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Abstract—Renewable (or green) energy, such as solar or
wind, has at least partially powered data centers to reduce
the environmental impact of traditional energy sources (brown
energy with high carbon footprint). In this paper, we propose a
holistic workload scheduling algorithm to minimize the brown
energy consumption across multiple geographically distributed
data centers with renewable energy sources. While green
energy supply for a single data center is intermittent due
to daily/seasonal effects, our workload scheduling algorithm
is aware of different amounts of green energy supply and
dynamically schedules the workload across data centers. The
scheduling decision adapts to workload and data center
cooling dynamics. Our experiments with real workload traces
demonstrate that our scheduling algorithm greatly reduces
brown energy consumption by up to 40% in comparison with
other scheduling policies.

Keywords-Green data centers, renewable energy, workload
scheduling, geographically distributed data centers.

I. INTRODUCTION

Data centers have been the key system infrastructure for
cloud computing. Many large IT companies such as Google
and Microsoft have multiple geographically distributed data
centers. Data centers are significant energy consumers due
to not only their computing equipments but also cooling
and other facilities. It has been shown that worldwide data
centers run the risk of doubling their energy consumption
every 5 years [17]. The high energy footprint of data centers
leads to serious environmental issues (including e-waste
and CO2 emission). There has been a tremendous amount
of efforts in research and development to resolve those
environmental issues. Most techniques (e.g., [4], [7]) target
at reducing the energy consumption in order to reduce the
environmental impact of traditional energy sources (brown
energy). Recently, with increasing adoption of renewable
energy supply techniques (such as solar panels) [9], data
centers have been powered at least partially with green
energy [29]. This paper aims at minimizing the brown energy
usage by utilizing the green energy available in multiple
geographically distributed data centers.

Research interests have been growing in integrating
renewable energy into data centers (e.g., [11], [10], [18],
[34], [24]). The key challenge of such an integration is
that green energy sources in a limited area are variable
and intermittent due to daily/seasonal effects. On the other
hand, workloads to data centers fluctuate significantly [14],

[13]. We have observed the significant mismatch between
workloads and green energy supply. When the workload is at
its peak, green energy supply sometimes can be nearly zero,
and vice versa. This mismatch challenges the utilization of
green energy and thus potentially increases the brown energy
usage.

While existing studies [11], [10], [18], [34], [24] have
demonstrated their effectiveness in addressing the mismatch
between workload and green energy supply, they are
suboptimal in minimizing the brown energy usage in
multiple geographically distributed data centers. For the
studies [11], [10], [18] that are limited to a single data
center, they by design cannot fully address the mismatch
problem. Instead, multiple geographically distributed data
centers allow more flexibility in utilizing renewable energy.
Take solar energy as an example. Data centers belonging
to the same company can be located in different time
zones. The amount of solar energy generated at different
data centers can be complementary to each other. For the
studies [34], [24] that run across multiple data centers,
they are limited to online service workloads. Online service
workloads do not have sufficient slacks in allowing more
advanced scheduling to resolve the mismatch. Moreover,
existing studies on either single or multiple data centers
have ignored the connection between renewable energy and
physical environment. Specifically, the outside temperature
significantly affects the cooling energy consumption. On the
other hand, the outside temperature is usually higher when
solar energy supply is higher (e.g., on hot sunny days). The
ignorance of this connection leads to wrong decisions of
scheduling.

To address the aforementioned issues, we propose a
holistic workload scheduling algorithm (called MinBrown)
to minimize the brown energy consumption across multiple
geographically distributed data centers all with renewable
energy sources. It targets at the workloads with reasonable
slacks (particularly, scientific workloads, high performance
computing tasks). Overall, our scheduling algorithm is
holistic in taking advantage of a series of key factors in green
energy usage: the variable green energy supply, outside
temperature and cooling energy consumption in each data
center involved, and workload fluctuation, deadline and job
structure. Specifically, given the user specified deadline, the
workloads are dynamically scheduled to the data center
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Figure 1. Geographically distributed data centers with both green and
brown energy sources.

where the solar energy supply best satisfies the energy
demand. Moreover, the scheduling considers the resultant
cooling energy consumption when assigning the workload. It
also supports fine grained workload placement and migration
via virtual machine operations.

We evaluate our workload scheduling algorithm with
simulations. The simulator takes real traces on workloads
and solar energy generation as input. We compare the
scheduling algorithm with green-oblivious approach (round-
robin) and other green-aware approaches. With extensive
experiments, we demonstrate that our scheduling algorithm
achieves up to 40% and 21% less brown energy than green-
oblivious and other green-aware approaches, respectively.
Moreover, it achieves almost the same amount of total
energy consumption as other approaches.

Organization. The reminder of this paper is organized as
follows. Section II formally defines the problem. Section III
presents our scheduling algorithm, followed by experimental
results in Section IV. We review the related work in
Section V and conclude this paper in Section VI.

II. PROBLEM DEFINITION

Data centers. This paper considers public cloud providers
(like Google and Microsoft) which run their services in
geographically distributed data centers, as illustrated in
Figure 1. Virtualization is used to manage the computation
resource. The basic unit of resource allocation is virtual
machine with the predefined amount of CPU/DRAM/Disk
resource. Each data center has its nearby green sources either
built by the data center owner or other utility company.

Each data center has a switch connected with both green
sources and brown sources (e.g., public grids). Research
has been devoted to improve the effectiveness of this kind
of switch [23]. This paper assumes an ideal switch: when
the power demand is higher than green power supply, it
immediately draws power from brown sources. Otherwise,
the surplus green energy is used for other purposes. We
assume that batteries are used for emergency purposes only.
Previous studies [10], [11], [18], [2] also have the same
assumption.

Each data center has the cooling facilities to avoid over-
heating in its equipments. The cooling energy consumption
depends on not only the data center utilization but also
other factors including the cooling strategies and outside
temperature. To keep the data center below the predefined

temperature, a higher outside temperature generally requires
more cooling energy. Moreover, there are a series of discrete
levels in cooling strategies (whether a chiller is on or
off, a certain level in fan speed, whether air is circulated
through chiller). Essentially, the cooling strategies form
multiple levels of cooling energy usage, and transitions
among different levels result in a leap in the energy
consumption [21].

Workload. We study non-interactive workloads which
have slacks to exploit more green energy. A workload
consists of many jobs, each of which is represented as
a directed acyclic graph (DAG). Each node in a DAG
represents a task. The job structure allows us to have
finer grained scheduling on tasks. Our scheduling algorithm
allows users to specify QoS: each job has a specified
deadline to define its slack. We focus on scheduling high
performance computing (HPC) workloads in this paper, and
leave the scheduling of other workloads (like MapReduce [6]
and graph processing [5]) as future work.

Persistent data is typically replicated across (a small
number of) data centers for availability against disasters.
This replication improves availability and also allows flexi-
ble workload placement and scheduling. For simplicity, we
assume persistent data are replicated in all data centers, and
our scheduling algorithm is straightforward to be extended
to deal with replication in a subset of data centers only
(e.g., [16]). That is, we assume that a job can run on any
of the data centers.

Optimization goal. Given a workload submitted to
multiple geographically distributed data centers, a workload
scheduler assigns and migrates the workload across the data
centers. The optimization goal is to minimize the total usage
of brown energy in all the data centers, given the constraint
that all jobs in the workload are completed within their
predefined deadlines.

III. WORKLOAD SCHEDULING ALGORITHM

This section present the detailed design of our workload
scheduling algorithm.

A. Design Rationale

Finding the optimal workload scheduling for minimizing
the brown energy consumption is a complicated problem.
It involves the following categories of parameters. The first
category is on green energy supply: the available amount of
green energy supply in each data center, which is variable
and intermittent along the time. The second category is
on data centers: 1) available capacities and the network
latency and bandwidth among data centers, which affects
the decision on workload scheduling, and 2) equipment
and cooling power. The third category is on the workload:
the computation requirement of workloads, job structures
and their deadline. These parameters are intertwined with
each other, making the scheduling decision complicated. For



example, when scheduling a task in a target data center, it
affects the available amount of green energy of the data
center. This decision also affects the green energy usage of
other tasks in the same job and other jobs afterwards.

We have the following two design rationales. They have
been widely used and evaluated as effective heuristics in job
scheduling problems(e.g., [25], [11], [10]).

First, we apply the optimization in two phases: firstly
with static optimizations, and secondly with runtime opti-
mizations. In the static optimization phase, we grasp the
optimization opportunities that can be exploited offline. For
example, given the deadline of a job, we can assign tasks
with individual deadlines so that tasks can be scheduled
independently. In the runtime optimizations, we take advan-
tage of the optimization opportunities can be only exploited
in runtime. Example opportunities include virtual machine
consolidation and task scheduling according to the available
amount of green energy.

Second, our decision is made at the interval of a
predefined epoch (15 minutes in our study). So we can
leverage weather forecast that is usually quite accurate in
such a short period, and further have the prediction on
green energy supply. Also, within the epoch, our scheduling
performs task assignment and migration by considering the
cooling energy consumption.

With these two design rationales in mind, we develop
a green-aware and cooling-aware scheduling algorithm
MinBrown to minimize the brown energy consumption. Our
scheduling algorithm has two major components: a schedul-
ing framework and data center selection strategies. Our
scheduling framework is general so that data center selection
strategies for a given task can be easily incorporated into the
framework. The awareness of green energy and cooling is
considered in data center selection strategies.

B. Scheduling Framework

Our scheduling framework (Algorithm 1) is general
to different data center selection strategies, by allowing
different implementation for GetDC in Lines 8 and 18. The
detailed data center selection algorithms are presented in
Section III-C. Lines 2–4 are static optimizations, and the
rest lines are dynamic optimizations.

In the static optimization, we assign internal deadlines
for each task of a job using existing Partial Critical Path
Method [1]. After the deadline assignment, each task has its
own deadline and the latest start time. Thus, each task can
be scheduled independently.

In dynamic optimizations, the scheduler immediately
dispatches the task without any slack, or periodically selects
the tasks with slack to the suitable data center to exploit
the opportunities of renewable energy. At the beginning
of a new epoch, we first perform the prediction on the
amount of green energy in the new epoch. The prediction
method is orthogonal to this paper. There are a number of

Algorithm 1 MinBrown Scheduling Framework
1: /*Static optimizations*/
2: if a new job j is submitted then
3: Perform deadline assignment on j;
4: Put j’s tasks into the scheduling queue;
5: /*Dynamic optimizations*/
6: if the slack time of a task task becomes zero then
7: /*select the data center with the minimum brown energy

consumption; */
8: dc = GetDC(task ,DC , 100%);/*Algorithm 2*/
9: schedule task to dc;

10: if a new epoch begins then
11: Predict the available green energy on each data center;
12: Use longest remaining time first policy to pick tasks to migrate;
13: Repeat the picking and migration process until there is no green

energy available, or no task can be migrated;
14: while green energy is available in any data center during the new

epoch do
15: Let the set of data centers DCG ;
16: Use earliest latest starting time first policy to pick a task that is

ready to run, taskG ;
17: /*select the data center with the minimum brown energy

consumption and the usage of brown energy is lower than b% of
the task energy consumption; */

18: dc = GetDC(taskG ,DCG , b%); /*Algorithm 2*/
19: if dc is not null then
20: schedule taskG to dc;
21: /*Below are local scheduler to each data center*/
22: if a task task is scheduled on a dc then
23: If no VMs are idle, wake up a physical machine;
24: Return an idle VM to execute task ;
25: if a task ends then
26: A virtual machine becomes idle;
27: Virtual machines are consolidated for further energy saving;
28: if a physical machine is idle for over a predefined time period (e.g., 3

minutes) then
29: Set the machine to ACPI S3;

existing learning methods and models [10], [31], which has
demonstrated high accuracy in short-term predictions.

With the prediction of renewable energy, we first consider
migrating the currently running tasks until the green energy
is expected to be used up or no task can be migrated.
The task migration is implemented using virtual machine
migration. Next, Lines 14–20 considers the scheduling of
the tasks with slack in the earliest latest starting time first
manner. Line 18 performs the data center selection according
to our green-aware and cooling-aware strategy (Algorithm 2
in Section III-C).

Lines 22–30 are the functionalities for a local scheduler
on each data center. It dynamically turns on/off the virtual
machines as the task starts/completes. Furthermore, virtual
machine consolidations are performed to improve the energy
efficiency. If a physical machine is idle for a predefined
period, the machine is set to ACPI S3 for energy saving.
The techniques are classic energy saving techniques in
virtualized environments [32], [21], [26]. We do not claim
that they are a contribution of this paper. We briefly elaborate
them here because energy saving techniques are still vital,
even with renewable energy. Our scheduling framework
embraces a series of classic energy saving techniques to



reduce the usage of both brown and green energy. We refer
readers to previous studies [32], [21], [26] for more details.

C. Data Center Selection Strategies

Before we present our data center selection strategy,
we present the baseline algorithm without awareness of
green energy or cooling – RR (Round Robin). RR is the
simplest policy. If a data center is fully occupied, other data
centers will be considered. This simple approach has two
main problems in the green energy usage. First, without
the awareness of green energy, it may schedule too much
workload to a data center with little green energy, or
schedule too little workload to fully utilize the available
green energy. Second, without the awareness of cooling, its
decision is oblivious to the outside temperate and cooling
level upgrades.

Algorithm 2 MinBrown data center selection for Task task from
the data center candidate set DC : GetDC(task ,DC , b%) (b% is the
threshold brown energy ratio for selection)

1: d = GetInitialDC (task ,DC );
2: if the task does not have enough slack to transfer its intermediate input

data to data centers other than d then
3: return d;
4: else
5: if d has sufficient green energy for task and no cooling level is

upgraded then
6: return d;
7: for each d′ ∈ DC/{d} do
8: if d′ has sufficient green energy for task and no cooling level

is upgraded then
9: Migrate the intermediate input for task ;

10: return d′;
11: Calculate the data center with the minimum brown energy

consumption (let it be d′′);
12: if d′′ results in brown energy consumption ratio larger than b%

then
13: return null;
14: else
15: return d′′;

We propose a cooling- and green-aware data selection
strategy, as illustrated in Algorithm 2. The algorithm assigns
a task to its suitable data center by considering the green
energy usage of both cooling and computing facilities. At
the first step of the algorithm (Line 1), we select the initial
data center for the task. If the task is the root task, its input
data has been replicated in all the data centers involved and
the selected data center is the one with the largest available
amount of green energy. Otherwise, it is the one resulting
with the smallest network delay to transfer its intermediate
input data from its parent tasks. Note, a task may have
multiple parent tasks, and we select the one with the smallest
data transfer overhead.

After assigning the initial data center, we check whether
the task has sufficient slack time to transfer its intermediate
input data to data centers other than the initial assignment. If
not, the initial data center is selected for assigning the task.
Otherwise, we need to consider how much brown energy
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Figure 2. An example of a two-task job and two data centers. If the slack
allows, task 1 runs on DC-B and task 2 runs on DC-A for maximizing the
green energy usage.

the task would consume when it is scheduled to a data
center (Lines 4–15). Lines 5–10 give the priority to the data
center with sufficient green energy to serve the task without
cooling level upgrade. The reason behind this optimization
is that the cooling level upgrade usually causes a much more
significant amount of energy consumption than a single task.
If there is not sufficient green energy in all data centers or
cooling level upgrade needs to be triggered, we calculate
the data center that results in the minimum brown energy
consumption (Line 11). If the brown energy ratio is smaller
than a threshold value (b%), we assign the task to that data
center. Otherwise, the task can wait because it still has slack.

There is a common function in calculating the amount
of brown energy consumption (e.g., Lines 5, 8 and 11).
Consider a task starts at t0 and completes at t0 + δt. We
denote the amount of renewable energy as a function of
time (g(t)) and the energy consumption of the task to be
(w(t)). Thus, the amount of brown energy consumption at
time t by the task is given in Eq. 1.

b(t) =

{
w(t)− g(t) , if w(t) > g(t),

0 , otherwise. (1)

The total amount of brown energy by the task is
∫ t0+δt

t0
b(t).

After assigning the task, the available amount of green
energy is

∫ t0+δt

t0
(g(t)− (w(t)− b(t)), where (w(t)− b(t))

represents the amount of green energy consumed by the task
at time t.

Figure 2 illustrates a simple example of green-aware
scheduling among two data centers. If we run the job on
a single data center (e.g., DC-A), the amount of brown
energy used is (P2−P1)×(T1−T0). In contrast, MinBrown
schedules Task 1 on DC-B and Task 2 on DC-A so that both
tasks are executed without any brown energy consumption
(we ignore the task migration overhead in this example).

The algorithm needs to maintain the available amount of
renewable energy in a data center as the tasks are assigned to
the data center. Suppose the epoch size is N time units. The
storage overhead is O(N). The runtime overhead of making
a decision for a task is O(N2). In the implementation,
this runtime overhead is usually smaller than 1ms. This is
ignorable for scientific and HPC workloads.



IV. EXPERIMENTAL STUDY

This section presents our experimental results.

A. Methodology

We use simulation to evaluate different workload schedul-
ing algorithms. The simulator implements various issues in
data center energy consumption including equipments and
cooling.

Our simulated data centers are configured with the same
setting as the previous studies [21], [12]. Each data center
has the same Power Usage Efficiency (PUE), i.e., the total
energy consumed by all facilities of the data center divided
by the energy consumed by IT equipments. We assume
an inter-data-center bandwidth of 464 Mbps. Each data
center contains 480 servers, each of which has 4 cores
and 4GB of memory and can host at most four single-
core virtual machines. Our simulator accounts for the energy
consumption at different states (idle, active and ACPI S3).
Since the resource allocation is at the granularity of virtual
machines, we use the number of cores to approximate the
machine utilization. Suppose the number of allocated cores
is c. We estimate the power consumption for a machine to
be P = base + c

#TotalCore (peak − base), where the peak
power (peak ) and the base power (base) are set to 300W and
200W, respectively. Thus, P = 200+25c in our simulation.
The power consumption of ACPI S3 is 8.6W, and transiting
into and out of S3 takes 7 seconds.

We use the same setting on the cooling facilities as in the
previous study [21] (e.g., the data center inside temperate is
set to be no more than 30 °C [3]) and adopt the same cooling
strategy by considering the outside temperate. The cooling
energy consumption is discrete in levels. For example, when
the outside temperate is 25 °C and the data center utilization
increases from 25% to a higher utilization, the cooling
energy consumption increases by 55%. To avoid too frequent
cooling level changes, we manually set a cooling level at
least lasting for a certain time span, e.g., 5 minutes.

Each data center is associated with a solar farm. We
simulate solar farms with different numbers of solar panels.
The default size of a solar farm is 10,000 solar panels. Under
the default setting, the peak green energy supply is equal
to the peak energy consumption of each data center. We
calculate the green energy production according to the pa-
rameter specification of BP-MSX 120 panels [28]. Basically,
given instant irradiance and outside air temperature as input,
the estimation model presented in the specification derives
the amount of solar energy produced by a solar panel. The
total amount of solar power is the power of each solar panel
multiplied by the number of solar panels.

Workloads. We use the workload trace, the Parallel
Workloads Archive [8]. Each trace entry consists of job
id, submitted time, actual run-time, resource requirement
(the number of cores etc). We tested multiple traces and
observed similar results. For space limitation, we present the

results for the trace LANL-O2K only. LANL-O2K contains
approximately five months (November 1999 through April
2000) of jobs running on a 2048-node Origin 2000 cluster
(Nirvana) at Los Alamos National Lab. We extract a random
week from this trace (February 1-7, 2000) and use it as the
workload for all experiments discussed below. This week-
long trace contains 6799 jobs. There is a small portion of
short running jobs (about 8% for less than 10 seconds), while
there are also many long running jobs (10% for 10 hours or
longer).

Solar Energy Trace. We use the real-world traces for
solar energy from the Measurement and Instrumentation
Data Center (MIDC) [30], because solar energy is widely
available. We choose the trace from a random week (May
1–7, 2011), including irradiance and air temperatures. The
time zone difference is a key measure on how much the
green energy of two locations are complementary with each
other. By default, we use traces from two stations (Loyola
Marymount University Rotating Shadowband Radiometer
and La Ola Lanai) to simulate two data centers DC-1 and
DC-2. The two default data centers are located in Los
Angels and Hong Kong (DC-1 and DC-2, respectively).
Many companies like Google have their data centers in these
two locations. Since we do not have meteorological data
for DC-2, we simply use the data from La Ola Lanai by
varying the time zone difference, because they are almost
at the same latitude. The third and the fourth ones used are
located in Virginia and Spain (using the same traces in DC-1
and DC-2, respectively). Note, we have to use this manual
setting due to unavailable meteorological data sets in some
locations, and this setting reflects the real-world data center
deployment and is sufficient to demonstrate the effectiveness
of our approach.

B. Results

Recall that there are a series of parameters affecting the
scheduling decision. For the space interests, we summarize
the results of sensitivity studies in Table I, instead of figures,
and comment some details on the findings below. To study
the separate impact of individual optimization techniques,
we consider three other baseline algorithms: 1) MBJ: The
same as MinBrown except that the scheduling is conducted
at the job level; 2) MB-NC: The same as MinBrown except
that its decision does not consider cooling upgrade events;
3) MB-NG: The same as MinBrown except that it does
not take green energy into account. Still, MB-NG considers
task based scheduling and cooling upgrade events. We study
the improvement as the ratio of brown energy reduction of
MinBrown in comparison with other baseline algorithms.

In Table I, we use the following notations on the
improvement as the parameter value varies from the left to
the right (the default value is in bold): 1) “a → b%” means
the improvement increases (↗) or decreases (↘) from a%



Table I
RESULTS FOR SENSITIVITY STUDIES ON MINBROWN. THE DEFAULT VALUE IS IN BOLD. THE IMPROVEMENT RESULT IS THE RATIO OF BROWN

ENERGY REDUCTION OF MINBROWN IN COMPARISON WITH OTHER BASELINE ALGORITHMS.

Parameter Varying parameters Improvement
over RR

Improvement
over MBJ

Improvement
over MB-NC

Improvement
over MB-NG

Number of data centers 2, 3, 4 14 → 40% ↗ 6 → 21% ↗ 1 → 8% ↗ 8 → 39% ↗
Time zone difference 2, 3, ..., 7, ..., 12 hours 7 → 19% ↗ 2 – 6% 2 → 1% ↘ 3 – 14%
Cooling downgrade delay 5, 10, 20, and 30 minutes 14.0 – 14.2% 5 – 6% 1.0 – 1.4% 7 – 8%
PUE 1.1, 1.3, 1.5 17 → 13% ↘ 7 → 5% ↘ 0 → 2% ↗ 11 → 7% ↘
Job slacks 1%, 5%, 10%, 15%, 20%, 25% 13 → 14% ↗ 2 → 6% ↗ 2 → 1% ↘ 5 → 8% ↗
Migration overhead 1, 5, 20, and 30 minutes 11 – 15% 6 → 2% ↘ 1 → 4% ↗ 8 → 4% ↘
Brown threshold (b%) 50%, 60%, ..., 100% 14 – 15% 5.6 – 5.9% 1 – 2% 7.5 – 7.8%
Solar farm size 0.3, 0.5, 0.75, 1.0, 1.5, 2.0 and 2.5 3 → 22% ↗ 1 → 12% ↗ 0 – 2% 3 → 12% ↗
Green scale ratio (DC-1:DC-2) 1:1, 1:2, 1:4, 1:6, 1:8 14 → 16% ↗ 6 – 7% 0.9 – 1.4% 8 → 16% ↗
Green prediction error 0%, 5%, 10%, 15% 12 – 14% 6 → 4% ↘ 1 → 0% ↘ 8 → 5% ↘
Outside temperature (DC-2) -4, -2, 0, 2 and 4 °C 16 → 11% ↘ 7 → 5% ↘ 1 – 2% 8 →10% ↗
Summary N.A. 2 – 40% 0 – 21% 0 – 8% 0 – 39%

 

0%

10%

20%

30%

40%

50%

60%

70%

0

20

40

60

80

100

120

0 12 24 36 48

W
o

rk
lo

a
d

(P
e

rc
e

n
ta

g
e

) 

G
re

e
n

 E
n

e
rg

y
 S

u
p

p
ly

 (
K

W
h

) 

Time (hour) 

DC-1-Green DC-2-Green DC-1-Workload DC-2-Workload

(a) Workload
 

0

5

10

15

20

25

30

35

40

0

20

40

60

80

100

120

0 12 24 36 48

C
o

o
li

n
g

 E
n

e
rg

y
 (

K
W

h
) 

G
re

e
n

 E
n

e
rg

y
 S

u
p

p
ly

 (
K

W
h

) 

Time (hour) 

DC-1-Green DC-2-Green DC-1-Cooling DC-2-Cooling

(b) Cooling
Figure 3. A snapshot of cooling energy consumption and green energy supply in two days.

to b%; 2) “a− b%” means the improvement is between a%
and b%.

We first study the impact of parameters about data centers.
Number of Data Centers. The data centers are almost

uniformly placed in different time zones. As the number
of data centers increases, the improvement of MinBrown
increases significantly. This means our approach is more
suitable for cloud providers with multiple geographically
distributed data centers. When the number of data centers
is four, MinBrown outperforms MB-NC by 8%. Since
PUE=1.5, the cooling energy consumption is around 33%
of the total energy and our cooling aware strategy reduces
around 49% of the total brown energy used in cooling.

Time Zone Difference. We intentionally shift the trace of
DC-2 to illustrate the impact of time zone difference. While
this may result in unrealistic location for data centers, the
results are as expected that increasing the time zone makes
two data centers have more opportunities in fully utilizing
the green energy.

Cooling Downgrade Delay. The improvement of Min-
Brown is not sensitive to the cooling downgrade delay, as
long as this delay is kept at reasonable value (5–30 minutes).

PUE. As the PUE increases, cooling plays a more
significant role in energy consumption and our cooling
aware optimization has larger impact. The improvement of
MinBrown over MB-NC increases from less than 1% to over
2%.

We next study the impact of parameters about workloads.
Job Slacks. As the job slack increases, MinBrown has

more opportunities in utilizing the green energy. So, the
improvement over RR, MBJ and MB-NG increases.

Migration Overhead. We vary the migration overhead
to simulate different amounts of data transfer during each
job migration. Migration overhead affects the number of
tasks migrated. Increased migration overhead reduces the
benefit of workload migration. When the migration overhead
increases from 1 minute to 30 minutes, the number of
migrated tasks is reduced from 8% to 0.1% of the total
number of tasks. Nevertheless, MinBrown still outperforms
RR by 11–15% on brown energy reduction. Also, the total
migration overhead is smaller than 1% of the total execution
time, and thus the extra network energy consumption due to
job migration is negligible.

Brown Threshold (b%). The improvement of different
b values is stable. This is because the green energy supply
mostly can offer the energy consumption for many tasks.
Varying b values only affects the decision of a small number
of tasks at each epoch.

Finally, we study the impact of parameters about green
energy supply and physical environments (outside tempera-
ture).

Solar Farm Size. Solar farm sizes in number of solar
panels directly affect the amount of solar energy. As the
solar farm size increases on both DC-1 and DC-2, the brown



energy consumption of all approaches reduces. MinBrown
has better green-aware scheduling, and the improvement
over other approaches increases. However, it is not always
beneficial to increase the solar farm size, due to the increased
investment into the solar farm. Cloud providers should
carefully provision the solar farm size for balancing the
reduction in the electricity bill (in terms of brown energy
from public grid) and the cost of running the solar farm.
Since the goal of this study is on reducing the brown energy
consumption, we leave this cost analysis as our future work.

Green Scale. We further consider the scenario of two
data centers with different green energy supply. We fix the
green energy supply of DC-1 and vary the ratio of green
energy supply (DC-1:DC-2) from 1:1, 1:2, to 1:8. As the
ratio decreases, the green supply of DC-2 increases. While
MinBrown has larger improvement over other approaches,
we find that a larger portion of green energy is wasted and
should be used for other purposes.

Green Prediction. The prediction errors on the amount of
green energy come from two major sources: weather forecast
and the model on solar panel. Instead of relying on a specific
prediction model, we use the real renewable energy as our
prediction base, and explicitly study the impact of by adding
prediction errors to the prediction base. Specifically, given a
prediction error e and the real amount of solar energy g, the
estimation is randomly distributed in [g(1 − e), g(1 + e)].
The results show that, if the prediction error is reasonable
(less than 15% in our experiments), the improvement of
MinBrown over other approaches has only a small degration.

Outside Temperature. We intentionally adjust the outside
temperature of DC-2 by -4, -2, ..., 4°C. As the outside
temperature of DC-2 becomes higher, more cooling energy is
consumed for the same utilization. Thus, we observed more
workloads are migrated to DC-1. The result improvement
over MB-NC is 1–2%, which indicates that the scheduling
algorithm should take the outside temperature and cooling
into account even with green-aware optimizations.

After presenting the overall comparison, we conduct de-
tailed studies in understanding the reduction of brown energy
consumption of MinBrown for green-aware scheduling and
cooling awareness. The cooling energy consumption and the
workload in each data center is generally consistent with the
trend of green energy supply, as illustrated in Figure 3. For
example, at hours 1–6, DC-2 has more green energy and
more workloads are performed on DC-2. Thus, the cooling
energy consumption is also larger. After Hour 10, DC-1 has
more green energy and the cooling energy consumption also
increases on DC-1.

Finally, we study both brown and green energy con-
sumption for completeness. Figure 4 shows the normalized
brown, green and total energy consumption for the four
approaches under default settings. The normalization base is
the total energy consumption of RR. MinBrown consumes
the smallest amount of brown energy as well as the lowest
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Figure 4. Normalized brown and green energy consumption.

total energy. In all other experiments, MinBrown sometimes
consumes a larger amount of total energy (always less than
0.5%), but always consumes the least amount of brown
energy. Also note that, the utilization of green energy by
MinBrown is 53%, in contrast with RR with 46%.

C. Summary

Our studies demonstrate that the effectiveness of our
optimizations in reducing brown energy consumption, and
MinBrown outperforms all baseline algorithms under rea-
sonable parameter ranges. All the three optimizations
(i.e., green-awareness, cooling-awareness and task-based
scheduling) contribute to the improved green energy usage.
Among them, green-aware scheduling contributes the most,
task-based scheduling the second and cooling-aware comes
the last.

V. RELATED WORK

We review the related work on utilizing green energy in
data centers in two categories: studies for a single data center
and for multiple data centers.

At the scale of a single data center, a number of
studies [11], [10], [18], [2], [22] have been conducted
to exploit renewable energy. Íñigo Goiri et al. leveraged
renewable energy to handle scientific workloads [10]. They
further integrated green awareness into Hadoop (namely
GreenHadoop [11]). Krioukov et al. [18] advocated a supply-
following computing paradigm for data intensive applica-
tions, and developed a green aware scheduling algorithm to
maximize green usage while meeting the deadline of data
processing jobs. Baris Aksanli et al. [2] developed green-
aware scheduling for both on-line services and batch jobs
in a single data center. Compared with this paper, these
existing studies for a single data center have two major
drawbacks: first, without considering the complementary
effects on green energy supply among multiple data centers;
second, these studies do not consider the discrete cooling
granularity, which causes excessive cooling energy. There
are also other proposals on architectural integrations into
data centers (such as energy storage [27]). Our paper is
complementary to these integrations.

At the scale of multiple data centers, many studies
target at interactive Internet services [34], [24], [20], [19].



Zhang et al. [34] and Le et al. [19], [20] dynamically
scheduled online services across multiple data centers to
maximize green energy usage for Web hosting with cost
budget constraints. Liu et al. [24] studied geographically
load balancing policies. Since interactive services have little
slack, most of these workload scheduling algorithms target
at maximizing instant usage of green energy while satisfying
online services QoS. Compared with this paper, they do
not consider dynamic workload placement and migration.
Moreover, they do not consider discrete cooling granularity,
which is physically related to the outside temperature of
geographically distributed data centers. Under the context
of HPC jobs, this paper attempts to match the green energy
supply and the workload by smartly scheduling the tasks
within their slacks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of minimizing
brown energy consumption of HPC workloads for cloud
providers that operate multiple geographically distributed
data centers with renewable energy sources. Specifically, we
propose a holistic workload scheduling method MinBrown
considering green energy availability, cooling power and
fine-grained scheduling. Our extensive studies have shown
that our green-aware optimization, task-based scheduling
and cooling-aware optimization achieve up to 39%, 21%,
8% reduction in the brown energy consumption, and
combining all the three optimizations achieves 2–40%
reduction over the load-balanced scheme. Our future work
includes conducting price and cost analysis like our previous
studies [33], [15], and extending MinBrown to other
workloads.
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