; issues an
operation, the same three paths in the network are involved
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Figure 2.

Interaction paths in a network.

in the interaction process for c; to see the effect of the
operation. Therefore, we refer to the concatenation of these
three paths as the interaction path between c; and c;. For
example, in the network of Fig. 2, suppose clients c; and ¢
are assigned to server sj, and client c3 is assigned to server
s2. Then, the interaction path between c; and c5 is indicated
by the dotted line, and the interaction path between c; and
c3 is indicated by the dashed line.

The length of the interaction path between two clients
¢; and c; represents the network latency involved in their
interaction. To facilitate presentation, we extend the distance
function d(u, v) to all pairs of nodes (u,v) € V xV by defin-
ing d(u,v) as the length of the routing path between nodes
uw and v. Then, the length of the interaction path between
¢; and ¢; is given by d(c;, sa(c;)) + d(sa(ci),sa(cj)) +
d(sa(cj),c;). Note that the length of the interaction path
from a client ¢; to itself is 2d(c;, sa(c;)), i.e., the round-
trip time between c¢; and its assigned server ss(c;), and
represents the network latency involved for c; to see the
effect of its own operation.

B. Consistency and Fairness Models

In continuous DIAs, the progress of the application state is
typically measured by the time elapsed since the initial state
of the application [18]. We shall call it the simulation time.
For instance, the simulation time of a multi-player online
game records the time elapsed in its virtual world. In the
distributed server architecture, each server and client has a
copy of the application state and its associated simulation
time. The simulation times of all servers and clients should
advance at the same rate. However, they do not have to be
synchronized, i.e., their readings do not have to be the same
at the same wall-clock time. Normally, the simulation time
of a client lags behind the simulation time of its assigned
server due to the network latency of delivering state updates
from the server to the client.

The consistency requirement for continuous DIAs is to
ensure that all clients share the same view of the application
state when their respective simulation times reach the same
value. This is automatically guaranteed among the clients
assigned to the same server because they all inherit the
application state from their assigned server through state
updates. Nevertheless, the application state seen by the
clients assigned to different servers may not be identical at



the same simulation time if the application states maintained
by their assigned servers are not consistent. Since the state
of a continuous DIA changes due to both user operations and
time passing, to ensure consistency among the application
states at the servers, each user operation must be executed
by all servers at the same simulation time.

The fairness requirement is to ensure that all clients have
the same chance of participation regardless of their network
conditions. This is particularly important for applications
where users compete with each other. In essence, fairness is
concerned with the order of executing user operations [17].
For example, a participant would gain an unfair advantage
in an air combat game if an action taken by him at a
later time takes effect before another action taken by a
different participant at an earlier time. To guarantee fairness
in continuous DIAs, the order of operation execution must be
the same as the operation issuance order at the clients based
on the simulation time. In addition, the time interval between
the issuances of two operations in terms of simulation time
must also be preserved between the executions of these
operations. This entails executing each operation at the
server at a simulation time that is of a constant lag behind
the simulation time of the operation issuance.

Integrating both consistency and fairness requirements, we
get the following criterion: all operations must be executed
by all servers at simulation times that is of a constant lag
behind the operation issuances. In the following, we analyze
the minimum achievable interaction time for continuous
DIAs to meet this criterion.

C. Minimum Achievable Interaction Time

Let § denote the constant lag for operation execution. We
first show that the average interaction time between all client
pairs is equal to &. For each pair of nodes u,v € CUS in the
network, we denote by A,, ,, the offset of node u’s simulation
time relative to node v’s simulation time (a positive offset
means that u’s simulation time is ahead of v’s simulation
time). Since the simulation times of all servers and clients
advance at the same rate, the offset A, ,, for each node pair
u, v is a constant. Obviously, we have A, , + A, , = 0, and
Au,v + Av,w = Au,w-

Consider the operation that is issued at simulation time .
Since all servers execute the operation at simulation time ¢+
9, due to state inheritance, all clients should see the operation
taking effect when their simulation times reach ¢ + §. When
a client c;’s simulation time reaches ¢ + J, the simulation
time at ¢; is ¢t + 0 + Aci’cj. Thus, the interaction time for
c;j to see the effect of ¢;’s operation is t +6 + A, o, —t =
d + A, ;- Similarly, if client c; issues an operation when
its simulation time is ¢, the interaction time for ¢; to see the
effect of ¢;’s operation is t + 0 + A, o, =t =0 + A, ¢,
As a result, the average interaction time between any two
clients ¢; and ¢; is 5(6 + Ac, ¢, + 6+ A, ;) = 6. So, the
average interaction time between all client pairs is also equal

to §. Therefore, minimizing the average interaction time is
equivalent to minimizing the constant lag §.

To make operation execution and state updates feasible, §
must satisfy the following constraints:

(1) When any client issues an operation at its simulation
time ¢, all servers are able to receive the operation
before their respective simulation times reach ¢ + 4.

(i) All clients are able to receive the resultant state up-
date of executing the operation before their respective
simulation times reach ¢ + ¢.

Next, we show that the minimum possible value of § under
the above constraints is the maximum length of interaction
paths between all client pairs.

We start by formulating constraints (i) and (ii) mathemat-
ically. Suppose an operation o is issued by a client c at its
simulation time ¢. Since o is first sent to ¢’s assigned server
s4(c) and then delivered from s4(c) to all the other servers,
the total network latency for any server s to receive operation
ois d(c,s4(c))+d(sa(c),s).! Based on constraint (i), each
server s should receive o before its simulation time reaches
t + 0. Thus, we have

Vs, t4d(e,sa(c)) +d(sa(e),s)+ Ase <t+4.

Constraint (i) stipulates that the above inequalities should
hold for any client c. Therefore, constraint (i) can be
formulated as

Ve,s,  d(e,sa(c)) +d(salc),s)+Ase <o (1)

After operation o is executed by all servers when their
respective simulation times reach ¢ + 4, the resultant state
update should be delivered to all clients. Suppose each
server sends the state update to its clients immediately after
executing o. Then, for each client ¢, its simulation time when
it receives the state update is ¢ + 6 +d(sa(c),c) +Ac s, (c)»
which, according to constraint (ii), should be before the
simulation time of client ¢ reaches t+4. Therefore, constraint
(ii) can be formulated as

VC, d(SA(c)7 C) + Ac,sA(c) S 0. (2)

We now derive the minimum possible value of § from
inequalities (1) and (2). For any client pair ¢; and c;, based
on (1), we have

d(ci,sa(ci)) +d(sa(ci), sale)) + Dy (e;).e; < 6.
Based on (2), we have
d(sa(ci),ci) + Ay sa(e) <0
By adding up the above two inequalities, it follows that

2d(ciy sa(ci))+d(sa(ci), s4(ci)+ Dgaie;)sale) <0 (3)

ISince d(sa(c),s4(c)) = 0, we can use this expression to represent
the network latency for server s (c) to receive operation o as well.



Similarly, we have

2d(cj, sa(cj))+d(salcs), salei)+ Dguer),sale;) <0 (4
By adding up (3) and (4), we have

d(ci, sa(ci)) +d(sa(ci), sale;) + d(cj, sale;)) < 0. (5)

The expression on the left side of inequality (5) is the length
of the interaction path between clients ¢; and c;. Since ¢;, ¢;
can be any pair of clients, (5) indicates that 4 should be no
less than the maximal length of interaction paths between all
client pairs. Denote by D the maximum length of interaction
paths between all client pairs, i.e.,

D= maé( {d(ci, salci)Hd(salc;), salej)Hd(sale)), i)}

Ci,Cj

Then, the minimum possible value of § is D.

Finally, we show that the minimum possible value of &
derived above is achievable by properly setting the offsets
between simulation times at the servers and clients. We first
synchronize the simulation times at all clients, i.e., setting
A, =0 for all client pairs ¢, ¢’. Then, the values of A, .
between a given server s and all clients c are set as follows:

Ase =D = max{d(c',54(c) + d(sa(c), ),

where the second term is the longest distance from server s
to all clients through their assigned servers. Note that, in this
setting, the simulation times of different servers may not be
synchronized. We now show that the above A, and A, .
values together with setting 6 = D satisfy constraints (i)
and (ii). For constraint (i), for each client ¢ and server s, we
have

d(c,sa(c)) +d(sa(c),s) + A

=D +d(e,s4(c)) +d(salc),s)

— ma()j({d(c’, sa(c)) +d(sa(c),s)}
c'e

<D=4.

For constraint (ii), for each client ¢, we have

d(SA(C) ) + Ac sA(c)

=d(sa(c),c) = Ag,(e)e

*méé{d(6’7sA( ) +d(sa(c), sale)}+d(sa(c), c)—
= ”)gg{d(C',sA( ) +d(sa(c), sa(c))+d(sa(c),c)} =D
<.

As a result, both constraints are satisfied. Therefore, with
above setting of A.. and A, . values, it is feasible to
make the average interaction time J equal to the maximum
length D of interaction paths between all client pairs.
Since the simulation times of all clients in this setting are
synchronized, the interaction times between all client pairs
are in fact the same, which are all equal to D.

D. Problem Statement

The above analysis shows that given a client assignment,
the minimum achievable interaction time meeting the con-
sistency and fairness requirements is the maximum length D
of interaction paths between all client pairs. Therefore, the
client assignment problem for maximizing the interactivity
of continuous DIAs is formulated as follows:

Definition 1 (Client Assignment Problem): Given a net-
work G = (V, E') where V contains a set of servers S and
a set of clients C, and the length d(u,v) > 0 for each link
(u,v) € E, the objective of the client assignment problem
is to find a client assignment that minimizes the maximum
length of interaction paths between all client pairs, i.e.,

minimize
max {d(ci, sa(ci))+d(sa(e), sales) +d(sales), ¢)}-
E. Further Considerations

In this paper, we focus on reducing the network latencies
and the associated synchronization delays involved in the
interaction between clients. Thus, the above problem formu-
lation has not taken into consideration the processing delays
at the servers. In general, the processing delays at the servers
are easier to improve than the network latencies [14]. A busy
server can always be better provisioned (e.g., by forming a
server cluster) to meet the capacity requirements and reduce
the processing delay. We shall discuss in Section IV-E how
to deal with server capacity constraints in our proposed client
assignment algorithms if server capacities are limited.

There may exist jitter in the network. Jitter refers to
the variability of network latency. In the presence of jitter,
longer synchronization delay would be required to cater
for the variation in network latency in order to guarantee
consistency and fairness. Our formulation of the client
assignment problem is also valid in dealing with network
jitter in that the length d(u,v) of each link (u,v) can be
set to any percentile of the network latency to cater for
its variability to a required extent. At one extreme, setting
d(u,v) to the maximum possible network latency between
nodes u and v would guarantee that each operation is
received by all servers before its execution, thereby ensuring
consistency and fairness. But this strategy may considerably
degrade interactivity at large jitter. Thus, a real-world system
often models a certain high percentile (e.g., 90th percentile)
of the network latency to significantly reduce the chance
for inconsistency and unfairness to arise [8], [17]. When
inconsistency does occur due to jitter, the application state
can be repaired using synchronization mechanisms such as
timewarp [18] and Trailing State Synchronization (TSS) [8].
Repairing the application state, however, may create artifacts
that disturb the user behavior. For instance, an artifact in an
online game could mean that an opponent that has been
beaten in a fight stands up again and continues to fight.
Therefore, the extent to which the variability of network



latency is catered reflects a trade-off among interactivity,
consistency and fairness. Selecting an appropriate percentile
of the network latency to model based on the application
needs is beyond the scope of this paper.

III. NP-COMPLETENESS RESULTS

Finding a client assignment that minimizes the maximum
length of interaction paths is a challenging task because
the path length comprises of both client-to-server latencies
and inter-server latencies. An intuitive client assignment
is to assign each client to its nearest server [16], [26].
While this assignment reduces the client-to-server latencies,
it could significantly increase the latencies between the
assigned servers of different clients, and thus make the
interactivity far worse than optimum as shall be shown
by our experimental results in Section V. On the other
hand, assigning all clients to a single server eliminates the
contribution of inter-server latencies towards the lengths of
interaction paths, but may remarkably increase the latencies
between clients and their assigned server. In this section, we
analyze the hardness of the client assignment problem. We
prove that the problem is NP-complete.

Theorem 1: The client assignment problem is NP-
complete.

Proof: Consider a candidate solution for an instance of
the client assignment problem in its decision version with an
integer bound L. The length of the interaction path between
each pair of clients can be computed in polynomial time.
Thus, computing the maximum length of interaction paths
between all client pairs and comparing it with the bound
L can be done in polynomial time. Therefore, the client
assignment problem is in NP.

We show that the client assignment problem is NP-
complete by a polynomial reduction from the minimum set
cover problem which is known to be NP-complete [11].
The decision version of the minimum set cover problem
is defined as follows: given a finite set P and a collection
Q of its subsets, and a positive integer K < |Q|, find out
whether Q contains a set cover for P of size at most K,
i.e., whether there exists a subset Q' C Q with |Q'| < K
such that Uy @ = P

Let R be an instance of the minimum set cover problem.
Suppose that set P contains n elements py,pe,--- ,p, and
collection Q contains m subsets Q1,Q2, - , Q. We first
construct a network G = (V, E) where V consists of n
clients and m - K servers (see Fig. 3). The n clients are
c1,Co, -+, Cn, and each client ¢; corresponds to one element
p; in set P. The servers are divided into K groups with each
group containing m servers, i.e.,

1 .1 1..2 2 2 .
81589, 3 S8m3S1,89, " s Smy

K K K
. ;81 782 s 7Sm'

Each server corresponds to one subset in Q, and the jth
server sé of each group [ corresponds to subset (J;. A client

c; and a server sé are connected by a link if and only if

P = {p1,p2,p3,pa}

Q = {Q1.Q2Qs}

@ = {p}

Q2 = {p2}

Qs = {ps,pa}

Q = {Q1,Q2Qs}

O Server

O Client

—_— Link

- Client Assignment

Figure 3. Example of instances R and 7" of the minimum set cover
problem and the client assignment problem with K = 3.

element p; belongs to subset @);. So, given j, a client c;
is either connected to the jth servers 5}, 5?, e ,s? of all
groups or not connected to any of them. Besides, each server
in one group is connected to all servers in other groups.
Therefore, the set of links is

E = {(ci, s5)IV1,pi € QY U{(s}:,572) Vir, o, It # Lo}

An instance T of the client assignment problem is then
constructed on network G by setting the length of every link
to 1, setting the bound L to 3, and assuming that messages
are routed in the network by shortest path routing. Thus, the
instance 7' is constructed in time polynomial to the size of
instance R. In the following, we show that, Q contains a set
cover Q' of size at most K for instance R if and only if
there exists an assignment A with the maximum interaction
path length at most 3 for instance 7.

Suppose there exists a set cover Q" with |Q'| < K, then
a client assignment is constructed in |Q’| steps as follows.
At each step, we consider one subset Q; € Q" and try to
assign the clients that correspond to (Q;’s elements to the
same server. We first choose an unused server group [ such
that no client has been assigned to any server in the group.
Then, for each element p; € @, client ¢; is assigned to
server sé- in group [ if ¢; has not been assigned to any server.
Since we only assign clients to one server at each step, the
total number of servers assigned clients is |Q’| < K. Thus,
it is guaranteed that an unused server group ! can always
be found at each step. In addition, since each element p;
belongs to at least one subset @; in @, all clients must be
assigned to servers after |Q’| steps. In the example of Fig.
3, the set cover Q' = {Q1,Q2,Q3} contains three subsets
of elements. Thus, the clients are assigned to three different
servers s1, s3 and s3. In the assignment that we constructed,
each client ¢; is assigned to one of the jth servers sé of all
groups only if p; belongs to ;, which indicates that c; is
connected to sé» by a link. Thus, the distance between any



client and its assigned server is 1. Since in any group, at
most one server is assigned clients, the distance between any
two servers that are assigned clients is also 1. So, the length
of interaction path between any pair of clients is 2 if they
are assigned to the same server, and the length is 3 if they
are assigned to different servers. Therefore, the maximum
interaction path length in the constructed assignment is at
most 3.

On the other hand, suppose there exists a client as-
signment with the maximum interaction path length not
exceeding 3. Note that the distance between any client and
server is at least 1. Thus, to make the length of interaction
path between each client pair not exceeding 3, the distance
between any two servers that are assigned clients cannot be
longer than 1. This implies that in each group, there is at
most one server that is assigned clients, since the distance
between any two servers in the same group is 2. Thus, the
total number of servers that are assigned clients is at most the
number of server groups, i.e., K. We construct a set cover
Q' based on this client assignment by selecting a subset
Q; if and only if there exists at least one jth server sé»
that is assigned clients. Then, the size of Q' is at most K.
In addition, note that the distance between a client and a
server is 1 if there is a link connecting them and is at least
2 otherwise. If a client is assigned to a server to which it
has no direct link, the length of the interaction path from
the client to itself is at least 4. So, in the aforementioned
assignment, each client must be assigned to a server to which
it has a link. It follows that Q" must cover all elements in
set P. Therefore, Q' is a set cover of size at most K.

Hence, the theorem is proven. [ |

IV. HEURISTIC ALGORITHMS

Since the client assignment problem is NP-complete,
there may not exist a polynomial optimal solution for it.
A brute-force algorithm is computationally expensive even
with small numbers of clients and servers. In this section,
we present four heuristic client assignment algorithms. The
computation of these algorithms is simply based on the
network latencies between clients and servers, which can be
obtained with existing tools like ping and King [13]. Thus,
these algorithms are generic and not tied to any particular
routing strategy.

A. Nearest-Server Assignment

The first algorithm is called Nearest-Server Assignment,
which intuitively assigns clients to their nearest servers. This
algorithm can be implemented by having each client measure
the network latencies between itself and all servers, and
select the server with the lowest latency as its assigned
server. The computational complexity for each client is
hence O(]S]). As discussed earlier, since Nearest-Server
Assignment optimizes only client-to-server latencies and
does not consider inter-server latencies, it cannot guarantee

to produce good assignments. When assuming shortest path
routing in the network, we can show that Nearest-Server
Assignment has an approximation ratio 3.

Theorem 2: The maximum length of interaction paths
between all client pairs in Nearest-Server Assignment is
within three times of that in an optimal assignment.

Proof: Consider two clients u and v, whose nearest
servers are n, and n, respectively. Suppose in an optimal
assignment, client u is assigned to server o, and client v
is assigned to server o,. Naturally, we have d(u,n,) <
d(u,0,) and d(v,n,) < d(v,0,). Under shortest path
routing, the distance function d(u,v) satisfies the triangle
inequality. Thus, it follows that:

ANy, 04) <d(u, ny,) +d(u, 0,) <2d(u, 0y,),

and
d(n1;7 Ov) S d(u, nv) +d(u7 Ov) S 2d(u7 01})-

In Nearest-Server Assignment, the length of the interaction
path between u and v is d(u, ny,) +d(ny, ny) +d(n,,v). By
the triangle inequality, d(n,,,n,) should not be greater than
the length of the concatenation of the paths from n,, to o,
from o, to o,, and from o, to n,. Therefore, we have

d(u,ny) + d(ny, ny) + d(ny, v)
< d(uyny) + d(ny, 04) + d(0y, 04) + d(04, nyy) + d(ny, v)
< d(u,04) + 2d(u, 0y) + d(0y, 0,) + 2d(0y,v) + d(0y,v)
= 3d(u, 04) + d(0y, 0,) + 3d(0y,v)
< 3(d(w,04) 4 d(0y, 04) + d(0y,v)).

This result shows that the interaction path for each client pair
in Nearest-Server Assignment is within 3 times of that in an
optimal assignment. The maximum interaction path length in
Nearest-Server Assignment therefore has an approximation
ratio of 3 to the optimum.

Hence, the theorem is proven. [ ]

The approximation ratio of 3 is tight. Fig. 4 gives an
example in which there are two clients c;, ¢y and three
servers s, s1, So. The distances between both clients and
server s are a, and the distance from client ¢; to server
s1 and the distance from client co to server s, are a — &,
where ¢ > 0. In Nearest-Server Assignment, client c; is
assigned to server si, and client ¢ is assigned to server
52. So, the maximum interaction path length is 6a — 4e. It
is obvious that the optimal assignment should assign both
clients to server s, and the maximum interaction path length
in the optimal assignment is 2a. The ratio between the two
maximum interaction path lengths 6a — 4¢ and 2a can be
made arbitrarily close to 3 when € approaches 0.

a—¢€ a a a—e

Figure 4.
Assignment.

Example of the approximation ratio 3 of Nearest-Server



B. Longest-First-Batch Assignment

The second algorithm is called Longest-First-Batch As-
signment. The main idea is that, if a client ¢ is assigned
to a server s, assigning to s all clients that are not farther
from s than ¢ would not increase the maximum length of
interaction paths. Longest-First-Batch Assignment first finds
the nearest server for each client. Then, instead of assigning
all clients to their nearest servers directly, the algorithm sorts
the distances from the clients to their nearest servers, and
assigns the clients iteratively. In each iteration, the algorithm
finds an unassigned client ¢ whose distance to its nearest
server is the longest among all unassigned clients. Client c is
then assigned to its nearest server, along with all unassigned
clients that are not farther from this server than c. The
algorithm terminates when all clients have been assigned to
servers. Since the algorithm requires global knowledge about
the distances between the clients and their nearest servers,
it is better suited for centralized implementation.

In Longest-First-Batch Assignment, if a client is not
assigned to its nearest server, it must not be the farthest
client to its assigned server, and thus cannot be involved in
the longest interaction path in the network. So, the longest
interaction path in this assignment must connect two clients
that are both assigned to their nearest servers. Thus, the
maximum interaction path length in Longest-First-Batch
Assignment cannot exceed that in Nearest-Server Assignment
and is hence also within three times of the optimum.
The approximation ratio of 3 is tight since the example
shown in Fig. 4 applies here as well. Fig. 5 shows an
example where Longest-First-Batch Assignment outperforms
Nearest-Server Assignment. Here, cq, co are clients and s1,
so are their respective nearest servers. In Nearest-Server
Assignment, client c; is assigned to server sj, and client
co is assigned to server so. The maximum interaction path
length in this assignment is 5 4+ 4 + 3 = 12. Longest-First-
Batch Assignment, on the other hand, starts from client c1,
and assigns both clients to server s;. Thus, the maximum
interaction path length is 5 + 4 = 9, which is shorter than
that of Nearest-Server Assignment.

Figure 5. Example of the effectiveness of Longest-First-Batch Assignment.

In Longest-First-Batch Assignment, the first step that finds
the nearest servers of all clients has a time complexity of
O(|C||S]), and sorting the distances between the clients and
their nearest servers can be done in O(|C|log|C|) time.
Each subsequent iteration has a worst-case time complexity

of O(|C]), which results in a total time complexity of
O(|C|?) for all iterations. Thus, the overall time complexity
of Longest-First-Batch Assignment is O(|C|(|C| + 15])).

C. Greedy Assignment

The third algorithm Greedy Assignment adopts a greedy
approach to assign clients to servers iteratively. It starts
with an empty assignment and employs a similar idea to
Longest-First-Batch Assignment when assigning clients. In
each iteration, the algorithm considers all possibilities of
assigning an unassigned client to a server. If a client c is
selected to be assigned to a server s, and then all unassigned
clients that are not farther from s than c are also assigned to
server s. Let An be the number of new clients assigned to
s, and Al be the increase in the maximum interaction path
length due to these new assignments. We define Al/An as
a cost metric for selecting which client to be assigned to
which server in an iteration, since we want to minimize the
amortized increase in the maximum length of interaction
paths for the new clients assigned. In each iteration, among
all possible pairs of unassigned client and server (c, s), the
pair resulting in the minimum cost Al/An is selected and
the corresponding clients are assigned to s. The algorithm
terminates when all clients have been assigned to servers.

To calculate An efficiently, the distances from all clients
to each server s can be sorted in a list L, in a preprocessing
stage. This sorted list is incrementally updated by removing
newly assigned clients at the end of every iteration. Then,
An can be obtained directly from the index of the unas-
signed client in the list. On the other hand, Al for assigning
a new client c to a server s is calculated by comparing the
current maximum interaction path length with the maximum
length of the interaction paths from client ¢ to all clients
already assigned to servers. The latter is given by

max {2d(c, s), gr&%}/{{d(c, s)+d(s,sa(b))+d(sa(b),b)}}
= max {2d(c, s), d(c, s)+£rézg/<{d(s, 54(b))+d(sa(b),b)}}

where 2d(c, s) is the interaction path length from c to itself
and C’ is the set of clients already assigned to servers. For
each server s, the term maxpccr{d(s, s4(b)) +d(sa(b),b)}
is independent of client ¢, so its calculation can be shared
among all unassigned clients. The pseudo code of Greedy
Assignment is presented in Fig. 6. Greedy Assignment is also
better suited for centralized implementation due to its need
for global knowledge of the distances between clients and
servers.

In the preprocessing stage, sorting lists L for all servers
and calculating indexes of all clients in the lists can be done
in O(]S||C|log|C|) time. Suppose all clients are assigned
to servers in m iterations. To calculate the time complexity
of each iteration, we divide it into three stages. Stage 1
(lines 9 to 21) is to find the pair of client and server with
the minimum Al/An. For each server in an iteration, the

)



1: C" « 0; //the set of clients already assigned to servers
2: max_len < 0; //the maximum interaction path length
3: for all s € S do

4 create a list L, of all clients in C';

5:  sort Ly according to d(c, s) in ascending order;

6: fori=1to|C| do

7: index[s, Ls[i]] < i;

8: while C’ # C do

9

min «— oo;
10. for all s € S do
11: m «— maxpecr{d(s,s4(b)) + d(sa(b),b)};
12: forallce C —C’' do
13: An — index|s, c];
14: len «— max{2d(c, s), d(c,s) +m, maz_len};
15: Al «— len — max_len;
16: cost «— %;
17: if cost < min then
18: min <« cost;
19: len* < len;
20: ct — ¢
21: s* — s;

22:  max_len <« len™;

23:  for all c € C — ' such that d(c, s*) < d(c*,s*) do
24: set s4(c) = s*;

25: C'— C'"U{c};

26:  for all s € S do

27: nuc < 0; //the number of unassigned clients
28: for i =1 to |C| do
29: if Li[i] € C — C’' then
30: nuc < nuc + 1;
31: index[s, Ls[i]] < nuc;
Figure 6. The Greedy Assignment algorithm

time complexity of line 11 is O(|C|). Then, the calculation
of Al/An can be done in O(1) time for each unassigned
client and hence in O(|C|) time for all unassigned clients.
Thus, the total time complexity of stage 1 in each iteration
is O(|S]|C]). Stage 2 (lines 22 to 25) is to add the new
assignments of clients. The time complexity of this stage in
each iteration is O(|C'|). Stage 3 (lines 26 to 31) is to update
the indexes of unassigned clients in lists Ls by removing
newly assigned clients. The time complexity of stage 3 is
O(]S]|CY). So, the total time complexity for one iteration is
O(]S||C). Therefore, the overall time complexity of Greedy
Assignment is O(|S||C|log |C| 4+ m|S||C]), or O(|S||C[?)
in the worst case since m < |C/.

D. Distributed-Greedy Assignment

The fourth algorithm Distributed-Greedy Assignment is
also a greedy heuristic, and it is performed in a distributed
manner. Distributed-Greedy Assignment starts with an initial
assignment, and continues to modify the assignment to

reduce the maximum interaction path length, denoted by D,
until it cannot be reduced further.

To calculate D of the initial assignment, each server
measures its distances (network latencies) to all the other
servers, and its distances to all clients that are assigned to it
in the initial assignment. Then, each server s broadcasts to
all the other servers the inter-server distances and its longest
distance I(s) to the clients assigned to it. Based on its re-
ceived information, each server calculates D independently.

At each assignment modification, each server checks
whether it is assigned any client that is involved in a longest
interaction path. If so, the algorithm attempts to modify
the assigned server of the client to reduce D. Suppose that
server s is assigned a client ¢ that is involved in a longest
interaction path. First, server s broadcasts to all the other
servers the identifier of ¢ and the longest distance [(s) to its
assigned clients excluding c. On receiving the information,
each of the other servers s’ measures its distance (network
latency) to ¢, and computes the maximum length of inter-
action paths involving ¢ assuming c is assigned to it, which
is given by L(s') = maxg{d(c,s") + d(s',s") + 1(s")}.
Then, each server s’ sends the result L(s’) back to server
s. If ming L(s’) < D, s reassigns c to the server s* with
the minimum L(s*). Finally, the new server of ¢ updates its
longest distance to its clients and broadcasts this distance
to all the other servers if it is changed. If there is a unique
longest interaction path and if miny L(s") < D, D would
decrease after reassigning c. However, if there are multiple
longest interaction paths with equal lengths, reassigning c
does not guarantee to reduce D. If D cannot be reduced
after examining all clients involved in the longest interaction
path(s), the algorithm terminates.

Note that a longest interaction path can involve two
different clients. If two or more clients involved in longest
interaction path(s) change their assigned server concurrently,
the maximum interaction path length is not guaranteed to
reduce because the calculation of each assignment modifi-
cation is based on the assumption that the assigned servers of
other clients remain unchanged. Thus, a concurrency control
mechanism is required to prevent servers from performing
assignment modifications simultaneously. In this way, each
assignment modification can only reduce the maximum
interaction path length, and the resultant assignment cannot
be worse than the initial assignment. In our experiments, we
choose Nearest-Server Assignment as the initial assignment
for Distributed-Greedy Assignment.

E. Dealing With Server Capacity Constraints

So far, our proposed assignment algorithms have not
assumed any capacity limitation at the servers. These “un-
capacitated” algorithms are suitable for the scenario where
each server site has abundant server resources or server
resources can be added to these sites as needed. However,
if the server capacity at each site is limited, assigning more



clients to a server than its capacity may result in significant
increase in the processing delay at the server, damaging the
interactivity of the DIA [19]. Therefore, we now discuss how
to adapt each proposed assignment algorithm to deal with
server capacity constraints.

o Nearest-Server Assignment. Each client first attempts
to choose the nearest server as its assigned server. If
the nearest server is saturated, the client in turn tries
the second nearest server, the third nearest server and
so on, until it finds a server which can accommodate
additional clients.

o Longest-First-Batch Assignment: In any iteration, sup-
pose an unassigned client ¢ has the longest distance
to its nearest server s. All unassigned clients that are
nearer to server s than c are also to be assigned to
s. If assigning all these clients to s overloads s, then
only a portion of these clients are assigned to it to
fill server s to capacity. For the remaining clients,
the algorithm recomputes their nearest servers among
unsaturated servers, and sorts again the distances from
all unassigned clients to their nearest servers.

o Greedy Assignment: When selecting the pair of unas-
signed client and server in each iteration, the algorithm
considers unsaturated servers only. After a client c is
selected to be assigned to a server s in an iteration,
similar to Longest-First-Batch Assignment, if the algo-
rithm cannot assign to server s all clients closer to s
than ¢ due to resource constraints, it assigns only a
portion of these clients to server s to fill it to capacity.
Accordingly, the calculation of An is adjusted to reflect
the capacity limitations of the servers.

o Distributed-Greedy Assignment: At each assignment
modification, a client is allowed to be reassigned to
unsaturated servers only. The “capacitated” Nearest-
Server Assignment is used as the initial assignment.

We evaluate both “uncapacitated” and “capacitated” as-
signment algorithms in the next section.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed algorithms
by making use of real network latency data, including the
Meridian data set [1] and the MIT data set [2]. The Meridian
data set contains pair-wise latency measurements between
2500 nodes in the Internet using the King measurement tech-
nique [13]. The measurements for some node pairs are not
available. On discarding the nodes involved in unavailable
measurements, our simulated network is represented by a
complete pair-wise latency matrix for 1796 nodes. The MIT
data set is a complete pair-wise latency matrix for 1024
nodes using the same measurement technique.

We assume that a client is located at each node and a
certain number of servers are placed at selected nodes in
the network. We simulate two types of server placements:
random server placement and K-center server placement.

The K-center placement is based on the minimum K-center
problem that aims to place a given number of K centers in
the network to minimize the maximum distance between a
node and its closest center. It is widely used to model server
placement in the Internet [14]. We adopt two well-known
K-center algorithms for placing servers in our experiments:
a 2-approximate K-center algorithm [24] and a greedy K-
center heuristic [14]. We shall refer to these server place-
ments as K-center-A and K-center-B respectively. The client
assignment algorithms are evaluated with different parameter
settings of server number and server capacity under random
and K-center server placements.

For performance comparison, we calculate a theoretical
lower bound on the maximum interaction path length as
follows. The interaction path between any two clients ¢ and
¢ has a length of

d(c,sa(c)) + d(sa(c), sa(c') +d(sa(c), )

> sIglfiéls{d(C’ s) +d(s,s) +d(s',c)}.
Thus, the maximum length of interaction paths between all
client pairs has a lower bound of

. ! / /
tnax, Sgl/léls{d(c, s)+d(s,s")+d(s', )}

Note that in this lower bound, a client does not necessarily
connect to a single server for interacting with all the other
clients, and can choose different servers for different inter-
actions. Thus, this lower bound is a super-optimum and may
not be achievable by any real assignment. To quantify the
relative performance, we normalize the maximum interaction
path lengths produced by all client assignment algorithms
with respect to the above lower bound. The normalized
results shall be called the normalized interactivity.

A. Performance Comparison for Different Algorithms

First, we evaluate the performance of the client assign-
ment algorithms without assuming any limitation on the
server capacity. Fig. 7 shows the normalized interactiv-
ity of the four assignment algorithms for different server
placements and numbers using the Meridian data set. The
results for random server placement (Fig. 7a) are the average
performance over 1000 simulation runs using 1000 different
sets of randomly placed servers. The simulations using the
MIT data set show similar results and are not presented here
due to space limitations.

It can be seen that the two greedy assignment algo-
rithms significantly outperform the other two assignment
algorithms. In general, the performance of both greedy
algorithms is close to the optimum. The interactivity re-
sulting from Greedy Assignment and Distributed-Greedy
Assignment is normally within 10% of the lower bound.
Comparing the two greedy algorithms, Distributed-Greedy
Assignment performs slightly better than Greedy Assignment.
Nearest-Server Assignment produces the worst interactivity
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servers under random server placement.

among all algorithms. This implies that assigning each client
to its nearest server is not very effective in enhancing the
interactivity of continuous DIAs. Fig. 8 shows the detailed
cumulative distribution of the normalized interactivity for
the 1000 simulation runs of 80 randomly placed servers.
As can be seen, the normalized interactivity produced by
Nearest-Server Assignment exceeds 2 in over 100 simulation
runs and exceeds 3 in over 50 runs.? In contrast, the other
three algorithms hardly result in normalized interactivity
above 2. Similar trends are also observed in the simulations
with other server numbers. Compared to Nearest-Server
Assignment, Longest-First-Batch Assignment improves the
interactivity significantly under random server placement,
but its performance is still far worse than the two greedy
algorithms. Under K-center server placement, Longest-First-
Batch Assignment performs similarly to Nearest-Server As-
signment.

Distributed-Greedy Assignment proceeds with assignment
modifications until the maximum interaction path length
cannot be further reduced. To study the efficiency of
Distributed-Greedy Assignment, we monitor its interactivity

2The approximation ratio 3 of Nearest-Server Assignment does not apply
to our simulations because real Internet latency data do not necessarily
satisfy triangle inequality.

numbers of assignment modifications for 80 servers.

performance after each assignment modification. Fig. 9
presents the results for 80 servers under different server
placements. As can be seen, the algorithm continuously
improves interactivity with increasing number of assignment
modifications performed and quickly converges after a few
tens of assignment modifications. In general, over 99%
of the total improvement is achieved after 80 assignment
modifications. Note that 80 is less than 5% of the total
number of clients in the network. Therefore, only a small
portion of clients need to modify their assigned servers when
executing Distributed-Greedy Assignment. Similar observa-
tions are made in the experiments for other server numbers.

B. Impact of Server Capacity

Now, we evaluate the “capacitated” version of the client
assignment algorithms. We refer to the maximum number
of clients that can be assigned to a server as the server
capacity. Fig. 10 shows the normalized interactivity for dif-
ferent server capacities using the Meridian data set with 80
servers placed in the network. Again, the results for random
server placement (Fig. 10a) are the average performance
over 1000 simulation runs. Note that the lower bound does
not change with the server capacity since its calculation
assumes unlimited server capacity. When the server capacity
is limited, the algorithms may not be able to assign clients
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to desirable servers due to insufficient server capacities.
Therefore, as seen from Fig. 10, the normalized interactivity
of all algorithms generally gets worse with decreasing server
capacity. The interactivity deteriorates more rapidly when
the server capacity is severely limited. Comparing different
client assignment algorithms, Nearest-Server Assignment
and Distributed-Greedy Assignment are least affected by
server capacity constraints. Their relative performance re-
mains similar over different server capacities. Distributed-
Greedy Assignment consistently and significantly improves
the interactivity over Nearest-Server Assignment. Longest-
First-Batch Assignment and Greedy Assignment are more se-
riously affected by server capacity constraints. This implies
that their client assignments are less balanced among the
servers. Under severely limited server capacities, Longest-
First-Batch Assignment and Greedy Assignment produce
similar or even worse interactivity than Nearest-Server As-
signment. Overall, Distributed-Greedy Assignment results in
the best interactivity among the four assignment algorithms.

VI. RELATED WORK

Consistency and fairness are two important requirements
for continuous DIAs. A number of synchronization mech-
anisms have been developed for consistency maintenance.
They can be classified into optimistic and pessimistic mech-
anisms [9]. In optimistic mechanisms such as TimeWarp
[18], [20], all servers execute operations immediately after
receiving them, and the application states are repaired when
inconsistency is detected. The repairs, however, may produce
consistency-related artifacts that greatly disturb the user
behavior. Pessimistic mechanisms such as bucket synchro-
nization [12] and local lag [18] add artificial synchronization
delays before operation execution to reduce the chance
for inconsistency and artifacts to arise. For the fairness
requirement, some studies used the variation of the time
for each client to see the effect of its own operation as the
metric of fairness [4], [6], [10], [27]. This metric, however,
does not guarantee that all operations are executed in a fair
order, i.e., in the order of their issuances by the clients.
Some other work [16], [17] studied the required amount

of delay to execute operations in the fair order at a single
server. However, these results cannot be directly generalized
to distributed servers. To the best of our knowledge, there
has been no work on modeling the minimum achievable
interaction time of continuous DIAs under the consistency
and fairness requirements.

Previous studies on client assignment for interactivity
enhancement considered only the client-to-server latency as
the objective of optimization [22], [23], [25]. As have been
shown by our results, reducing the client-to-server latency
alone is not effective for improving interactivity. In an earlier
work [28], we investigated client assignment for enhancing
the interactivity of discrete DIAs that change their states only
in response to user operations. However, no synchronization
delay for preserving consistency and providing fairness was
considered. Therefore, it was only applicable to discrete
DIAs with great tolerance to consistency-related artifacts,
such as collaborative text editors.

Another issue relevant to interactivity enhancement is
server placement, which aims to find where to place servers
in the network [14], [16]. Server placement is planned on
long-term basis as implementing new placement solutions
often involves amendment to hardware deployment or lease
agreements with third-party service providers. Client assign-
ment complements server placement in that it aims to assign
clients to appropriate servers given a set of servers placed.
Since client assignment deals with only software connections
between clients and servers, it can be adjusted promptly to
adapt to system dynamics. Our work in this paper shows
that finding an optimal client assignment is a challenging
task, even under carefully planned server placements.

VII. CONCLUSION

In this paper, we have investigated the client assignment
problem for interactivity enhancement in continuous DIAs.
We have modeled the interactivity performance of continu-
ous DIAs under the consistency and fairness requirements.
The minimum achievable interaction time between clients
is analyzed and used as the optimization objective in our
formulation of the client assignment problem. The problem



is proven to be NP-complete. Four heuristic assignment
algorithms are presented and experimentally evaluated using
real Internet latency data. The results show that our proposed
Distributed-Greedy Assignment generally produces near op-
timal interactivity, and significantly outperforms the intuitive
Nearest-Server Assignment algorithm and its variation.
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