
On Task Assignment and Scheduling
for Distributed Job Execution

Yitong Guan
School of Computer Science and Engineering

Nanyang Technological University, Singapore 639798
guan0049@e.ntu.edu.sg

Xueyan Tang
School of Computer Science and Engineering

Nanyang Technological University, Singapore 639798
asxytang@ntu.edu.sg

Abstract—It is common for big data applications to run across
multiple datacenters or machine clusters because the data inputs
are distributed over different locations. This paper studies a job
scheduling problem for distributed job execution in which the
data inputs to jobs may be replicated across multiple locations
so that each task of a job can be executed at any one of
these locations. To schedule the jobs, we need to determine the
processing locations for the tasks of each job and the execution
order of the tasks at each location. We focus on the objective
of minimizing the average job response time. We first design
a task assignment algorithm to balance the task allocation
among various locations. We then further develop integrated
solutions that conduct task assignment and scheduling together.
We experimentally evaluate our algorithms using real job traces.
The results show that our algorithms can significantly reduce the
job response times compared to a baseline that allocates each task
to a fixed location for processing.

I. INTRODUCTION

In contemporary big data applications, jobs often need to be
executed in a distributed manner across multiple datacenters
or machine clusters because the data inputs are available at
different locations [1], [2]. Job scheduling plays an important
role in the performance of big data processing systems that
require distributed execution. When multiple jobs are running
concurrently in the system, properly scheduling the processing
order of jobs can make the system more efficient. Existing
work on scheduling for distributed job execution [3] has
assumed that the data input for each task is available at only a
single datacenter or machine cluster. In practice, for reliability
or fault tolerance considerations, it is common for the data to
be replicated across several locations. As a result, there are
multiple choices for placing tasks that preserve data locality.
This creates new opportunities and challenges for scheduling
distributed job execution.

In this paper, we formulate and study a job scheduling
problem for distributed job execution in which the data to
be processed by each job is possibly available at multiple
locations. To schedule the job execution, we need to decide
where to execute the tasks of each job subject to data locality
requirements and in what order to execute the tasks at each
location. We focus on an online setting in which new jobs
are released over time and scheduling decisions have to be
made on the fly. Our goal is to minimize the average job
response time where the response time of a job is given by its
completion time minus its release time.

We propose a number of solutions to the scheduling prob-
lem. First, we design algorithms to assign the tasks among
different locations for execution. The objective of task assign-
ment is to balance the task allocation among the locations
so as to optimize job response times. On completing the
task assignment, various scheduling algorithms can be used to
determine the task execution order at each location. Second,
we design algorithms to assign tasks and determine their
execution order in an integrated fashion. This allows the task
allocation to take into account the job priorities decided by the
scheduling strategy. We explore different levels of task assign-
ment adaptivity to job arrivals in the online setting and adopt
heuristics to trade the quality of task allocation for scheduling
efficiency. We experimentally evaluate our solutions with real
job traces. The results show that the integrated algorithms
generally perform better in terms of job response time than
employing separate task allocation and scheduling algorithms.

The rest of this paper is organized as follows. Section II
describes the related work. Section III introduces the system
model and the objective of our problem. Section IV presents
our proposed algorithms. The experimental setting and results
are discussed in Sections V and VI respectively. Finally,
Section VII concludes the paper.

II. RELATED WORK

Some recent work has studied distributed job execution.
Hung et al. [3] studied scheduling strategies for jobs that
run across geo-distributed datacenters. Jobs are composed of
multiple tasks and each task has a designated datacenter to
execute. A job is said to be completed when all the tasks
of the job are finished. Hung et al. proposed a Workload-
Aware Greedy Scheduling (SWAG) strategy which schedules
the jobs greedily based on their estimated completion times.
It is a state-of-the-art scheduling strategy for optimizing the
job response times for distributed job execution. We shall
take advantage of this strategy to schedule jobs in our work.
Different from [3], we consider a more general scenario in
which each task can possibly be executed at multiple locations
due to data replication.

Guan et al. [4] studied fair resource allocation among jobs
requiring distribute execution when their resource demands
exceed the resource capacities available at geo-distributed
sites. They extended the conventional max-min fairness for

resource allocation to distributed job execution and defined
a new resource allocation policy called Aggregated Max-
min Fairness which requires the aggregate resource allocation
across all sites to be max-min fair. However, the case of data
replication across multiple sites was not considered.

Beaumont et al. [5] established several theoretical results
for scheduling tasks with replicated inputs under simplifying
assumptions such as homogeneous machines with the same
processing capacities and homogeneous tasks with the same
duration. They studied two variants of the problem: one
aiming at minimizing the completion time of the job under
the constraint that data locality is preserved for all tasks, and
the other aiming at minimizing the number of non-local tasks
under the constraint that machines are never left idle. Links
were established between these variants and semi-matchings
in graph theory. However, this work focused on only a single
job with independent tasks. In contrast, we consider a system
continuously serving jobs that are released over time where
scheduling issues arise not only among tasks within a job but
also among different jobs.

Chen et al. [6] proposed a task assignment strategy to
achieve max-min fairness across the jobs in terms of their
completion times. They assumed the tasks of jobs could be
migrated among datacenters at the cost of network transfer.
The data to be processed by each task was assumed to be
available at one datacenter only. Besides, an offline setting
was considered in which the total number of tasks to execute
for all jobs was assumed to be within the total computing
capacity of all the datacenters. In contrast, we consider the
scenario in which the data to be processed are replicated across
multiple locations and focus on the online setting in which jobs
may need to be queued when there is not enough computing
capacity to process all the outstanding tasks immediately.

Im et al. [7] considered the problem of scheduling jobs
with heterogeneous demands on multiple servers. Each server
has a certain computing capacity and can run multiple jobs
simultaneously as long as the total demand of the jobs does
not exceed the server’s capacity. Approximation algorithms
were developed to minimize the total completion time of all
jobs by making scheduling decisions according to the job
lengths, demands and volumes. The problem was studied in
the offline setting and with the requirements that each job must
be assigned to one machine and jobs must be scheduled non-
preemptively. Different from [7], we focus on distributed job
execution in the online setting and allow a job to be preempted
by other jobs in the execution. This is natural when each
job is composed of small tasks processing independent data
partitions.

III. SYSTEM MODEL

We consider a distributed system consisting a set of m sites:
S1, S2, ..., Sm. Each site models a cluster or a datacenter. Each
site j has a processing capacity uj , which can be understood
as the number of computing slots available at the site.

Each job to execute in the system includes a set of tasks that
process different data partitions and can run in parallel. Each

Fig. 1. Example of available sites and processing sites

task can be executed at one or multiple sites depending on the
data availability. These sites are referred to as the available
sites of the task. Figure 1 shows an example job composed
of 3 tasks. The data partition to be processed by task t1 is
replicated at sites S1, S2 and S3. Thus, the available sites of
task t1 include sites S1, S2 and S3. Similarly, the available
sites of task t2 include sites S2 and S4, and the available sites
of task t3 include sites S1 and S3. To execute a job, we need
to assign each task to one site for processing. We refer to the
site at which a task runs as the processing site of the task.

A job is completed when all of its tasks are finished. The
response time of a job is the duration from its release to its
completion. Our objective is to schedule the job execution to
minimize the average response time of all the jobs.

IV. JOB SECHEDULING ALGORITHMS

In this section, we develop scheduling solutions for our
problem. To schedule the jobs across multiple sites, we need
to determine the processing site for each task of a job and
decide the execution order of the tasks at each site. First, we
consider addressing these two issues separately. In Section
IV-A, we propose an algorithm for choosing the processing
site of each task from its available sites. The algorithm can
be used together with any scheduling algorithm that decides
the execution order of the tasks assigned to each site. Then,
we consider addressing the above two issues in an integrated
manner. In Sections IV-B and IV-C, we propose two holistic
solutions that determine the processing sites and execution
order of tasks together.

A. Balanced Task Allocation across Jobs

Since a job is completed only when all of its tasks are
finished, the completion time of a job is normally decided by
the site that has the largest number of tasks to run normalized
by the site capacity. Thus, an intuitive strategy to reduce the
job response time is to balance the task allocation among the
sites.

A naı̈ve method is to allocate tasks to sites for each job
independently. Consider an example of 3 jobs. Table I shows
the release time and task number of each job. For simplicity,
in this example, we assume that all the tasks of a job have the
same set of available sites and the duration of each task is 1

(a) at time t = 0 (s) (b) at time t = 1 (s) (c) at time t = 2 (s)

Fig. 2. Outstanding tasks to execute by balancing task allocation within each job

TABLE I
SETTINGS OF THE EXAMPLE

Job Release Time (s) Number of Tasks Available Sites of Tasks
J1 0 8 {S1, S2}
J2 1 15 {S1, S2, S3}
J3 2 6 {S1, S2}

second. We also assume that each site has only one computing
slot so that tasks are executed one at a time. Figures 2(a),
(b) and (c) show the task allocations for jobs J1, J2 and J3
respectively when each job is considered separately. For J1,
since all of its tasks have the same available sites S1 and S2,
the tasks are uniformly distributed between these two sites
(see Figure 2(a)). Similarly, the tasks of J2 are uniformly
distributed among sites S1, S2 and S3. When J2 arrives, sites
S1 and S2 would have both finished one task of J1. Thus, after
J2 arrives, the task numbers to execute at S1, S2 and S3 are
8, 8 and 5 respectively (see Figure 2(b)). For J3, its tasks are
also uniformly distributed between the available sites S2 and
S3. Suppose the jobs are executed in the order of J1, J2 and
J3 at all sites. When J3 arrives, sites S1 and S2 would have
both finished two tasks of J1; and site S3 would have finished
one task of J2. Thus, after J3 arrives, the task numbers to
execute at S1, S2 and S3 are 7, 10 and 7 respectively (see
Figure 2(c)). As a result, J1, J2 and J3 would be completed
at time 4, 9 and 12 seconds respectively. So, the average job
response time is ((4 − 0) + (9 − 1) + (12 − 2))/3 = 22/3
seconds.

The above method considers each job independently. It does
not consider the workload already allocated to the sites in
the task allocation of a new job. Different jobs can have
different available sites for their tasks and the distribution of
available sites may be skewed. As a result, task allocation
accumulated over multiple jobs may be quite unbalanced,
which can adversely affect the job completion times. In the
example of Figure 2(b), if more tasks of job J2 are allocated
to site S3 than to sites S1 and S2, we can achieve a more
balanced overall task allocation between these two sites,
thereby improving the response time of J2. This motivates
us to design a task assignment algorithm which looks at not

task-site edges, capacity= ITd

s

source-task edges, capacity= I Ti I

t

site-sink edges, capacity= max{ui · C - rj, 0}

Fig. 3. Flow network

only the available sites of the new job to allocate but also
the existing task distribution among the sites. The goal is to
balance the overall task allocation.

Given the available sites of the tasks in a new job, balanced
task allocation can be modeled as a maximum flow problem in
a flow network. We first group all the tasks by their available
sites. All the tasks sharing the same set of available sites are
put into the same group. Suppose that a new job has a total of
n tasks which are composed of k task groups: T1, T2, ..., Tk.
We construct a flow network (see Figure 3) with a source
node s, a sink node t, and a set of (k +m) nodes, where k
is the number of task groups and m is the number of sites.
Among the (k+m) nodes, there are k nodes each representing
a task group, and m nodes each representing a site. For ease
of presentation, we shall use Ti to refer to both a task group
and its corresponding node in the flow network, and use Sj

to refer to both a site and its corresponding node in the flow
network. A set of edges connects the source node to each node
of a task group. The capacity of the edge from the source node
to node Ti is set to |Ti|, i.e., the number of tasks in group Ti.
In addition, a set of edges connects each node of a task group
to the nodes of its available sites. The capacity of the edge
from node Ti to a node Sj of its available sites is also set to

|Ti|. Finally, a set of edges connects each node of a site to
the sink node. For each site Sj , let rj denote the number of
tasks already allocated to but not yet started at site Sj when
the new job arrives. Then, the capacity of the edge from node
Sj to the sink node is set to max{uj · C − rj , 0}, where uj
is the processing capacity of site Sj and C is a constant.

It is easy to verify that there is a one-to-one correspondence
between the integral flows in the flow network constructed and
the (partial) task allocations of the job satisfying that every site
is allocated at most C tasks per computing slot overall unless
rj > uj ·C (the existing tasks allocated already exceed uj ·C).
In fact, given an integral flow f in the network, we can induce
a task allocation of the new job as follows. For each task group
Ti of the new job and each of its available sites Sj , we assign
f(Ti, Sj) tasks of group Ti to site Sj , where f(Ti, Sj) is the
amount of flow going through the edge from node Ti to node
Sj in the flow network. In such a task allocation, the overall
number of tasks assigned to each site, including the rj tasks
allocated from earlier jobs but not yet started, must be capped
at max{uj · C, rj} since the edges connecting each node Sj

to the sink node have the capacity max{uj ·C − rj , 0}. Vice
versa, given a task allocation of the new job such that no site is
allocated more than C tasks per computing slot overall unless
rj > uj · C, we can induce a flow in the flow network as
follows. For each task group Ti of the new job and each of its
available sites Sj , the flow f(Ti, Sj) from node Ti to node Sj

is set to the number of tasks in group Ti assigned to site Sj . In
addition, the flow f(s, Ti) from the source node to node Ti is
set to the total number of tasks allocated in group Ti, and the
flow f(Sj , t) from node Sj to the sink node is set to the total
number of tasks of the new job assigned to site Sj . Obviously,
such a flow meets the capacity constraint, skew symmetry and
flow conservation properties.

Since all the edges in the flow network constructed have
integral capacities, the maximum flow of the network must
have an integral flow value. Thus, by computing the maximum
flow of the flow network, we can answer the question of
whether there exists a task allocation such that no site is
assigned more than C tasks per computing slot overall unless
rj > uj ·C. If the flow value of the maximum flow is equal to
the total number of tasks

∑k
i=1 |Ti| = n, such a task allocation

exists. Otherwise, such a task allocation does not exist. As a
result, balanced task allocation can be solved as follows. Since
the new job has n tasks in total and there are m sites, there
must exist one site that needs to be assigned at least d n∑m

j=1 uj
e

tasks per computing slot. On the other hand, to accommodate
all the n +

∑m
j=1 rj tasks (including the outstanding tasks

from earlier jobs), each site Sj needs to run at most a total of
n + rj tasks and hence at most dn+rj

uj
e tasks per computing

slot. Therefore, we can perform a binary search in the range
[d n∑m

j=1 uj
e,max1≤j≤mdn+rj

uj
e] to identify the lowest C value

such that a task allocation exists to assign no more than C
tasks per computing slot to each site Sj . This is the balanced
task allocation that minimizes the largest number of tasks per
computing slot received by a site. We refer to this algorithm

Algorithm 1 Balanced Task Allocation across Jobs
Input:
number of tasks in a new job: n;
the available site set of each task in the new job;
number of sites: m;
number of remaining tasks at each site: {r1, r2, ..., rm};
Output:
allocation of the new job’s tasks to sites;

1: construct the flow network for the new job;
2: initialize the lower bound of C as Clower = d n∑m

j=1 uj
e;

3: initialize the upper bound of C as Cupper = max1≤j≤md
n+rj
uj
e;

4: while Clower < Cupper do
5: C = b(Clower + Cupper)/2c,
6: set the capacity of each edge (Sj , t) to max{uj ·C − rj , 0};
7: compute the maximum flow f of the network;
8: if |f | = n then
9: Cupper = C;

10: else
11: Clower = C + 1;
12: end if
13: end while
14: C = Clower;
15: set the capacity of each edge (Sj , t) to max{uj · C − rj , 0};
16: compute the maximum flow of the network;
17: derive the task allocation of the new job from the maximum flow;

as Balanced Task Allocation across Jobs (BTAaJ). Algorithm
1 shows the details of the BTAaJ algorithm.

We use the same example of Table I to illustrate BTAaJ.
Since all the sites are empty when J1 arrives, BTAaJ uniformly
distributes its tasks between the available sites S1 and S2 (see
Figure 2(a)). When J2 arrives, the remaining task numbers at
S1, S2 and S3 are 3, 3 and 0. Thus, BTAaJ assigns four tasks
to site S1, four tasks to site S2 and seven tasks to site S3

to balance the overall allocation among the sites (see Figure
4(a)). Suppose the jobs are again executed in the order of
J1, J2 and J3 at all sites. When J3 arrives, the remaining
task numbers at S1, S2 and S3 are 6, 6 and 6. Thus, BTAaJ
uniformly distributes the tasks of J3 between the available sites
S2 and S3 (see Figure 4(b)). As a consequence, J1, J2 and J3
would be completed at time 4, 8 and 11 seconds respectively.
Therefore, the average job response time is ((4 − 0) + (8 −
1) + (11− 2))/3 = 20/3 seconds.

We remark that after the task allocations by the BTAaJ
algorithm, any scheduling algorithm can be used to determine
the execution order of the tasks at each site.

B. Schedule Conscious Task Allocation

The above task allocation algorithm is oblivious to the job
scheduling strategy. There are a wide variety of job scheduling
strategies. Different scheduling strategies prioritize jobs in
different ways. If the task allocations of the jobs can take into
consideration the job priorities by the scheduling strategy, it
may be possible to further enhance the quality of the overall
solution. Next, we design integrated solutions that combine
task allocation and job scheduling strategies.

There has been some studies on the scheduling algorithms
to minimize the job completion time for distributed job execu-

(a) at time t = 1 (s) (b) at time t = 2 (s)

Fig. 4. Outstanding tasks to execute by BTAaJ

tion. Hung et al. [3] proposed a SWAG algorithm that greedily
serves the job that can be completed the fastest and showed
that the SWAG algorithm outperforms the classical First
Come First Serve (FCFS) and Shortest Remaining Processing
Time (SRPT) based approaches. Thus, we adopt the SWAG
algorithm as the base of our integrated solutions.

In a nutshell, whenever a new job arrives or an existing job
is completed, the SWAG algorithm computes a new order of
all the outstanding jobs and all the sites would then follow
the order to execute the tasks locally. SWAG prioritizes jobs
by using a simple heuristic for estimating their completion
times and iteratively adds jobs to the new order one at a time.
Specifically, suppose the order of the first h jobs to run has
been determined as J1, J2, ..., , Jh. Let qi,j denote the number
of job Ji’s remaining tasks to execute at site Sj . Then, for
the first h jobs, the accumulated number of tasks to execute at
each site Sj is

∑h
i=1 qi,j . Consider another job J that has xj

remaining tasks to execute at each site Sj . If J is scheduled
as the (h+ 1)-th job to run, its completion time is estimated
as tc +max1≤j≤m

∑h
i=1 qi,j+xj

uj
(where tc is the current time

and uj is the processing capacity of site Sj
1) since a job

is completed when all of its tasks are finished. The SWAG
algorithm estimates the completion times of all the jobs yet
to be ordered and selects the job with the earliest completion
time to append to the job order. Then, SWAG continues to
update the completion time estimations of the remaining jobs
and pick the next job until all the jobs are ordered.

In our problem, each task of a job can have multiple
available sites to execute. This provides the opportunity to
optimize the completion time of a new job by adjusting its task
allocation. That is, given the available sites of the new job’s
tasks, we would like to derive the xj values that minimize
the job completion time tc + max1≤j≤m

∑h
i=1 qi,j+xj

uj
. This

problem can again be modeled by the flow network constructed
in Section IV-A. Specifically, instead of setting the edge
capacity from each node Sj to the sink node at uj · C, we
can set the edge capacity to max{uj · C −

∑h
i=1 qi,j , 0}. As

a result, each integral flow in the network corresponds to a

1For the comparison purpose, tc can be omitted from the computation.

task allocation of the new job having a completion time at
most tc + C if appended to the job order. A binary search
can be conducted to find the lowest C value to allocate
all the tasks of the new job. Similar to BTAaJ, the lower
and upper bounds for binary search can be set to d n∑m

j=1 uj
e

and max1≤j≤md
n+

∑h
i=1 qi,j
uj

e respectively. Then, the lowest C
value would be used as the estimated completion time of the
new job for the SWAG algorithm to decide the job order. If
the new job has the earliest completion time, it is selected as
the (h + 1)-th job to run. Otherwise, its task allocation and
the C value would be recomputed when choosing the next
job to run. In this way, the task allocation of the new job can
be tailored to its priority in the job order, thereby optimizing
its completion time. We refer to this algorithm as Schedule
Conscious Task Allocation (SCTA). Algorithm 2 shows the
details of the SCTA algorithm.

Again, we illustrate SCTA with the example of Table I.
The task allocations of J1 and J2 by SCTA are the same as
those by BTAaJ. When J1 arrives, to minimize its estimated
completion time, its tasks are uniformly distributed between
the available sites S1 and S2 (see Figure 2(a)). When J2
arrives, the remaining task numbers at S1, S2 and S3 are 3, 3
and 0. If J1 is scheduled to run first, it can be completed
at time 4 seconds. If J2 is scheduled to run first, it can
be completed at time 6 seconds (by uniformly allocating its
tasks among the three sites). Thus, SCTA schedules J1 to run
before J2. Then, to minimize J2’s estimated completion time,
SCTA assigns four tasks to site S1, four tasks to site S2 and
seven tasks to site S3 (see Figure 4(a)). When J3 arrives, the
remaining task numbers at S1, S2 and S3 are 6, 6 and 6. By
applying SCTA, J1 would be scheduled to run first since it
can be completed at time 4 seconds which is the earliest.
Then, J3 would be scheduled to run next since it can be
completed at time 6 seconds if executed after J1, while J2
can only be completed at time 8 seconds if executed after J1.
Finally, J2 would be scheduled to run last (see Figure 5). As
a result, J1, J2 and J3 would be completed at time 4, 12 and
6 seconds respectively. Thus, the average job response time is
((4− 0) + (12− 1) + (6− 2))/3 = 19/3 seconds.

Algorithm 2 Schedule Conscious Task Allocation
Input:
number of sites: m;
outstanding jobs: J1, J2, ..., Jg;
allocation of the remaining tasks of each outstanding job Ji (i =
1, 2, ..., g): {qi,1, qi,2, ..., qi,m};
number of tasks in a new job Jg+1: n;
the available site set of each task in the new job Jg+1;
Output:
allocation of the new job’s tasks to sites and the execution order of
all jobs;

1: construct the flow network for the new job Jg+1;
2: initialize Q as an empty job order;
3: initialize the accumulated task number rj = 0 for each site

Sj (j = 1, 2, ...,m);
4: for each h = 1 to g + 1 do
5: if the new job Jg+1 is not in Q then
6: initialize the lower bound of C as Clower = d n∑m

j=1 uj
e;

7: initialize the upper bound of C as Cupper =
max1≤j≤md

n+rj
uj
e;

8: while Clower < Cupper do
9: C = b(Clower + Cupper)/2c,

10: set the capacity of each edge (Sj , t) to max{uj · C −
rj , 0};

11: compute the maximum flow f of the network;
12: if |f | = n then
13: Cupper = C;
14: else
15: Clower = C + 1;
16: end if
17: end while
18: C = Clower;
19: set the capacity of each edge (Sj , t) to max{uj ·C−rj , 0};
20: compute the maximum flow of the network;
21: derive the task allocation of the new job Jg+1 from the

maximum flow: {q(g+1),1, q(g+1),2, ..., q(g+1),m};
22: end if
23: compute the estimated completion time ei = max1≤j≤m{rj+

qi,j} for each job Ji not in Q;
24: l = argmini ei;
25: append job Jl to Q;
26: rj = rj + ql,j , for each j ∈ {1, 2, ...,m};
27: end for

Fig. 5. Outstanding tasks to execute at time t = 2 (s) by SCTA

C. Adaptive Task Allocation

So far, all the solutions we have developed focus on the
task allocation of a new job when it arrives. Once determined,

the task allocation of the job is fixed and does not change
afterwards. This can potentially limit the adaptivity of the task
allocation to future job arrivals. In the previous example, when
J3 arrives, the jobs are reordered as J1, J3, J2 (see Figure 5).
As a result, due to minimizing J3’s estimated completion time,
the overall task allocation among sites S1, S2 and S3 becomes
quite unbalanced, which adversely affects the completion time
of J2. In fact, the idea of SCTA to tailor the task allocation of
a job to its priority in the job order can be applied to not only
a new job but also all the outstanding jobs in the system. To
improve the adaptivity, we can reallocate the remaining tasks
of a job when needed at any time before the job is completed.
In the example of Figure 5, if we reallocate the tasks of J2
when J3 arrives, that is, we assign six tasks of J2 to site S1,
four tasks of J2 to site S2 and four tasks of J2 to site S3, then
we can balance the overall task allocation among the sites (see
Figure 6). As a consequence, J2 can be completed earlier at
time 10 seconds. Thus, the average job response time can be
reduced to ((4− 0) + (10− 1) + (6− 2))/3 = 17/3 seconds.

By this motivation, we propose an algorithm called Adaptive
Task Allocation (ATA) that is allowed to adjust the task
allocation of all the outstanding jobs to optimize the job
completion times. Again, we base our ATA algorithm on
SWAG which is a state-of-the-art scheduling algorithm for
distributed job execution. In computing a new order of the
jobs, for each outstanding job, we would like to compute the
best task allocation for its remaining tasks that minimizes
its estimated completion time. Naturally, this can also be
implemented by the flow network transformation and binary
search techniques discussed for a new job in Section IV-B.
Algorithm 3 shows the details of the ATA algorithm.

The computational complexity of the ATA algorithm can be
considerably higher than that of the SCTA algorithm. In the
ATA algorithm, to determine a new order of g jobs, we need to
compute O(g2) task allocations since the task allocations of all
the jobs not yet ordered are recomputed in each iteration. To
improve the computational efficiency, rather than computing
the exact best task allocation for each job, we can employ
heuristics to derive a good task allocation for each job that
minimizes the job completion time in an approximate manner.
Next, we propose a simple greedy heuristic that can be used

Fig. 6. Outstanding tasks to execute at time t = 2 (s) by ATA

Algorithm 3 Adaptive Task Allocation
Input:
number of sites: m;
outstanding jobs: J1, J2, ..., Jg;
number of remaining tasks in each outstanding job Ji : ni;
the available site set of each task in each outstanding job Ji; a new
job Jg+1;
number of tasks in the new job Jg+1: ng+1;
the available site set of each task in the new job Jg+1;
Output:
allocation of tasks to sites for all jobs and the execution order of all
jobs;

1: construct the flow network for each job Ji (i = 1, 2, ..., g + 1);
2: initialize Q as an empty job order;
3: initialize the accumulated task number rj = 0 for each site

Sj (j = 1, 2, ...,m);
4: for each h = 1 to g + 1 do
5: for each job Ji not in Q do
6: initialize the lower bound of C as Clower = d ni∑m

j=1 uj
e;

7: initialize the upper bound C as of Cupper =
max1≤j≤md

ni+rj
uj
e;

8: while Clower < Cupper do
9: C = b(Clower + Cupper)/2c,

10: set the capacity of each edge (Sj , t) in the flow network
for Ji to max{uj · C − rj , 0};

11: compute the maximum flow f of the network for Ji;
12: if |f | = ni then
13: Cupper = C;
14: else
15: Clower = C + 1;
16: end if
17: end while
18: C = Clower;
19: set the capacity of each edge (Sj , t) in the flow network

for Ji to max{uj · C − rj , 0};
20: compute the maximum flow f of the network for Ji;
21: derive the task allocation of job Ji from the maximum flow:

{qi,1, qi,2, ..., qi,m};
22: compute the estimated completion time

ei = max1≤j≤m{rj + qi,j} for job Ji;
23: end for
24: l = argmini ei;
25: append job Jl to Q;
26: rj = rj + ql,j , for each j ∈ {1, 2, ...,m};
27: end for

as a substitute for the flow network transformation and binary
search techniques in the ATA algorithm.

The main idea of the greedy heuristic is to allocate the tasks
of a job sequentially in a water-filling manner (see Figure 7).
Suppose that the remaining tasks of a job are composed of k
task groups T1, T2, ..., Tk, where the tasks in the same group
share the same set of available sites. The greedy heuristic
allocates the tasks one group at a time in descending order
of group size. When allocating a task group Ti, it considers
all the available sites of the group. Let Sj1 , Sj2 , ...Sjl denote
the available sites, and let rj1 , rj2 , ..., rjl denote the numbers
of tasks currently allocated to these sites. Without loss of
generality, assume that the available sites are sorted in as-
cending order of current workload, i.e., rj1 ≤ rj2 ≤ ... ≤ rjl .
Define rjl+1

= ∞. Let |Ti| denote the number of tasks

⋯⋯

𝑆𝑗1 𝑆𝑗2 𝑆𝑗𝑙

Tasks currently allocated to the sites:

Tasks in group 𝑇𝑖 to be allocated to the sites:

𝑆𝑗ℎ+1𝑆𝑗ℎ

⋯⋯

𝑆𝑗𝑦+1𝑆𝑗𝑦

⋯⋯

𝑟𝑗1 𝑟𝑗2

𝑟𝑗𝑦 𝑟𝑗𝑦+1

𝑟𝑗ℎ 𝑟𝑗ℎ+1

𝑟𝑗𝑙
𝑝

𝑝 − 1

A
llo

ca
te

d
 T

as
ks

Fig. 7. Task Assignment for ATA-Greedy

in the task group Ti. To decide where to allocate the task
group Ti, the greedy heuristic finds the smallest index h
satisfying

∑h−1
x=1(rjh − rjx) < |Ti| ≤

∑h
x=1(rjh+1

− rjx).
Then, the tasks in group Ti would be allocated to sites
Sj1 , Sj2 , ..., Sjh . Let p (where rjh < p ≤ rjh+1

) be the integer
satisfying

∑h
x=1((p − 1) − rjx) < |Ti| <

∑h
x=1(p − rjx)

and let y =
∑h

x=1(p − rjx) − |Ti|. The greedy heuris-
tic allocates (p − 1) − rjx tasks to each site Sjx where
1 ≤ x ≤ y, and allocates p − rjx tasks to each site Sjx

where y < x ≤ h. As a result, the total number of tasks
allocated is

∑y
x=1 ((p− 1)− rjx) +

∑h
x=y+1 (p− rjx) =∑h

x=1 (p− rjx) − y = |Ti|. In this way, the accumulated
numbers of tasks allocated to the available sites are balanced as
much as possible. We refer to the ATA algorithm instantiated
with the greedy heuristic as ATA-Greedy.

D. Discussion

In our proposed solutions, we simply use the number
of remaining tasks to execute as an estimate of the job
response times. We do not make use of any knowledge on
task durations. This is because it may not be easy to make
good predictions on the task durations for all the applications
[8]. Not relying on task duration predictions will allow our
solutions to be applicable to a wider range of scenarios. In
the next section, we shall conduct experimental evaluations
using job traces with realistic task durations and show that our
solutions are effective in optimizing the average job response
time. We remark that if decent estimates on the task durations
are available when jobs are released, our solutions can be
further enhanced by incorporating such information in the task
assignment and scheduling strategies.

In our discussion, for simplicity, we have assumed that
each job includes a single stage in which all the tasks can
run in parallel. If a job has multiple stages with dependency
constraints, the tasks of the first stage normally process raw
data inputs, whereas the tasks of subsequent stages aggregate
the outputs of the first-stage tasks and are often executed at
one site [3]. Thus, in this case, our solutions can primarily be
used to assign and schedule tasks in the first stage.

V. EXPERIMENTAL SETUP

We conduct extensive simulations to compare various
scheduling solutions. This section describes the simulation
settings.

Job traces: We use two realistic job traces to drive the sim-
ulations: a Facebook trace and a Google trace. The Facebook
trace is the trace FB-2010 samples 24 times 1hr 0.csv from
the SWIM workload repository [9], [10], which is generated
based on historical workload traces on a 3000-machine cluster
at Facebook. The trace contains 24024 jobs and specifies the
amount of data processed by each job. We derive the number
of tasks in each job by assuming that there is one task per 1
GB data to process. As a result, there are a total of 1102281
tasks in these jobs. We generate the task durations according to
a Pareto distribution with parameter β = 1.259 [8] and a mean
of 2 seconds. The Google trace was collected on a cluster of
about 12000 machines for one month at Google [11], [12]. We
extract a segment of the trace containing 2944 jobs in a 60-min
window. These jobs include 48504 tasks. We derive the task
durations from the timestamps of task events recorded in the
trace. The task durations show a heavy-tailed distribution and
have a mean of 1374.7 seconds. In both traces, each task of a
job is assumed to require one computing slot to execute. We
scale the inter-arrival times of the jobs in the traces to simulate
different levels of system utilization from 40% to 70%.

Site capacity: The default number of sites is set at 30. The
sites are denoted as S1, S2, ..., S30. The resource capacity of
each site is set at 20 computing slots.

Available sites: We assume that for each job, the data
inputs to the tasks are distributed among the sites according
to a Zipf distribution. Specifically, for each job, we randomly
generate a permutation of all the sites. Then, each task of the
job is associated with the i-th site in the permutation with
a probability proportional to 1

iα , where α is the Zipf skew
parameter. The higher the value of α, the more skewed the
task distribution. To simulate different levels of skewness, we
vary α from 0 to 2. When α is set to 0, the expected task
distribution is uniform. If the associated site of a task is Sj ,
then Sj and (k − 1) additional sites Sj+1, Sj+2, ..., Sj+k−1

are appointed as the available sites of the task. We vary the
number of available sites from 1 to 5.

Scheduling methods: We implement all the scheduling
solutions described in Section IV. For the BTAaJ algorithm,
after determining the task allocation for each new job on
its arrival, the jobs are ordered by the SWAG algorithm
for execution. The SCTA, ATA and ATA-Greedy algorithms
are integrated solutions that combine task allocation and job
scheduling (SWAG) strategies. In addition, we also implement
the original SWAG algorithm as a baseline for comparison.
The original SWAG algorithm does not take advantage of
multiple available sites of tasks. It simply allocates each
task to its associated site and orders the jobs based on their
estimated completion times for execution. Note that none of
our scheduling algorithms and SWAG uses the information of
task durations since such knowledge is often hard to obtain

before execution. The algorithms simply estimate the job
completion times by the number of outstanding tasks.

Performance metrics: We study the average response time
of all the jobs. The response time of a job is the duration from
its arrival to the time when all of its tasks are finished.

VI. EXPERIMENTAL RESULTS

We compare the algorithms by varying the Zipf skew
parameter from 0 to 2, and the system utilization from 40% to
70%. Figures 8 and 9 show the results of Google and Facebook
traces respectively with each task having 3 available sites.
In general, the average job response time increases with the
skewness of task distribution for all the algorithms. This is
because when the available sites of tasks have a more skewed
distribution, it is more difficult to balance the task allocation
among the sites, thereby making the job response times longer.

The original SWAG algorithm allocates each task to a fixed
available site and does not make use of other available sites.
Thus, as can be seen from Figures 8 and 9, it normally
has the most skewed task allocation and results in much
higher job response times than all our proposed algorithms.
The SCTA and ATA algorithms outperform the BTAaJ al-
gorithm. This indicates that combining task allocation and
job scheduling strategies are more effective for optimizing
job response times than conducting task allocation and job
scheduling separately. By reallocating the tasks of outstanding
jobs when a new job arrives, ATA further reduces the job
response times compared to SCTA. This shows the importance
of adjusting task allocations according to future job arrivals.
The performance improvement of ATA over SCTA generally
increases with the Zipf skew parameter. This demonstrates
that ATA is more capable of dealing with the skewness in
the distribution of tasks’ available sites. ATA-Greedy, the
heuristic version of ATA which compromises the quality of
task allocation, performs a little worse than ATA but still
significantly better than the other algorithms. This implies that
the heuristic to greedily allocate tasks to sites with the least
loads is a close approximation of the optimal task allocation.
Figures 10 and 11 show the cumulative distribution of job
response times for various algorithms when the Zipf skew
parameter is set at 1. It can be seen that ATA and ATA-
Greedy improve the job response time at almost all percentiles.
The above performance trends are consistently observed across
different levels of system utilization.

Figures 12 and 13 show the average job response times
for different numbers of available sites for each task when
the Zipf skew parameter is set at 1. In general, a larger
number of available sites provide more flexibility in task
allocation. Thus, the job response times of our algorithms
usually decrease as the number of available sites increases.
When each task has only one available site, the job response
times of all the proposed algorithms are the same because the
task allocations are fixed and all the jobs are executed in the
same order decided by SWAG. When each task has more than
one available site, the tasks of each job can be distributed to
balance the task allocation among the sites and reduce the job

0 0.5 1 1.5 2

Zipf parameter

1200

1400

1600

1800

2000

2200

2400

2600

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

1200

1400

1600

1800

2000

2200

2400

2600

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

1200

1400

1600

1800

2000

2200

2400

2600

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

1200

1400

1600

1800

2000

2200

2400

2600

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 8. Average job response time for Google trace (3 available sites for each task)

0 0.5 1 1.5 2

Zipf parameter

5

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

5

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

5

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 0.5 1 1.5 2

Zipf parameter

5

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 9. Average job response time for Facebook trace (3 available sites for each task)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Google trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Google trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Google trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Google trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 10. Cumulative distribution of job response time for Google trace (Zipf parameter = 1, 3 available sites for each task)

0 20 40 60 80 100 120 140 160 180 200

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Facebook trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 20 40 60 80 100 120 140 160 180 200

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Facebook trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 20 40 60 80 100 120 140 160 180 200

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Facebook trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

0 20 40 60 80 100 120 140 160 180 200

Job response time (s)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
c
c
u
m

u
la

te
 p

e
rc

e
n
ta

g
e
 o

f
jo

b
s

Facebook trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 11. Cumulative distribution of job response time for Facebook trace (Zipf parameter = 1, 3 available sites for each task)

1 2 3 4 5

number of available sites

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Google trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 12. Average job response time for Google trace (Zipf parameter = 1)

1 2 3 4 5

number of available sites

10

15

20

25

30

35

40
a

v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 40%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 50%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 60%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

1 2 3 4 5

number of available sites

10

15

20

25

30

35

40

a
v
e

ra
g

e
 j
o

b
 r

e
s
p

o
n

s
e

 t
im

e
 (

s
)

Facebook trace, utilization = 70%

BTAaJ

SCTA

ATA

ATA-Greedy

Original SWAG

Fig. 13. Average job response time for Facebook trace (Zipf parameter = 1)

response times. The relative performance of the algorithms
remains largely unchanged for different numbers of available
sites. The performance trends are similar for the results of
other Zipf skew parameter values, which are not shown here
due to space limitations.

VII. CONCLUSION

In this paper, we have studied task assignment and schedul-
ing for distributed job execution in which each task of a job
may be executed at a subset of all the sites. We model the
task assignment as a flow network, and design algorithms to
find the balanced task allocation among the sites by solving
a maximum flow problem. We further propose a number of
integrated solutions to carry out task assignment and job
scheduling together. Experiments with real job traces show
that these solutions perform significantly better in terms of
job response time than conducting task assignment and job
scheduling separately and a baseline that allocates each task
to a fixed available site.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Education,
Singapore, under its Academic Research Fund Tier 2 (Award
MOE-T2EP20121-0005).

REFERENCES

[1] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, 2015, pp.
421–434.

[2] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regula-
tory constraints,” in Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, 2015, pp. 323–336.

[3] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in Proceedings of the 6th ACM Symposium on
Cloud Computing, 2015, pp. 111–124.

[4] Y. Guan, C. Li, and X. Tang, “On max-min fair resource allocation
for distributed job execution,” in Proceedings of the 48th International
Conference on Parallel Processing, 2019, pp. 1–10.

[5] O. Beaumon, T. Lambert, L. Marchal, and B. Thomasa, “Performance
analysis and optimality results for data-locality aware tasks scheduling
with replicated inputs,” Future Generation Computer Systems, vol. 111,
pp. 582–598, 2020.

[6] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-distributed
datacenters with max-min fairness,” IEEE Transactions on Network
Science and Engineering, vol. 6, no. 3, pp. 488–500, 2019.

[7] S. Im, M. Naghshnejad, and M. Singhal, “Scheduling jobs with non-
uniform demands on multiple servers without interruption,” in Proceed-
ings of the 35th Annual IEEE International Conference on Computer
Communications, 2016, pp. 1–9.

[8] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “GRASS: trimming stragglers in approximation analytics,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, 2014, pp. 289–302.

[9] “Swim’s facebook workload suite,” https://github.com/
SWIMProjectUCB/SWIM/wiki/Workloads-repository.

[10] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating
MapReduce performance using workload suites,” in Proceedings of
the 19th Annual International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2011, pp. 390–
399.

[11] “Google cluster workload traces,” https://github.com/google/cluster-data.
[12] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,

“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proceedings of the 3rd ACM Symposium on Cloud Computing,
2012, pp. 1–13.

