
Virtual eXist-db: Liberating Hierarchical Queries from the
Shackles of Access Path Dependence

Curtis E. Dyreson
Dept. of Computer Science
Utah State University, USA

Curtis.Dyreson@usu.edu

Sourav S Bhowmick
School of Computer

Engineering
Nanyang Technological
University, Singapore

assourav@ntu.edu.sg

Ryan Grapp
Dept. of Computer Science
Utah State University, USA

Ryan.Grapp@aggiemail.usu.edu

ABSTRACT
XQuery programs can be hard to write and port to new data collec-
tions because the path expressions in a query are dependent on the
hierarchy of the data. We propose to demonstrate a system to lib-
erate query writers from this dependence. A plug-and-play query
contains a specification of what data the query needs in order to
evaluate. We implemented virtual eXist-db to support plug-and-
play XQuery queries. Our system adds a virtualDoc function that
lets a programmer sketch the hierarchy needed by the query, which
may well be different than what the data has, and logically (not
physically) transforms the data (with information loss guarantees)
to the hierarchy specified by the virtualDoc. The demonstration
will consist of a sequence of XQuery queries using a virtual hier-
archy, including queries suggested by the audience. We will also
demonstrate a GUI tool to construct a virtual hierarchy.

1. INTRODUCTION
Hierarchical data has existed, in one representation or another,

from the dawn of databases to today. About 40 years ago, it was
commonplace to store data in the hierarchical data model. Today,
hierarchical data in XML, HDF, SGML, or JSON is stored and
used in many applications.

Hierarchical data has remained popular in spite of the tight cou-
pling of path expressions with hierarchies. A path expression is
specification of the location of a datum in the hierarchy. In his
seminal paper on the relational data model, E. F. Codd argued that
one problem with the hierarchical model is that path expressions
tightly couple queries to physical hierarchies [3]. If the hierarchy
changes, a working query may break. Or if the data is slightly dif-
ferent than what the user understands, the query may not work. A
path expression that does not match a physical hierarchy will usu-
ally evaluate to an empty answer rather than being flagged as an
error. For instance a mismatched path expression in Javascript to
locate a value in a JSON structure will yield an undefined value
rather than throw an exception.

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain permission prior to any
use beyond those covered by the license. Contact copyright holder by emailing
info@vldb.org. Articles from this volume were invited to present their results at the
41st International Conference on Very Large Data Bases, August 31st - September 4th
2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Various strategies have been researched to loosen the tight cou-
pling to improve the portability and ease of writing queries on hier-
archical data. Codd changed the data model, but four other distinct
solutions have been researched.

1. Rewrite the data - Physically transform the data to the de-
sired hierarchy [5,8,13]. But it can be excessively expensive
to transform a data collection, especially when a query uses
only a fraction of the data.

2. Rewrite the query - Evaluate the query through a (data trans-
formation) view, c.f., [12, 14]. The chief drawback is that a
view is specific to a hierarchy, so each hierarchy needs its
own view.

3. Reinterpret the query - Relax or change the query to explore
a range of “close” hierarchies [1, 4, 10, 11, 15]. But since
query evaluation does not transform the hierarchy, the result
is formatted in the source data’s hierarchy.

4. Reintepret the data - Virtual eXist-db uses this approach. We
introduced a numbering system called virtual prefix-based
numbering (vPBN) and showed that a vPBN number can be
moved to a new location within a hierarchy, yet be used just
like a PBN number to determine location-based relationships
in the context of the new location [6]. In effect, vPBN vir-
tually rather than physically transforms data and supports
query evaluation in the transformed data space. We imple-
mented vPBN in eXist-db, creating virtual eXist-db.

2. THE DEMONSTRATION
We plan to demonstrate virtual eXist-db in a series of steps. At

each step we plan to interact with the audience by asking for vari-
ations on the queries such as using different virtual hierarchies, re-
formulating the query, adding where clause constraints, etc. Users
can also try ad hoc queries using our interactive demo at cs.usu.
edu/˜cdyreson/virtualHierarchies.

Step 1: Query Evaluation in eXist-db: We will start the demon-
stration by familiarizing the audience with (non-virtual) eXist-db,
a native XML DBMS. We plan to use eXist-db’s query sandbox
running in a web browser for evaluating the queries on a laptop as
shown in Figure 1. The sandbox communicates with an eXist-db
server running on the same machine.

Our first query lists for each book its title, publisher, and list
of authors. The query is shown in Figure 2. The return clause
in the query relates a <title>, $t, with a publisher, $p, and

Figure 1: The client interface

for $t in doc("book.xml")//book/title,
$p in $t/../publisher

let $a := $t/../author
return <title> {$p} {$t/text()} {$a} </title>

Figure 2: A query to list the authors and publisher for each title

a list of <author>s, $a, through a <book> ancestor. When
we run the query on the XML data model instance shown in Fig-
ure 3, the query will produce the data model instance shown in
Figure 4. The query is a kind of data transformation, i.e., it trans-
forms the data into a new hierarchy. The new hierarchy is given in
the return clause where <author> elements are placed as chil-
dren of <title> elements, as long as the authors are related to
the title through a (least common) <book> ancestor.

Next we give a query to count the number of authors for each
title. To make it easy to count, we embed the data transformation
query as an “inner” query in a nested query as shown in Figure 5.
This is akin to using the data transformation query as a view, and
use a query rewriting technique to combine the query with the view.
We then modify the query to limit the books to those published by
“Addison-Wesley” by adding a where clause as shown in Figure 6.

Finally, we introduce an alternative physical hierarchy for the in-
put data where <publisher> is the parent of <book> as shown
in Figure 7. We rerun the query on this data showing that the count
queries no longer produce a correct answer, i.e., both queries are
tightly-coupled to a hierarchy.

Step 2: Introducing Virtual eXist-db: We now demonstrate vir-
tual eXist-db. The demonstration uses the same query sandbox
in a web browser communicating with a virtual eXist-db server.
In terms of functionality, virtual eXist-db is like eXist-db except
that the former supports a virtualDoc() function which can
be used wherever a doc() function is used in an XQuery query.
The doc() function names the document that is to be queried.
The virtualDoc() function has an additional string parame-
ter, which is a virtual DataGuide (vDataGuide) specification. A
vDataGuide is a structural summary or DataGuide [7] of the de-
sired (virtual) hierarchy for the data. It describes the desired, vir-
tual hierarchy rather than the data’s physical hierarchy. To make the
query to count Addison-Wesley authors per book easier to write, we
want the hierarchy specified by the vDataGuide given below.

title { publisher author { name } }

In the vDataGuide the children of an element type are listed within
braces. The children of <title> elements are <publisher>
and <author>, and and <name> is a child of <author>. The
vDataGuide given above essentially represents the data transfor-
mation view of Figure 2, plus the <publisher> element. The
virtual hierarchy is shown in Figure 8.

name

data

bookbook

title author publisher

X

C

name

title author publisher

Y

D

W M

Figure 3: Input data model instance for the query

name

title

authorX

C

name

title

authorY

D

publisher publisher

W M

Figure 4: Output data model instance for the query

A query in virtual eXist-db is logically evaluated with respect to
the vDataGuide. An example is shown in Figure 12. The query
specifies that the count query is to be evaluated on the document
described by the vDataGuide. No data is physically transformed,
only the hierarchy of the data is changed so that nodes appear in
the location they should be after the transformation. The query is
subsequently evaluated in the transformed space.

There are two important parts to evaluating in the transformed
space [6]. First, the relationships between nodes potentially change.
For instance, even if node x is a parent of node y in the physical
hierarchy, in the virtual hierarchy x could be a descendent of y.
Second, the value of a node potentially changes. In the physical
hierarchy node x may have a y child, but in the virtual hierarchy y
may be a parent of x and hence no longer part of x’s value.

In the demonstration we will evaluate the query in Figure 12 on
both of the data instance shown in Figure 3 and Figure 7, where
<publisher> elements have moved to be the parents of <book>
elements to show that it counts correctly. We will also demonstrate
two simple variations of the query to show how the virtual hierar-
chy changes node relationships and values.

We will highlight that a vDataGuide serves two roles. First, it
simplifies the specification of data transformation views. Second,
it virtually transforms different hierarchies to the single hierarchy
desired by the user. This makes a query portable since the query
carries with it a specification of the hierarchy that it needs.

Step 3: The vDataGuide is a Query Guard: A further benefit is
that a vDataGuide shares all of the properties of a query guard [5],
i.e., it functions as a type specification for the query. At this point
in the demo we show how a vDataGuide determines and reports on
potential information loss in constructing the virtual hierarchy.

Step 4: Virtual eXist-db is efficient: Next, we will demostrate that
the virtual transformation happens only for data used in the query,
i.e., it has an efficiency similar to view transformations (see [6]
for more details). We increase the non-Addison Wesley size of the
document to 1GB and rerun the query with the virtualDoc()
to show that the cost remains flat. We perform a similar query with
a doc() function (cost remains flat) and a nested query with a data
transformation view (cost increases dramatically).

Step 5: A Peek Under the Hood: In this part of the demo we look
behind the scenes to see vPBN in action. In order to understand
this part of the demonstration it is necessary to learn a bit about

for $t in (...data transformation query...)//title
return
<title>{$t/text()} {count($t/author)} </title>

Figure 5: A query to count the authors for each title

for $t in (...data transformation query...)//title
where $t/publisher = "Addison-Wesley"
return
<title>{$t/text()} {count($t/author)} </title>

Figure 6: A query to count the authors for Addison-Wesley titles

vPBN. A transformation could produce two kinds of changes to the
location of a node.

1. Level change - The level of a node may change. For exam-
ple, <title> Y has moved from level 3 in Figure 3 to level
1 in Figure 4.

2. Parent change - A node’s parent may change. For exam-
ple, <author> D has switched from the second <book>
of Figure 3 to the <title> Y in Figure 4.

vPBN adds a level array to each PBN number. The level array
records the tree level of each component in a PBN number. Figure 9
depicts the level array below each PBN in the transformed instance
of Figure 4. The leftmost <title> has a level array of [1,1,1]
indicating that each component in the PBN number is on level 1.
The leftmost <name> has a level array of [1,1,2,3] indicating
that the first two components represent the ancestor at level 1, the
next at level 2, and the last component is at level 3. The level array
together with a PBN number forms a vPBN number.

The vPBNs are used to determine location-based relationships,
e.g., is some <title> element a parent of a given <name> el-
ement. We instrumented virtual eXist-db to open a window with
tabs for the first location-based decision made in a query for each
pair of element types. The tab shows the vPBN numbers, the kind
of relationship decision, and the outcome.

The second, more intricate part is determining a node’s value in
with respect to the virtual hierarchy. eXist-db essentially stores the
XML in disk blocks as a string with PBN numbers and some other
information interspersed with the original XML. Figure 10 shows
a simplified representation. In eXist-db a value index maps PBN
numbers a combination of a disk block number and offset within
the block to facilitate fast retrieval of specific element values from
disk [2].

To demonstrate value construction we instrumented virtual eXist-
db to open a tabbed window with one tab for each type of value
constructed. Within the tab in a formatted XML snippet with text
that does not appear in the transformed value is highlighted in red.
This shows that virtual eXist-db is grabs the right values to create
the transformed value.

Step 6: Tool to Construct a vDataGuide: The final part of the
demonstration is a new tool to help construct a vDataGuide. The
tool is a drag-and-drop editor for a vDataGuide. The tool has two
window panes as shown in Figure 11. In the left pane is the Data-
Guide for a selected document. The right pane is the vDataGuide.
Both panes are editable trees. The user drags nodes from the Data-
Guide pane to the vDataGuide pane to create or extend a vDataGuide.
A node dragged to a position above another node is treated as its
parent, or dragged below to be a child.

name

data

bookbook

title author

publisher

X

C

name

title author

publisher

Y

D

W M

Figure 7: Second input data model instance for the query

publisher

name

title

author

º

º

º

º

Figure 8: The virtual hierarchy

The potential information loss in extending a vDataGuide is in-
dicated by color. The text for the node is colored black if there is
no information loss, yellow if there is widening information loss,
blue if there is narrowing information loss, and red if information
loss is widening and narrowing [5]. Information loss for the entire
vDataGuide is also represented at the bottom. When a node is se-
lected in the DataGuide pane, it can be right-clicked to clone, that
is, to include its descendants. In the vDataGuide pane, nodes can
be selected and deleted. Conversions of elements to attributes and
vice-versa is also possible.

The “Generate vDataGuide” button at the top opens a text win-
dow with the constructed vDataGuide specification to cut-and-paste
into a query.

3. RELATED WORK
Previous research has focused on front-end or query language-

level solutions to the problem of querying transformed data. Much
of this research effort has been devoted to discovering the best way
to relax the tight coupling of path expressions in a query to the hier-
archy of the data. Approaches include techniques to approximately
match a path to a hierarchy, c.f., [1], apply XML search c.f., [4],
or systems to relax, reinterpret, or rewrite the path expressions in
a query, c.f., [10]. But these approaches do not investigate how to
transform the XML values in the data; it is the values in the trans-
formed hierarchy rather than the source hierarchy on which queries
in the pipeline should be evaluated.

Research in XML data transformation languages is more relevant
[5, 8, 13], but these approaches are inefficient since two passes are
needed: one to transform the data, the second to query the trans-
formed data. The most relevant front-end research is to combine an
XML query with a view, c.f., [12, 14]. We know of no implemen-
tation of query rewriting for eXist-db or any other XML DBMS.
Views that transform data are cumbersome to write, and element
types constructed in the return clause of a view are distinct from
seemingly similar element types referred to in path expressions in
a query; they potentially have different values which must be first
constructed before being queried. In other words, the view must be
(temporarily) materialized and then queried. In contrast, our idea
is support queries over data transformation views by manipulating
the node numbering system rather than by query rewriting. Note
however that virtual hierarchies only construct views that are data
transformations (which are a common, important kind of view),
query rewriting is still necessary for views, in general.

name

1.1.2.1

[1,1,2,3]

title

1.1.1

[1,1,1]

author

1.1.2

[1,1,2]

X

1.1.1.1

[1,1,1,2]

C

1.1.2.1.1

[1,1,2,3,4]

name

1.2.2.1

[1,1,2,3]

title

1.2.1

[1,1,1]

author

1.2.2

[1,1,2]

Y

1.2.1.1

[1,1,1,2]

D

1.2.2.1.1

[1,1,2,3,4]

publisher

1.1.3

[1,1,2]

W

1.1.3.1

[1,1,2,3]

publisher

1.2.3

[1,1,2]

M

1.2.3.1

[1,1,2,3]

Figure 9: vPBN numbers in the virtual hierarchy

<data>11 1.1 <book>2 1.1.1 <title>3

1.1.1.1 X5 1.1.2 <auth50 </title>0

1.1.2.1 C6 1.1.3or> 70 </author>0

<publisher ...

PBN Type ID

Figure 10: XML string with node header information on disk

There are strategies for modifying PBN after an update c.f., [9].
Update renumbering is orthogonal to vPBN. The renumbering phys-
ically changes the PBN number for every node in an edit, while
vPBN does not change any physical node numbers, instead it logi-
cally renumbers the data, re-using the extant physical numbers.

4. SUMMARY
Modern hierarchical data management systems, such as eXist-

db, rely on numbering systems like prefix-based numbering to ef-
ficiently evaluate queries. But the numbering is rendered obsolete
when nodes change location in a data transformation. We demon-
strate a system called virtual eXist-db that supports query evalua-
tion in a transformed numbering space. To query data, a user speci-
fies a vDataGuide in a virtualDoc() function. The vDataGuide
is a textual representation of a virtual hierarchy for the data. The
vDataGuide makes a query portable since it represents the hierar-
chy the query needs and ensures that the physical hierarchy can
be (virtually) transformed to the desired, virtual hierarchy without
losing information (or with acceptable information loss). We also
demonstrate a GUI tool for constructing vDataGuides.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1144404 entitled “III: EAGER:
Aspect-oriented Data Weaving.” Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation. We wish to thank Shuohao Zhang for
his insights in starting this research.

6. REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern

Relaxation. In EDBT, pages 496–513, 2002.
[2] T. Böhme and E. Rahm. Supporting Efficient Streaming and

Insertion of XML Data in RDBMS. In DIWeb, pages 70–81,
2004.

Figure 11: A GUI for constructing a vDataGuide

for $t in
virtualDoc("x.xml",

"title { author { name } }")//title
return
<title>{$t/text()} {count($t/author)} </title>

Figure 12: The query using a vDataGuide

[3] E. F. Codd. A Relational Model of Data for Large Shared
Data Banks. CACM, 13(6):377–387, 1970.

[4] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
Semantic Search Engine for XML. In VLDB, pages 45–56,
2003.

[5] C. E. Dyreson and S. S. Bhowmick. Querying XML Data:
As You Shape It. In ICDE, pages 642–653, 2012.

[6] C. E. Dyreson, S. S. Bhowmick, and R. Grapp. Querying
Virtual Hierarchies using Virtual Prefix-based Numbers. In
SIGMOD, pages 791–802, 2014.

[7] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In VLDB, pages 436–445, 1997.

[8] S. Krishnamurthi, K. E. Gray, and P. T. Graunke.
Transformation-by-Example for XML. In PADL, pages
249–262, 2000.

[9] C. Li, T. W. Ling, and M. Hu. Efficient Updates in Dynamic
XML Data: From Binary String to Quaternary String. VLDB
J., 17(3):573–601, 2008.

[10] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
VLDB, pages 72–83, 2004.

[11] Z. Liu, J. Walker, and Y. Chen. XSeek: A Semantic XML
Search Engine Using Keywords. In VLDB, pages
1330–1333, 2007.

[12] I. Manolescu, K. Karanasos, V. Vassalos, and S. Zoupanos.
Efficient XQuery Rewriting using Multiple Views. In ICDE,
pages 972–983, 2011.

[13] T. Pankowski. A High-Level Language for Specifying XML
Data Transformations. In ADBIS, pages 159–172, 2004.

[14] Y. Papakonstantinou and V. Vassalos. Query Rewriting for
Semistructured Data. In SIGMOD, pages 455–466, 1999.

[15] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search
for Smallest LCAs in XML Databases. In SIGMOD, pages
537–538, 2005.

