List of Typos

found in
Alexei Sourin, Computer Graphics. From a Small Formula to Virtual Worlds
Prentice Hall, ISBN 9812447431,    2004 Print

Last time updated: 29/10/2005 08:49

page vii:        ...“off-the-shelf”
 

page viii:       ...explained in Chapter 4, while Chapters 5 and 6 deal with three-dimensional geometric and projection transformations.
 

page ix:         ...who has borne a heavy burden
 

page 12:          pallettes

page 19:         x2 = 240000
 

page 20:         address( x, y ) = 1000*y + x

                       address(400,500) = 1000*500 + 400 = 500,400.
 

page 25:         Ellipse:

                      
 

page 26:         Straight line y-y2
 

page 32:          Sphere
                        Explicitly 
                       
                        Ellipsoid
                        Implicitly:
 

page 36:         Figure 3.15:   Upper P2 is to be R2

page 39:          
 

page 41:         x(t,u) = 4t + 12u

page 44:          Suppose that the.... to the coordinate plane XY..."

page 45:          representation of a segment

page 49:          By setting a and d to any…

page 50:           A Shear proportional to the x coordinate (Figure 4.4)
                        
while b≠0 yields a shear proportional to the y coordinate (Figure 4.4).

page 51:          Figure 4.4    Shear proportional to Y coordinate.

                         . . . . . . . . . . . . . . . . . . .

                               
 

page 57:           Also, the associative law T1(T2T3)=(T1T2)T3 applies.
                        …listed backward in contrast…

page 57:          
 

page 60:           
 

page 61:           c) 1010 &  0010 = 0010   rejected

page 63,64:    x', y'

page 70:           about axis Z only x and y coordinates change.

                        

                        
 

page 74:         

page 77:          
 

page 84:           6. b

page 92:          
 

page 93:           vector PP’=ku=[ kcosθcosf    kcosθsinf     -ksinθ   ]. The following will also hold for point P’:

page 98:           (Figure 6.16)
 

page 100:          

page 103:           Figure 6.21: point (1,0,0)

                            For any point P and its projection P’ we can write PP’=kv=[0.7 -0.7k],

                            ..................................................................................x'=x+z
                           

 

page 104:            on axis Z.

page 108:            Q5  (b)  ... orthographics parallel
                                   (c) ...  consider the remaining two as the 2D coordinates of the ...

page 110:             

page 113:           
 

page 116:            For colour light
 

page 117-130:     Gouraud
 

page 126:             ... and angle g between the reflected ray and the vector to the
                             observer is 0
°. Therefore:
                             I
=Ka×Ia+Kd×Id×cos(a)+Ks×Is×cosn(g)

page 133:            P(t)=P1(1-t)+P2t      0ŁtŁ1
 

page 135:            P(t)=(1- t)2P1+2t(1- t)P2+ t 2P3
                           
P(t)=(1- t)3P1+3t(1- t)2P2+3t 2(1- t)P3+t3P4

page 145:            (r-hp)    (hp-r)

page 162:            ...In contrast
 

page 151:           

page 153:             The required transformation is illustrated in Figure Q4.

page 159:            
 

page 160:            

page 250: