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Abstract —A fundamental problem of graph databases is subgraph isomorphism query (a.k.a subgraph query): given a query graph
@ and a graph database, it retrieves the graphs Gs from the database that contain Q. Due to the cost of managing massive data
coupled with the computational hardness of subgraph isomorphism testing, outsourcing the computations to a third-party provider is
an appealing alternative. However, confidentiality has been a critical attribute of Quality of Service (QoS) in query services. To the best
of our knowledge, subgraph query services with tunable preservation of privacy of structural information have never been addressed.
In this paper, we present the first work on structure-preserving sublso (SPsublso). A crucial step of our work is to transform sublso —
the seminal subgraph isomorphism algorithm (the Ullmann’s algorithm) — into a series of matrix operations. We propose a novel cyclic
group based encryption (CGBE) method for private matrix operations. We propose a protocol that involves the query client and static
indexes to optimize SPsublso. We prove that the structural information of both Q and G are preserved under CGBE and analyze the
privacy preservation in the presence of the optimizations. Our extensive experiments on both real and synthetic datasets verify that
SPsublso is efficient and the optimizations are effective.
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1 INTRODUCTION Data owner Gr = (V.Mg,, %, L, STx) Service provider

Raphs are powerful tools for a wide range of real appli-
Gcations, from biological and chemical databases, social R
networks, citation networks to information networks. Lerg Secure key ’//
graph data repositories have been consistently found entec Qr = (V\May, %, L, S1k)
applications. For example, PubChem [27] is a real databfase o O
chemical molecules, which can be freely accessed via its web )
interface, for its clients to query chemical compounds. theo F19- 1. Overview of the system model.
example, namely Daylight [8], delivers chem-informatiestt- _ ) ) )
nologies to life science companies and recently, it hasigeay ON duery processing with privacy preservatiofor example,
web services to allow clients to access its technologies i the context of relational databases [18], spatial dateda

a network. Further applications of graphs can be found (k9 and graph databases [2]. However, up to date, private
literature such as [2], [5], [33]. subgraph query has not yet been studied.

Subgraph query (Via subgraph isomorphism)1 which is Motivating example: Consider a pharmaceutical company
fundamental and powerful query in various real graph apﬁith revenue that depends mostly on the invention of health
plications, has actively been investigated for perfornean€are products. The company may have discovered new com-
enhancements [5], [7], [14], [16], [29], [31], [33], [36]39] Pounds for a new product. To save laboratory work, it may
recently. However, due to the high complexity of subgrapiuery the compounds from proprietary biological pathway
query, hosting efficient subgraph query services has beemeiworks to check whether it is possible for the ingredient
technically challenging task, because tivenersof graph data compounds to form other compounds via certain chemical
may not always possess the IT expertise to offer such sarvitgactions (a structural pattern from the network). Howeoar
and hence mayutsourceto query service provider¢SP). the one hand, the company is reluctant to expose the queries
SPs are often equipped with high performance computir@he ingredients) to thesP, as it may apply for patents for
utilities (e.g, a cloud) that offer better scalability, elasticity andhe synthesis. On the other hand, the owner of the pathway
IT management [13]. Unfortunately, &Ps may not always networks may not only lack the expertise to host query sesvic
be trusted, security (such as the confidentiality of messad#it may also be reluctant to release the networks to thegubli
exchanged) has been recognized as one of the criticaluatisib The owner is willing to release it to paid users only. Hente, i
of Quality of Service$Qo9 [25]. This directly influences the is crucial to protecboththe queries and the network from the
willingness of both data owners and query clients to8&s SP. Such privacy concerns also arise from social networks
services. In the past decade, there is a bloom on the resed&@#l biological networks, among many other applications.

In this paper, we investigate that the query client may prefe
e Zhe Fan, Byron Choi, Qian Chen, Jianliang Xu and Haibo Hu aith\the not to e>_<pose the structure of query graphs to §7, and
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1. In addition to privacy protection via legal means, thigatn of research
has aimed to offer technological solutions for such protecti



SP with a preservation of the structures of both the que )’g‘fa&?\r“eg 5 Encrypted| o100 Provider. o ine -
graphs and graph data in the paradigm of the query servicesl %an’sforfn’ation graph Gy | G M= [ o }\ijyvk, Slg,[v;] - Sle, [vr]
This paper, in particular, aims to protect the adjacencyibe® | _ (v Mg 2. 2.516) |mmerypred (prume by enc. static index)
of the data graph and queries from th®. To our knowledge, | | Encryption sy [ o ]
such a problem has never been addressed before. Gr = (V,Mg,, %, L,Slg,) "1 |@ sPEnum : _

In our recent work [10], we have addressed the authenticityr———— (search for mappings M)
of the answers of subgraph query, but not their confidentiali Y ©®SPMatch:
A host of related work is also on privacy-preserving grap®lient S h b
query [1], [2], [11], [17], [20], [22], [26], [34], [35]. Hoveve.r, Q Eneryption Encrypted ® MMM o
none of these studies can support subgraph query with ée: (V. Mg, 5, L.S| )reS"“SRk ©;\& N L Y
structure preservation of the query and graph data. Anothér %<7 7% R =% 20y (Mau G B) x GG ) > ()

category of related research is on the study of privacié-, ) )

preserving graph publication [3], [4], [24], [37], [38]. Ake Fig:- 2. Overview of our techniques.

published data are modified in a non-trivial mannerg(

by sanitization), it is not clear how subgraph query can B¥lc;. Then, we propos&PMatch involving the additions
supported. and multiplications undelCGBE to check the validity of

The intrinsic difficulty of this research is that tisP cannot €ach mappindVL;, with negligible false positives. Further, the
optimize query processing by directly using the structures computation results und€fGBE can beaggregatedo reduce
the graph, since such information cannot be exposed. Hawew$mmunication overheads between the client andStRe We
most of the existing subgraph isomorphism algorithmg,( Prove thatCGBE is perfectly secure undeshosen plaintext
VF2 [7], QuickSI [29] and Turbg, [14]) for the query attackand theSP cannot learn any structures frasiMatch.
services mustraversethe graph, which by definition leaks Next, we proposé&sPEnum which optimizes the mapping
structural information. A ri@e method is to transfer the entireenumeration by introducingg@otocolthat involves the client’s
database to the client for query processing. However, it figuticipation, who informs th&P useless enumerations. In
inefficient when the database is large. addition, to optimizeSPsublso, we developSPRefine which

Our techniques for &tructure-preservingublso (denoted exploits private inner products on the static indexes tavder
as SPsublso) are derived from the Ullmann’s algorithm [30],a refinement that reduces the number of possible mappings.
a seminal algorithm for subgraph isomorphism. We revise tAde indexes of the graphs are computed and encrypted offline,
Ullmann’s algorithm intathree stepghat form the foundation whereas those of the queries are computed once by the
of our techniques. (1Enum enumerates ajpossible subgraph clients online. We analyze the effects of these optimizatio
isomorphism mappingsi;s from query grapi) to data graph on the probabilities that the&P may correctly determine
G; (2) Match verifies if the mappingM; is valid or not; graph structures. Therefore, the clients may tune the -oéfde
and (3) Refine reduces the search space Nf;s by degree between performances and privacy requirements.
and neighborhood constraints. The benefits of adopting theTo summarize, the contributions of this paper are as follows
Ullmann’s algorithm are twofold: (1) the query evaluation
between@ and G is mostly a series of matrix operations
between their adjacency matricddq and M. It does not
require traversals on structures; and (2) its query evialnat
requires simple structures. This makes the privacy arslysi *
simpler.

Specifically, to facilitate structure-preserving comjigta-

s, we first transformsublso into a series of mathematical
computations, denoted &Bsublso. Tsublso comprises three
steps, corresponding teublso: (1) TEnum enumerates all
M;s; (2) TMatch verifies the validity of M; by additions
and multiplicationsusing Mq and Mg, where Mg is the
complement oM ; and (3)TRefine reduces the search space
of M;s byinner producs on our proposedtatic indexeslq
andSlg of @ and G, whereSlq (Slg) is an ensemble ofi-
hop informationof each vertex of@ (Slg) represented by a
bit vector.

The major benefit of these three stepsTaiiblso is that The remaining of this paper is organized as follows. We
only mathematical operations are involved, which allows dirst give the problem definition in Sec. 2. We then study the
adoption of private computations in encrypted domainseBaspreliminary of subgraph isomorphissablso in Sec. 3. Sec. 4
on Tsublso, we present our novetructure-preservingublso  presents the transformed algorithfsublso. We propose the
(SPsublso). In particular, we first propose a newrivate- SPsublso in Sec. 5. We give the privacy analysis in Sec. 6.
key encryption schemaamelycyclic group based encryption We present the experimental results in Sec. 7. Sec. 8 desguss
scheme(CGBE), to encrypt Mq and Mg as Mq, and related work, and we finally conclude this paper in Sec. 9.

o We transform the Ullmann’s algoritheublso asTsublso.
It only involves a few mathematical computations, such
that its private version can be proposed and analyzed,;
We propose astructure-preservingsublso (SPsublso)
based onlsublso, consisting ofSPMatch, SPEnum and
SPRefine. Specifically, we propos€GBE for SPMatch,
which supports efficient encryption and decryptipay-
tial additions and multiplications, and aggregation of
computation results. We propose a protocol $&Enum
that involves the client to eliminate useless mappings. We
proposeSPRefine that exploits private inner products of
static indexes to further optimization;
o We analyze the privacies oPMatch, SPEnum and
SPRefine; and
o We conduct detailed experiments to verify ti¥&tsublso
is efficient and our optimizations are effective.



2 PROBLEM FORMULATION Definition 3.1: Given two graphgs = (V, E, %, L) and G’ =

: . : . (V' E')Y L"), asubgraph isomorphism mappirigom G to
This section presents a formulation of the problem studied é, is an injective functionf : V(G) — V(G') such that

this paper. More specifically, we present the system model, _

privacy target, attack model, and problem statement. o« VueV(G), f(u) € V(G'), L(u) = L//(f(“))* and
System model.We follow the system model that has been ° V(u,v) € E(G)’_(f(”)’f(”» € B(G). b
well received in the literature of database outsourcingysh Ve Say & graplt is a subgraph of another gragh if and

in Fig. 1), and known to be suitable for many applications. RNl if there exists a subgraph isomorphism mapping (inshor
consists of three parties: mapping) fromG to G’, denoted ag7 C G’ or sublso(G, G”)

= true. It is known that deciding whethe¥ is the subgraph
(1) Data owner The owner owns and encrypts the graphf G’ is NP-hard. Subgraph isomorphism quergr simply

dataG. He/she then outsources the encrypted graph Obaranh quencan be described as follows
the service provider and delivers the secret keys to clients g .p d 3c. '
for encryption of the query graphs and decryption of theefinition 3.2: Given a query grapli) and a graph database,
encrypted result; the subgraph querys to retrieve the graphs from the database
(2) Service provider(SP): The SP may be equipped with WhereQ is a subgraph of the graphs. O
powerful comp_uting utilities such as a cloud. TP 3.2 Revised Ullmann’s Algorithm
evaluates a client’s query over the encrypted data, on

behalf of the data owner, and returns the encrypted resghP9raph query has been a classical query and many algo-

to the client: and rithms, e.g, [7], [14], [29], [30], have been proposed in the
(3) Client A client encrypts the query grap@ using the literature. As motivated in Sec. 1, the Ullmann’s algorithm

secret keys, submits it to th&P, and decrypts the [30] is simple for privacy preservation. In this subsectiome

returned encrypted result to obtain the final answer. revise the Ullmann’s algorithm into three interleavingpste
namely enumeration, matching and refinement. These form a

Attack model. We assume the dominating semi-honest agh nqation of our discussions, as we propose our structure
versary model [1], [2], [19], [21] from literature, whereeth preservation techniques for them

attackers arehonest-but-curiousand the SP may also be ™ pyiqr 1 the algorithmic details, we present some notations

the attacker. For presentation simplicity, we oftemm the used in this paper. We useblso to refer to as the Ullmann’s

attackers as theSP. We assume that the attackers are thﬁgorithm We denote a query @ — (V,Mq,¥, L) and
eavesdropperand adopt thehosen plaintext attaclel]. We graph asé — (V,Mg, %, L), m = [V(Q)] énd%7:’|V(G)|
assume that théP and clients are not allowed to collude. ;= 44 Mc é\re the7 ad}acency matrices @ and G,

Privacy target. To facilitate a technical discussion, we assumreespectivelyMQ(j k) is abinary value, wheréViq (j, k) = 1
that the privacy target is to protect tiséructuresof a query ;¢ (v;,v) € E(Q), and otherwise 0. The values of the entries

graph@ and a graph daté from the S7 under the attack ot N1, are defined, similarly. Both adjacency matridekg
model defined above. Thstructural informationof @ and 504 M carry the most fundamentatructural information
G considered is the adjacency matrices(pfand &, reSpec- o ' the edge information. We use 7@ x n binary matrix
tively. More specifically, the probability that tR&P correctly pr ¢ represent theertex label mappingetween( and G.
determines the values of the adjacency matrix of the graphéﬁecifically, Vi k, M(j,k) = 1if L(v;) = L(v), where
guaranteed to be lower than a threshold with reference to tQ)?E V(Q) andvy, € V(G); and otherwise 0.

of random guess _ The revised Ullmann’s algorithmsiblso) is detailed in
The problem statemerdf this paper can be stated as folloWsp|qo. 1. sublso takesQ and G as input and returns true @
Given the above system and attack model, we seek an effime subgraph of:. Initially, it determines the vertex label
cient apprqach to fac.|I|tate the subgraph |somorph|sm YueknappingM (Lines 1-2). Thensublso checks fromM if there
services with preserving the above defined privacy target. g g subgraph isomorphism mapping frafnto G by using
3 p three steps: (1Enum; (2) Match; and (3) Refine. Next, we
RELIMINARIES highlight some details of each step.
In this section, we first discuss the background for the subnumeration (Lines 8-17). Enum enumeratesall possible
graph query and revise the classical Ullmann’s algorithm. subgraph isomorphism mapping®m @ to G' by M. Each
possible mapping is denoted ad;. Each column ofM;
3.1 Subgraph Query con'Fains at most one and each row of M; has only one
] . 1 (Lines 12-13).M; is enumerated fronM row by row (Line
This paper assumes a graph database is a large collect_{g@' When anM; is obtained (Line 8)Match checks if M

of graphs of modest sizes. We considerdirected labeled g 5 subgraph isomorphism mapping (Line 9). It is easy to see
connected graphsA graph is denoted a&' = (V, E,%, L), that the number of possib®I;s enumerated i€)(n™).

whereV (), E(G), %(G) and L are the set of vertices, edgeSpatching (Lines 18-21). For each; enumerated fronM,
vertex labels and the function that maps a vertex to its Jabglthere exists a matrixC;, C; = M;MgM?, such thafj, k,
respectively. We us®eg(v;, G) to denote the degree of the

vertexv; in graphG. In this paper, we focus on the graph with Mq(j, k) =1 A Ci(j,k) =0 1)

only vertex labels. Our proposed techniques can be extedethen such aiM; cannot be an subgraph isomorphism mapping
support the graph with edge labels with minor modification&rom @ to G. Note thatC; intuitively represents the adjacency



1001 enumerate all
M=|0100 possible mappings
0010 w/o Refine

Algorithm 1 Revised Ulimann’s algorithmublso (Q, G)

Input:  The query grapiQ and the data grapty.
Output: True if Q is a subgraph of7, False otherwise.
1: Initialize M; =0

v1 Ul
QM ¢ vs
v2 U3 v2
v4 0

@
14
2: GenerateM from (V, X, L) of Q and G 1000 0001
3 if IRefine(M, Q, G) /* Refinement */ 111 1110 M;=|0100| Ma=|0100
4: return False Mq=|110| Mqo— 1111 0010 0010
5! if 1Enum(0, M;, M, Q, G) /* Enumeration */ 101 G 1110 e
92 return False N 0101 C1 =M;McMT violation of sublso
. return True R K 3
P 111 110
Pr_oqedure 1.1Enum (d, M;, M, Q, G) Adjancency matrix ci=l111 Co=|111
8: ifd=m ) 111 O@11
9: return Match(M,;, Q, G) /* Matching */

10: if IRefine(M, Q, G)
11: return False
12: for each ¢, wherec < n, M(d, ¢) = 1, andVd' < d M;(d’,c) =0
13: M;(d, c) =1
14: if Enum(d + 1, M;, M, Q, G)
15: return True
16: M;(d, ¢) := 0
17: return False

Procedure 1.2Match(M;, Q, G)

/* Refinement */ . . . .
Fig. 3. Adjacency matrices of Q and G; Two possible

mappings (M; and M) and a violation in C, (Formula 1).
4 SUBISO WITH MATRIX OPERATIONS

From sublso in Algo. 1, it can be noted that the violation
defined by Formula 1 inMatch (Line 19) is determined

18: c; = Mm;McMT
/* violation */
19: if 3j,k, Mq(j, k) = 1 A C;(j, k) =0
20: return False
21: return True

Procedure 1.3Refine(M, Q, G)

by processing of the entries betwedfiq and C;, and the
neighborhood constraint (Line 23) precisely exploits edge
information. Hence, as motivated in Sec. 1, we eabtso into
an algorithm that uses a series of mathematical compugation
denoted aSsublso. This enables us to derive private versions

22 doVj, k, M(j, k) =1

23: if degree constrainbr neighborhood constrainfails
24 M(j, k) :=0

25: while M is not changed

26: if 35, s.t, Vk, M(j, k) =0

27: return False

28: retun True

of such operations in later sections.

Foremost, we extend the definition of the query and data
graph (2 and GG), defined in Def. 4.1. Def. 4.1 only differs
from the one presented in Sec. 3 that the entries in the
adjacency matrixXM are flipped i.e, Os (resp. 1s) are set
matrix of a subgraph of7, that ) may be isomorphic to to 1s (resp. 0s), for the transformedblso (to be detailed
throughM,. Formula 1 states that there is an edge betwesoon). MoreoverQ and G are extended with precomputed
vertices j and k£ in ) but no corresponding edge in thendexes, called static indexes (to be detailed in SubSé&p, 5.
subgraph ofGG, represented by>;. Such anM; is definitely to enhance performances. Since our subsequent discussions
not a mapping. We term the case in Formula 1 asddation always assume the extended queries/graphs, we omit the term
of subgraph isomorphisrfor simply violation). M; without “extended” for brevity.

violation is called avalid mapping. That is() is a subgraph peinition 4.1: The extended data grapbf G is denoted as
(I;fe?n:ahé%un%rzlf\i/rllgs 22-28). The number of 1's iM signifi G = (V. Mg, , L,Slg) and thequery graphis extended as
A ) = (V,Mgq, X, L,Slg), whereM g areflipped i.e, Vj, k,

cantly increases the number Bf; to be enumerated in WOI‘S’[Q ( Q Q) G pped J
case. In the Ullmann’s algorithm, there are two optimizasio Mg (4, k) = ~Ma(j, k),
calledrefinementsto reduce the number of 1's WL Intuitive- 545 andSiq (calledstatic indexesare sets of bit vectors,
ly, the first refinement exploits theegree constraintwhereas ¢, optimization purposes. O
the second refinement relies on theighborhood constraint
Vi k, M(j, k) =1 =

(1) Deg(vj,Q) < Deg(vx,G); and

Based on Def. 4.1, we rewriteublso into transformed
sublso called Tsublso in Algo. 2. The inputs are the query
graph @ and data grapl@z. It returnsO if @ is a subgraph

_(2) VI7Mq(J,$) =1= 3y,1\/I(ﬂf",y)1\/1€'(k_’y) - 1 of G, and non zero otherwise. The corresponding three main
Refinement is performed when (M is determined (Line 3) steps of Algo. 1 in Algo. 2 are highlighted below.

and (2_)Mis are epumerated (Line 10). qu any palrycﬁnq Transformed enumeration. The main difference if Enum is

k, M(j, k) =11if elther ong of the constralnts Is not S"?‘t'Sf'e atRefine (Lines 10-11 of Algo. 1) is removed. The reason is
the algorithm then flipavI(j, k)'_ 1€, SetSM(_j’ k) = 0 (Lines . thatRefine exploits structural information, which is required to
22'24)_' If any row OTM contains only 0s, it reports there IS’keep private. Another difference is thBEnum is invoked with
no valid mapping (Lines 26-27). an input messag® thataggregateshe subgraph isomorphism
Example 3.1:Fig. 3 shows an example for Algo. 1. The LHSnformation from@ to G during the enumeration d¥1;s.
shows the query graply and the data grapldii and their Transformed matching. In Match, the violation of Formula 1
adjacency matrices (below the graphs). The RHS shows fhéne 19 of Algo 1) is checked by a condition defined on
enumeration oM;s. C, is computed byM;, which is a valid each entry ofMq andC;, which leaks structural information.
mapping from@ to G. Suppose we do not perforRefine, In comparison, with Def. 4.1, the presence of a violation
M, will be enumeratedMatch determines thaM, contains is detected from the product of the matrichdq and C;
violations, as shown. However, wheRefine is performed, (Lines 14-15) inTMatch. Further, the violation due td/1; is
M(1,4) is flipped to0 aswv, of G does not connect to, preserved under aggregation®,, the result ofM; (denoted
andDeg(v1, Q) > Deg(vq, G). M is not enumerated at all. as R;) is aggregated into one messagLines 16-17).



Algorithm 2 Tsublso (Q, G) Mg C.] & | MaC: - M ;r;gglslreaﬁ;;;mgs
Input: The query graphQ and the transformed data grapgh Mqg=|110 / w/o TRefine
Output: R = 0 if Q is a subgraph o, R = 1 otherwise. 001 0 101 M Mo,
1: Initialize R := 1, M; := 0 B ol1]o0 0 ~ ! Ty
%Z GenerateM from (V, 2, L) of Q andG C; = M:iMgM;y violation. of sublso
L if ITRefine(M, Q,G)  /* TRefinement */ 1101 1 0001 : 9
4. rewn R - 1)1 0 IIMa=1{00001] &, = 888 Gy = gg%)
5: TEnum(0, M;, M, Q, G, R) /* TEnumeration */ 0 R 0001 1= 2=
6: retun R 1010 000 @oo
Procedure 2.1TEnum(d, M;, M, Q, G, R) violation of sublso Ri=0 Ry =2
T ifd=m B a) b) c)
8: TMatch(M;, Q, G, R)  /* TMatching */
9: for each ¢, wherec < n, M(d, ¢) = 1 andVd' < d M;(d’, c) = 0 Fig. 4. (a) The truth table of Mo C;; (b) lllustration of M
10:  Mi(d o) =1 ) _ Q Q
11: TEnum(d+1, M;, M, Q, G, R) and Mg; and (c) TMatch.

12: M;(d, ¢) := 0

Procedure 2.2 TMatch(M., Q. G R) usingMgq and C, (in Lines 15-16 is 0. In comparison R,

13: nitialize R; =0, MC; =0 computed usingMq and Cs is 2. Hence,M, is an invalid
14: C; .= MM M; , o __— mapping.R = R; x R, = 0 indicates that there is a valid
15: vj, k, MC;(j, k) := Mq(j, k) x Ci(j, k) /* Multiplication */ . .

16 Ri = >, ) MC;(j, k) /* Addition */ mapping and thug) is a subgraph oft.

17 R x=R; /* Multiplication */

Transformed refinement As the neighborhood constraint of

procedure 2.3TRefine(M, Q, G) Refine precisely exploits the edge information, it cannot be

18: for each j, k, M(j, k) = 1

19: i Slg[v,] - Sl[vs] # Slg[v;] - Sla[vg] directly adopted. We transforRefine as TRefine that inner

%15 . S:VIV(;; ’;\)/I(: Ok) iy products (Line 19) between our proposstdtic index(Sl, in

22: igm}; False S the form of bit vector) are used for refinements. The index is

23: return True called static as the indexes of the data graphs are precechput
The detection of a violation iTMatch is illustrated with 2nd those of query graphs are computed by the client prior to

Fig. 4. Similar toMatch, TMatch computes the “subgraph” Tsublso.

C; that Q may be isomorphic to. With the data grap8, It is worth noting that Tsublso is mainly a series of

is computed in Line 14. There are four possible cases of tH@thematical operations.,e., additions, multiplications and
entries of Mq and C; and Fig. 4 a) highlights the case ofJnner products. This enables us to establish a connection to
the violation of Formula 1. That is}j, k&, Mq(j, k) = 1 and private query processing.

Cl(j, k‘) =0 (thus,Ci(j, k‘) = 1), then

5 STRUCTURE-PRESERVING SUBISO

In this section, we propose structure-presendmigiso, denot-
ed asSPsublso. SPsublso contains three steps: (1) structure-
greservingMatch (SPMatch) in SubSec. 5.1; (2) structure-
preservingenum (SPEnum) in SubSec. 5.2; and (3) structure-
L , o preservingRefine (SPRefine) in SubSec. 5.3.
1. Multiplication (Line 15). For each pair ofj, k), TMatch Before presenting the details, we first give the definition of
computesMC;(j, k) = Mq(j, k) x Ci(j,k); the encryptedquery graphQ;, and the transformed grapf,
2. Addition (L|ne_16). TMatch sums up. the entries of thewhich are shared b§PMatch, SPEnum and SPRefine.
productMC,, i.e, R; = ZVj » MC;(j, k). Note thatR; o 7
intuitively represents the validity of the mappidd;, i.e, Definition 5.1: The encrypted@ and G are denoted ag);,
if M, is valid, no violation is found and the value & @and Gy, respectively, wher&), = (V. Mq,, %, L,Slg,) and
is 0, by Formula 2; and Gr = (V,Mg,, %, L, Slg,). Mq,, (Mg,) andSlq, (Slq) are
3. Multiplication (Line 17).TMatch then aggregate®; into the encryptedMlq (Mg) andSlq (Slg), respectively. [
R by a multiplication,i.e, R = R x R;. If there is at |t is worth remarking that we only protedtiq (resp.Mg)
least a validM;, the value ofR? equals0, and non zero andSlq (resp.Slg) in Q (resp.G), by using encryption, since
otherwise. (V,%, L) does not expose the structural information.
It is worth highlighting that if there exists a subgraph i505
morphism mappingV; from Q to G, thenM; contains no . )
violation, R; = 0 and R = 0. Thus, R = 0 implies that( is In.thls subsection, we adoptclic groupand propose a novel
a subgraph of7. Otherwise,R is non zero, which implies all Private-key encryption schente encryptMq and Mg. We
R;s are not zero and there must be some 1’s in the entriestd#n Propose&PMatch to compute the operations dMatch

MC;, for all 7. By Formula 2, there is a violation in eatv; N encrypted domain, where the mappindI) has been
and thus ) is not a subgraph of?. enumerated byPEnum (to be discussed in SubSec. 5.2).

For the other three cases, the productOisTherefore, by
Formula 2,TMatch detects the violation and aggregates th
results as follows:

1 Structure-Preserving Matching

Example 4.1: We illustrateTMatch with the example shown 5.1.1 ~ Cyclic Group Based Encryption

in Figs. 4 b) and c). The query and graph are those shoRecall that TMatch involves both additions and multipli-

in Fig. 3. Fig. 4 b) present8lq and Mg. Fig. 4 c) reports cations. Hence, the state-of-the-grartially homomorphic
the intermediate results afMatch of two possible mappings encryption schemege.g, Paillier and ElGamal) [21] cannot
M; andM,, (Fig. 3). M; is a valid mapping a®; computed be adopted to our problem. On the other hand, due to the



Mq| C; |MqCi|||Maq,| & |Mq,C. Ri=3%,,,MCi(j,k) (modp) Algorithm 3 SPMatch (M;, Qx, G, Ry)

q 1 0 T.qgw ,’,gx qu21' =921(Tq+"'+7“q2) 1 67 = MiMGkMZ

q q 0 - - > 221 | B2 = Sy MCa(j, k) ] I* _Multiplicatio_n * . _

7q97|Tq9"| 479 o 7 5 2: vj, k,MC;(j, k) := Mq, (4, k) x Ci(j, k) (mod p)
11| 1 rg® |7g7| 1% =9 (rgHD+ -+ ¥ Addition */
4— violation of sublso A v MCi(j, k) (mod p)
L]a]o0 9" |rq9”| 49°" || Ry = Ry x R» ; Alifi#0,imodw #0
violation of sublso =g*(rq+-- V@+ ) 5 /;:AL:EIE?“FQOZ »)
a) b) ©) 6: elseSend Ry t(; client, Ry, := R;

Fig. 5. (a) The encoding of the truth table shown in if Mq(j, k) =0, setMq(j, k) asq; and
Fig. 4(a); (b) Encryption by CGBE; and (c) lllustration of if Mg(j, k) =0, setMg(j, k) asq,

SPMatch with M; and M.

known performance concernsfully homomorphic en_cryption In relation to Def. 5.3, we have the following Formula 3

Sc_rl]_ﬁrgregol_r'ea \[;s]’p\pg)orgzy:Ogrg;;?gtgejdgr?zgit%;hesr.che that similar to Formula 2 to detect the violation. We notet tha

namelycyclic graph based encryption schel(@BE). CGBE "By in case oMq(j; k)f_ LandC,(j. k) =1,

not only supports both partial additions and multiplicatip Mq(j, k) x Ci(j,k) =1 (modq), 3)

but also allows efficient encryption and decryption. Impott  \where C; = M,;MgM?/, the product will be 0 otherwise.

ly, it is secure against CPA. However, the trade-off of usingig. 5 a) shows the encoding of four possible combinations

CGBE in SPMatch is that (1) it introducesegligible false petween entries, we can see that onlMQ(j’k;) =1 and

positives and (2) it requires multiple encrypted messages f@;(j, k) = 1, the product becomek Otherwise it is0.

aggregating a query result, which are sent to the client. Under the encryption schem@GBE in Def. 5.2 and the
Before the detailed discussion, we first present the prelimncoding in Def. 5.3, we are ready to define the encryption

inary about cyclic group [21]. LeG be a groupp = |G| is  of the encoding oMq and Mg (in short, the encryption of

denoted as therder of G. In particular,Vg € G, the order Mg andMg) as follows.

of G is the smallest positive integersuch thaty” = 1. Let  Definition 5.4: The encryptionof Mg and Mg are denoted

(9) ={9" i €Ly, g €Ly} ={g%g", -~ ,g" '} denote the asMq, andMg,, respectively, wheré'j, k,

set of group elements generated gayThe groupG is called ) )

cyclic if there exists an element € G such that(g) = G. Mqy,(j: k) = Enc(Mq(j, k), z. 9) 4)

In this case, theorder of G is p = |G| and ¢ is called Mg (j; k) = Enc(Mg (5, k), 2, 9)

a generatorof G. Next we propose the cyclic group base

encryption scheme as follows.

wheregq is a large prime number. O

?Example 5.1: We use Fig. 5 b) to illustrate an exampqe of
the encryption ofMq by CGBE. Vj, k, if Mq(j,k) = 1,
Definition 5.2: The cyclic group based encryptioscheme is Mg, (j, k) = Enc(1, 2, g) = rg® (mod)p; and if Mq(j, k) =

a private-keyencryption scheme, denoted @6BE = (Gen, Mq, (j, k) = Enc(q,z,9) = grg® (mod)p.

Enc, Dec), where . .
nc, Dec) Finally, we remark that the large prime numhbgrfor the

« Gen is a key generation functionwhich generates a gnqqing (Def. 5.3) must be kept secret. SifG@BE is a
secrete key: € [0, p — 1] uniformly at random, a cyclic gy metric encryption scheme, both th and the client

group (9) = {g' : i € Zy,g" € Zy}. It outputs the 114 1o same keyér whereasSP keepsp onl
private keys asz, g) and the value» which is known to yr.g.p). psp onby:

the public. 5.1.3 SPMatching
« Enc is an encryption function which takes as input a Based on Def. 5.4, we proposeyclic group basednatching
messagem and the secrete keyz, g). It chooses a (in short,SPMatch) derived fromTMatch (in Algo. 2), shown
random valuer, and outputs the ciphertext in Algo. 3. In particular, the input valu®;, is the encrypted
c=mrg® (mod p) message that aggregates the violati&fMatch first generates
C; (Line 1), which is computed frorvI; andMg . Then the
following three steps are invoked.
1. Multiplication (Line 2). For each pair ofj, k), SPMatch
. computesMC;(j, k) = Mq,,(j, k) x C;(j, k) (mod p);
Note that theDec function of CGBE only decrypts the 5  addition (Line 3). SPMatch sums up the entries in the

o Dec is a decryption function which takes as input a
ciphertexte, and the secrete ke, g). It outputs

mr =cg~* (mod p)

ciphertextc as the product of the message and random product,i.e., R; := Y ., MC;(j,k) (modp). If M, is
valuer. This is becaus&PMatch does not require the exact  \4iid i.e. no Violatiozj7€€s fouhd’ the decryption of the
value ofm. sum is exactly 0, by Formula 3; and

3. Multiplication (Lines 4-6).SPMatch then aggregateg;

into Ry, by multiplication (Line 5). If there is at least one

valid mapping fromQ to G, the decryption of &, equals

0. Otherwise, the decryption value is non zero. We remark
Definition 5.3: The encodingof the entries oM and Mg that CGBE leads toerrors if the number ofR;s in Ry is
are:Vj, k, larger than a predetermined valwe We thereby propose

5.1.2 Encryption of Mq and Mg

To encryptMq and Mg, we first present arencodingfor
each entry oMq andMg.



a decomposition schem@iscussed later) that sends teach decomposition (Line 5). We prove that the probalslitie
the client a sequence @i, s, where each;, aggregates of the above two false positive are negligible. Next, we first
w R; (Line 4). analyze the probability of false positive from the addition

Example 5.2:Fig. 5 b) shows an example to illustrate the mul\—NIth computing ;.

tiplication of the four possible cases of combinations keetw Proposition 5.1: The probability of false positive in?; is

Mg, andC;. We observe that only under the violatitshown negligible. 0
in grey shadow; the product oM, andC; doesnot contain Proof: The probability of false positive itR; is

gq. Fig. 5 ¢) illustrates an example 6PMatch following Fig. 4 o

c). R, and R, are computed by the summationsMfC; and  Pr(false positive ink;) = Ii’r(rl + -+ rm2 = 0(modg))
MC,, respectively. Note thaRk, contains violation as\/; is = o (6)

not a valid mapping/, is produced. wherem = V(Q), andq is a large prime numbee.g, 32bits.

Decryption at the client. After receiving all the encrypted Thus, the probability is negligible in practice. 0
results Ry, the client performs the decryption, which mainly Based on Prop. 5.1, we are able to analyze the probability of
contains two steps as belows. false positive with computing th&,, in each decomposition.

1. For each messagé; aggregated withw R;s, the

client computes the message encoded i Proposition 5.2: The probability of false positive iRy is

! — Dec(Ry, a 9)2; and negligible in each deco-r.nposmon. o | O]
2. For each encoded messaBg, the client computes the Proof: The probability of false positive in eachy, is
final result by R = R}, mod g. o ~ Pr(false positive inR,) = Pr(false positive in all itsR;)
If any of R equals to0, there is at least one valid isomorphic = 1-(1- 1y
mappingM; that contributes a 0 (Line 3) to the produgf, ~ l—e% 1 (7)

(Lines 4-5). Thussublso(@, G) = true. . . . .
_ _ . Wherew is the size of the decomposition. Singe< ¢, the
Example 5.3: We show the decryption at client following probability is negligible in practice. 0

Fig. 5 c). The encrypted messagg, client receives aggre- _ _

gates twoR;s. The client first generateg—*)2*2, computes °-2 Structure-Preserving Enumeration

R} = Ry x g~** (modp), and finally computes = R}, mod The mappings¥I;s) processed b§PMatch are enumerated
q. The result is0 that indicates? is a subgraph of5. by SPEnum. Since the worst case number of all possible

Decomposition schemeOnce the number oR; aggregated MappingsM;s fromM (Lines 7-12, Algo. 2) isO(n"™), it has

by R, exceeds a predetermined val&PMatch will result been a crucial task @&Psublso to prune the search afseless

in incorrect answer. The reason leading to this problem M:S- Forinstance, we show a scenariaisélesenumerations
the multiplications when aggregating; into Ry, in Line 5 DY using the LHS of Fig. 6. There are four subgraphgah

of Algo. 3. Recall that in the decryption, the client needs t8"€Y; Which are disconnected from each other. In the example
compute the encoded messaBé after receivingRy,, once only 4 mappings out oft® are possible and the remaining
R, exceedsp, the client cannever recover the final result enumerated mappings are useless. However, since(bafd

R by modularg correctly. We can overcome this limitation/ '€ encrypted, th&’> can only blindly enumerates those
by determining the maximum number dt;s that can be Mappings even they may appear “certainly” invalid.

aggregated inRy, denoted asv. We have the following Thgrefore, in this subsection, we propoSEEnum that
consists of grotocol between theSP and the client to prune

formul:;'l_.en(Ré) = 2 x (Len(q) + Len(r)) + log(m?) someuseless partiamappings. However, due to the pruned
Len(p) > wx Len(R!) (5) €enumerations, a little non-trivial structural informationay
o W < Len(p) be leaked. Such information leakage can be well controlled
= Len(i) by determining how often the client informs the pruning (to

wherem = [V(Q)], Len(z) is the size of the value:, and pe gnalyzed in Sec. 6.2).

R/ is the message encoded Ry, i.e, R, = Dec(R;,z,g)%. _ _

In particular, with reference to Algo. 3lLen(q) + Len(r)) 5:2.1 Mapping Enumeration as a Search Tree

is the largest size of the message encoded in each entryToffacilitate the discussions on pruning, we view the search
Mg, andC;. The size of their product (Line 2) igRen(q)+ of possible subgraph isomorphic mappings frahto G (in
Len(r)). There arem? additions of such products (Line 3),the LHS of Fig. 6) as a search tree, as in the literature of
hence, Algo. 3 requires at mdsi(m?) carry bits. This gives optimizations. A sketch is shown in the RHS of Fig. 6. Each
us the largest size of aR;. Then, the size ofv R} values internal node in thel-th level represents partial mapping
must be smaller than that gf and we obtain the inequality M;, denoted adVI;, whose enumeration snly up to the first

in Formula 5. Having computed, the SP decomposed?;, d rows of M. We denoted)’ as theinduced subgraplof Q

into a number of aggregated messages, each of which ifram the firstd vertices of@ and G’ as the subgraph th&)’
product of at mostv R;s. maps to, undeM. In the example, the query size is 6, thus
False positive When performingSPMatch, we find that two the height of the search tree Gs The fanout of each internal
operations introduce false positive: (1) additions witmpoit-  node ind-th level equals to the number of 1s in thé+ 1)-

ing R; (Line 3); and (2) multiplications with computing, in  th row of M. Each leaf node of the search tree represents a
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Fig. 6. lllustration of mapping enumerations and SPEnum.

completeM;. Without pruning, TEnum enumerates al® leaf

nodes.

5.2.2 SPEnumeration

We next presenSPEnum. It adoptsTEnum and SPMatch,
and determines if a partial mappidd, between@;, and G},
is a valid to be expanded or not. The inputsSéfMatch are
(1) M, which is the current partial mapping ifith level; (2)
Q). and G, which are the induced subgraph @f. and G,
with the firstd vertices, respectively; and (33, which is the
same as before. Then,naive protocol involving the client is

described as follows:

1. SP enumerates aM and performs$SPMatch. Its result
Ry, is transmitted to the client for decryptiommediately

2.

The client decryptsR. If it is 0, Q) is subgraph

3. SP terminatesSPEnum as in the naive protocol.

Remarks. It is worth noting thatCGBE limits w R; to be
aggregated intoRy. If SPMatch utilizes other encryption
scheme, such a limitation may not be necessary. For example,
FHE does not limit the number of aggregated messages, but
its computation cost is significant. Moreover, the number
of communication rounds between tl&P and the client

is O2|V(Q)|). In practice, most of the partial mappings
of internal nodes are invalid, which result in the size of
messages for each round smallg, 16KB in worst case for

our experiments with default setting.

Vertex ordering. Finally, we remark that vertex ordering
(the row ordering ofM) significantly affects subgraph query
performance, consistent to the literatueeg(,[14]). However,
SPEnum cannot exploit structural information to choose an
ordering by heuristics. We thereby order the rowshdf by

the number of 1s in ascending order. Suppose that partial
mappings are mostly useless, such an ordering prune useless
enumerations with fewer communications in practice.

5.3 Structure-Preserving Refinement

In order to further optimize the searche., to reduce the
number of possible mappings, in this subsection, we propose
a static indexSlq (Slg) of a @ (G) that indexesh-hop
information We modify Refine into inner products between
Slg andSlq asTRefine. SPRefine achieves privacies by using
asymmetric scalar product preserving encryptid8PE [32].

isomorphic toG), andM, is valid. The client then notifies 5.3.1  Static Index Sl

the SP to repeat Step 1 to continue the enumeration froffe classical refinement reduces the number of Idita.k.a
/ 1 . .. .
M;. Otherwise, the search subtreeMf can be pruned. fjips the 1s to 0s) to minimize the large search space of sub-

3.

more M;s can be enumerated.

Protocol with aggregated messagesThe naive protocol To address these, we propose to index vertices with their
introduces additional network communications between th@p information. The design requirements of such index are
client and theSP. To control such communication overheadihat they can be computed before a query is run and hence,
we adopt abreath first searcBFS) to TEnum and exploit no knowledge is gained by executing the query algorithm.
the aggregation supported BYGBE. Specifically, suppose Moreover, they should be efficiently computed, as the client
SPEnum is at thed-th level of the search tree, it conductsnay not have powerful machines. Since the index flips the 1s
two rounds of communications.

1.

SP terminatesSPEnum when a validM; is found or N0 graph isomorphism mappings. Further to reducing the number

of 1s in M, SPRefine cannot expose structural information.

in M by information of the vertices that atehop away. The

In the first round, for each internal nodeswith a valid S7P cannot precisely determine the cause of the flips. Next,

partial mapping at the-th level €.g, n; andny at the we define theh-hop vertices of a vertex as follows.

3rd level in Fig. 6), theSP processes its child nodes

of n in batchesof the sizew. For each batch, th&P
performsSPMatch at each node and aggregatesRi;s

Definition 5.5: The h-hop vertices ofy (h-Hop(v)) is the set
of vertices that are reachable fromby exactly h hops. The
h-hop ¢-labeled verticeof v (h-Hop,(v)) is

into R;. Recall thatw is the number of messages that

CGBE correctly aggregates (see SubSec. 5.1). Sife {v" | L(v") = ¢ andv’ € h-Hop(v) }. O
sends all theR,s to the client. Fig. 7 a) illustrates the notations aéfhop vertices andi-
The client decrypts alRys. (i) If it is 0, there exists at hop ¢-labeled vertices of. We assume a canonical ordering
least one child node’ of n such that its partial mapping of possible labels and hence, present labels as integemsn Gi
is valid (e.g, n1). (ii) Otherwise, there is no valid partiala graph G, supposeh 2, 2-Hop(v) = {v2,v3} and,
mapping of thern’s child nodes. The search subtreerof 2-Hop,(v) = {vs}.

can be safely pruned(g, ny). For illustration purposes, we choose four structural infor
In the second round, th&P then sends allR;s of the mation for indexing used irsPRefine. We can determine if
child nodes of each batch that contains valid partilvo vertices can be mapped or not from them. It is worth
mappings. to the client, and determines at which node{@marking that one can further extend other information for
the search proceeds.(), ny). Step 1 is then repeated atindexing. We define such information as an attribute of the se
the (d + 1)-th level (.9, at the4th level). h-Hop,(v) as follows:



« h-Hop,(v).MaxDeg is the maximum degree aof, v’ € =2 ;’:Op(v) = {v2va)
h-Hop, (v); S T
. . olV)-
o h-Hop,(v).Occur is |_h'HOp£(v)|1 v 2-Hop, (v).Occur = 1
o h-Hop,(v).PreLabel is a set of labels of the parents of 2-Hop, (1). PreLabel = {0}
occurredh-Hop,(v); and 9 Hon (0).Sup 1 20 = ST
« h-Hop,(v).Sup is the number of different paths that can %3?@3:?‘0 Lo 3y SlalyJA0] = [T 11T
reach fromo to +/, wherev’ € h-Hop,(v). Stafu](2000) = [T 1011 001 0l100l | el =TIk
. . . . MaxDeg-" Occur~ PrelLabel " -Sup MaxDeg "
Example 5.4:We continue to discuss the example in Fig. 7 a). 2) b)

Supposeh = 2. Recall that2-Hop,(v) = {v3}. We list some

2-hop information as follows{(1) 2-Hop,(v).MaxDeg = 2, Fig. 7. (a) lllustration of the h-hop vertices and static
since Deg(vs, G) = 2; (2) 2-Hop,(v).Occur = 1, since only index; and (b) an refinement by the index
one label with0 in 2-Hop,(v); (3) 2-Hop,(v).PreLabel =

{0} as 0 is the only label of the parents ofvs}; and  * h-Hop,(v;).Sup < h-Hop,(vk).Sup.
(4) 2-Hop,(v).Sup = 1 because there is only one path that

can reach from to vs. Prop. 5.3 can be obtained from a proof by contradiction.

O

Encoding h-hop information in static index. Thestatic index Example 5.6: We use Fig. 7 b) to illustrate the underly-
of G is denoted aSl¢. For allv, h, and?, h < maxH, maxH is ing idea of Prop. 5.3. For simplicity, we only show the

a user-specified maximum hop sifg[v][h][/] is a bit vector. effect of MaxDeg. Before the refinementM(j,k) = 1
In the four h-hop information defined above, we identify twaosince L(v;) = L(vx). Since 2-Hop,(v).MaxDeg of @ and
types. They are encoded i as follows. G are 3 and 2, respectively. Hence2-Hop,(v;).MaxDeg £
(1) Label set (e.g, PrelLabel): for each ¢ ¢ 2-Hop,(vy).MaxDeg. By Prop. 5.3,u; cannot be mapped to
h-Hop, (v).PreLabel = Slg[v][h][(].PreLabel[¢’] = 1, vx andM(j,k) s flipped to 0.
otherwise0; and Therefore, TRefine further transforms Prop. 5.3 into the

(2) Numerical data(e.g. MaxDeg, Occur and Sup): We inner product as follows.

present the encoding daxDeg for illustration. Those of Proposition 5.4: Given a user-specifiethaxH, M(j, k) = 1,

Occur andSup are similar. We denote the maximum value . .
for MaxDeg gs MaxDeg .. For eachi < MaxDeg b, € V(Q) andwy, € V(G), iff the following of SI of v; and

: . - hold: V¢ € 2(G), h < maxH,
andi < h-H MaxDeg = Slg[v][h][(]MaxDeg[i] = *
Nt = i iop (1) MaxDeg = Slelul (WA MaxDegli] = 1 0,1 14]11] - Staes 4116 = Shales] 4114 - Siclux] (A][4).
The bit vectorSig[v][][¢] is then simply a concatenation ofExample 5.7:We illustrate the Prop. 5.4 with the Example 5.6
Slg[v][Rh][¢].MaxDeg, Slg[v][h][¢].Occur, Slg[v][h][(].PreLabel in Fig. 7 b), the partiabl of both @ andG are shown. Since
and Slg[v][h][¢].Sup. The bit vectorSig[v] is accordingly a Slq[v;][2][0] - Slq[v;][2][0] # Slq[v;][2][0] - Slg[vk][2][0], then
concatenation of alblg[v][R][¢]s for all v, h < maxH and{.  M(j, k) is flipped to O.

Example 5.5: Fig. 7 a) shows a simple example of the Note that we can further simplify the inner produc-
partial Slg[v][h][¢] for v in G, whereh = 2, £ = 0. We t in Prop. 5.4 toSlq[v,] - Slq[v,] = Slq[v;] - Slg[vk], where
preset the default maximum value fdaxDeg, Occur and Slq[v;] is the concatenation for aBlq[v;][h][¢]s. Therefore,
Sup to 3. We assume that the possible labels @rand Line 19 of TRefine is mainly one inner product between
1. (1) For PreLabel, since2-Hop,(v).PreLabel = {0}, then Slq[v,] andSlg[vy], using Prop. 5.4 for pruning the 1s M.

Slg[v][2][0].PreLabel[0] = 1, and Slg[v][2][0].PreLabel[1] = For SPRefine, we encryptSls as: Vv; € V(Q) and
0; and (2) For MaxDeg, as2-Hop,(v).MaxDeg = 2, thereby Vv, € V(G), Slq[v;] = ASPE(Slg[v,]) and Slg,[vx] =
Slg[v][2][0].MaxDeg|[1] = Slg[v][2][0].MaxDeg[2] = 1. ASPE(Slg[vg]). The secret keys held bgP and the client

The h-hop information abovementioned can be generat@€ the same to that of [32]. FinallgPRefine is TRefine
by a simple depth first traversal starting at each vertex en tRit€" replacing Line 19 with arivate inner produchetween
data graph offline and on the query by the client on the figncryPted bit vectorsS(q, andSlg), supported byASPE.

Due to space restrictions, we omit the verbose algorithm. e close this section with a remark th&PEnum and
SPRefine may expose little non-trivial information in the sense

that the probability of guessing the structure of a graph is

5.3.2 Inner Products of Static Indexes !
) . ) i _not that of a random guess anymore. We shall analyze their
With the static indeXS1, we establish the refinement of poss'bl%robabilities in Sec. 6.2

subgraph isomorphism mappings by the following propositio
Proposition 5.3: Given a user-specifiethaxH, ¥ v; € V(Q) 6 PRIVACY ANALYSIS
and vy, € V(G), M(j,k) = 1, iff the following of theh-hop |n this section, we prove the privacy of the encryption metho

information ofv; and vy hold: v € ¥(G), h < maxH, and then the query algorithi®Psublso. The attack model is
o h-Hop,(v;).MaxDeg < h-Hop,(vi).MaxDeg; defined in Sec. 2 that we assume the attacker§$®s are
e h-Hop,(v;).Occur < h-Hop,(vy).Occur; the eavesdroppers and can adopt the chosen plaintext attack

e h-Hop,(v;).PreLabel C h-Hop,(vi).PreLabel; and (CPA) [21].
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6.1 Privacy of the Encryption Method Theorem 6.1: The structure of botl) and G are preserved
Two encryption methods are used in this paper. (GBE from SP against our attack model undéGBE and ASPE. [

scheme is proposed to encryplq and Mg, and (2)ASPE Proof: The proof can be deduced from Lemmas 6.4
[32] is adopted to encrypblq and Slc. We first state that and 6.5. Recall thaf), = (V,Mq,,%, L, Slg,) and Gy =
both the CGBE and ASPE schemes are secure against CPAy, Mg, %, L,Slg,). By Lemmas 6.4 and 6.5, th&P cannot
and then establishe that the structures of the query and Bigak 9, and G, since the structures o), and Gy (i.e.,

graph are protected against our attack model. Defidtebe Maq,, Sla., Mg, andSlg,) are secure against CPA.  [J
an arbitrary chosen fronG. ’

Lemma 6.1:[21] Let G be a finite group, and lei» € G be
arbitrary. Then, choosing randogne G and settingy’ = m-g
gives the same distribution fgf as choosing randomi € G. As presented in Sec SPsublso contains three main steps. We
l.e, foranyg € G analyze the privacy of each of these steps in this subsection
Pim -g=g] =1/|G], Before we present the analysis, we clarify some notations.
where the probability is taken over random choicegof 1 CGiven@ andG, m = [V(Q)| andn = [V(G)|. The function
P(n) returns the number of all possible graphs generated by
n vertices,i.e, P(n) = 2"". The function.A(G) returns1 if
SP can determine the exact structure®f and0 otherwise.
The probability that theSP can determine the structure of the

6.2 Privacy of SPsublso

Lemma 6.2: Let G be a finite group, and ley € G be
arbitrary. Then choosing random < [0,|G|] and setting
g = g" gives the same distribution fog’ as choosingy’

from G. l.e, for any§ ETG R graph G is denoted as R (G) = 1]. Given a graphG with
Prlg" = 9] = 1/IG|, n vertices, the probability to determine the graph struchyre
where the probability is taken over random choicerof [ arandom guesss PA(G) = 1] = ﬁ_
Proof: We prove the lemma in a similar style of the proofi’roposition 6.1: Under SPMatch, PHA(Q)=1] = -1, and
[21] of Lemma 6.1. Letj € G be arbitrary. Then Y . o P(m)’
PILA(G) = 1] = 55y, which are equivalent to random guess.
Prlg” = g] = Piir = log,, 9] O
Sincer is chosen uniformly at random, the probability that Proof: (1) First we prove that th&P can never determine
is equal to the fixed elemeidg,, g is exactly1/|G. (1 any structural information from the computations in eaepst

of SPMatch. Recall that eac®BPMatch comprises aonstant

number of mathematical operations in the encrypted domain
Proof: We prove that the proposedGBE scheme has jn Algo. 3:

indistinguishable encryptions in the presence of the elops
pers, which is implied by the definition of CPA secure [21].
Specifically, choosing a random valug and lettingr’ €
G such thatg” = r, we have Enc(m, g,z) = mrg® = .
mg”t"’. First, by Lemma 6.2, Bg*t" = §] = 1/|G|, MC;; and

where § is arbitrary chosen fronG. Then, by Lemma 6.1, ° Line 4 conductsone multlpl|cat|9n i ant_j By _
Pr[mgar+r’ = §] = 1/[G|. Therefore, the ciphertext in theFurther, by Lemma 6.3, all the intermediate computation

CGBE scheme is ainiformly distributedgroup element and, results are securely protected against the attack modek, Th

in particular, is independent of the messagéeing encrypted, SP cannot learn any structural information from these steps.

i.e, Pimrg® = j] = 1/|G|. That means the entire ciphertext (2) Next, given any tw&PMatchs, theSP only knows that

contains no information about.. Given the aboveCGBE is €achSPMatch aggregates it®; into R, by one multiplication.

secure against chosen plaintext attack. 7 Similarly, by Lemma 6.3, no other information can be learned
Since CGBE is a secure encryption scheme against CPAOM the R; or R by the SP.

SP can never attack thdlq, and Mg, without possessing ~ Putting the above together, ti&> does not learn the struc-
the secret key against our attack model. tures of@ or G by invoking SPMatchs and the probability of

determining a structure is equivalent to that of random gues
O

Lemma 6.3: CGBE is secure against CPA. O

« Line 2 invokes aconstantnumberm? of multiplications
of Mq, andC;;
« Line 3 requires aconstantnumberm? of additions in

Lemma 6.4: Mq, andMg, are preserved fro§P against

the attack model undefGBE. O N _
Proof: The proof is a direct application of Lemma. 6.3'Proposmon 6.2: UnderSPEnum, the following holds:

SinceCGRBE is secure against CPMQk andMGk are secure o If Qd is Subgl’aph isomorphiC tGd, there is no informa-

against the attack model undé6GBE. O tion leakagej.e.,

Next, we state thablg, andSlg, are preserved fron§P. PA(Qa) = 1] = PlA(Gq) = 1] = pg;; and
Lemma 6.5: Slg, andSlg, are preserved frorSP against the  « Otherwise,
attack model undeASPE. 1 PlA(Qq) = 1] = PA(Gy) = 1] = m,

Slq[v;] and Slg[vg] are encrypted byYASPE, wherev; € where@, (resp.,Gq) is the induced subgraph ¢f (resp.,G)
V(Q) and v, € V(G). Since ASPE is secure against CPAthat contains the mapped vertices specified by the partial
[32], it is immediate that Lemma 6.5 is true. mappingM/ enumerated up to the level O
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Proof: Recall thatMq, and Mg, are preserved, by is a violation because of; andv;. Hence, the rest of the
Lemma 6.4 and Prop. 6.1. Hence, we only consider the inf@nalysis is similar to that o€ase 2of Proposition 6.2. [
mation that theSP can gain from the protocol iISPEnum. Finally, we remark that Props. 6.2 and 6.3 state that the
Only Q; and G4 are analyzed as the remaining subgrapldient may tune the privacy offered §Psublso by varying
(Q — Qg and G — G) are not yet processed by tii&P. By the variablesnaxH andd of SPEnum andSPRefine. Further,
the protocol ofSPEnum, the client informs theSP at thed- the values oMaxDeg and maxH (and therefore: andb) are
th level of the search tree, th&P knows that the nodes atnot known to theSP. We use these values in Prop. 6.2 to
the d-th level, sayv; and v, in @@ and G, cause a violation simply quantify the privacy. In our experiment, we confirmed
is detected or not. We thereby consider these two exhaustilatSPEnum andSPRefine are effective optimizations and we
cases as follows: may set these variables to balance privacy and performances

Case 1 If Q, is subgraph isomorphic t67;, there isno 7 EXPERIMENTAL EVALUATION

violation between); and 4. Recall Formula 1, a violation |n this section, we present a detailed experimental evialuat
occurs whenv; is connected to some vertices (undelq) to investigate the performance of our techniques on both rea
but v, does not have corresponding edges (urdgr When \orld and synthetic datasets. Due to space restriction, we

there is no violationy; may or may nobe connected to other gjaborate our findings with real world datasets and repert th
vertices inQg. The SP cannot distinguish this because thgesylt from synthetic datasets in Appendix A.

edges ofv; (in Mq,) is preserved. Similarly, th&P does

not learn any information about the edgesvpfof G4 neither. 7.1 Experimental Setup

equipped with a 2.8GHz CPU and 16GB memory running
Ubuntu 14.04 OS. The client is a local machine with a 3.4GHz
CPU and 16GB memory running Win 7 OS. For ease of
exposition, we assume tHeO has a machine with the same

setting, to encrypt data graphs. The client is connected to

connected to all other vertices @, the second predicate of . .
. . an Ethernet. All techniques were implemented on the GMP
Formula 1 isalwaysfalse. Contrarily, other than the above twqibrary (C++). By default, ourCGBE uses 2048 bits; the

scenarios, th&P cannot be certain the cause of the violation

. Sizes of the prime numbey and the random number are
as bothMq,, and Mg, are protected. The above scenariogy, set 1 3opits. The decomposition sizeis 15. Our
affect the probabilities as follows.

ASPE implementation is set accordingly to [32]. We have
o v; is isolated in Qg, i.e, Vv; € V(Qa), v; # v;, implemented &HE-based solution. Its performance is always
(vj,v%) & E(Qa). Then, the possible number 6f; with 4t |east one order of magnitude slower th@GBE’s. Thus,

iSOIatede is P(d— 1) ThUS, the prObab”lty that th&P we do not report their numbers here.
determines), is PRA(Qa) = 1] = przy—pr—1y: @d  Datasets We used two real-world benchmark datasets namely
e v, is connected to all other vertices @y, i.e., Yv;, € Aids (A) and PubChem (P) from [15], which are widely used
V(Ga), vj, # vk, (vk,vy,) € E(Gg). Then, the possible in [5], [14], [16], [23], [29], [33], [36], [39]. As our discssions
number ofG, with v, connecting to all other vertices isfocused on vertex labels, without loss of generality, weaen
P(d —1). Therefore, the probability tha> determines the edge labelsAids consists of 10,000 graphs, which are
Gais PUA(Ga) = 1] = pa—pa—1y)- drawn from a real antiviral dataset [28]. On average, each
Consider multipleSPEnum calls. Case 1does not leak infor- graphinAids has 25.42 vertices and 27.40 edges. The number
mation, whereas the enumerations bey@ase 2are pruned. of distinct vertex labels is 5IPubChem consists of 1 million
In either case, aSPEnum call will not affect another. 1 graphs, which are drawn from a real chemical database [27].
Each graph irPubChem has 23.98 vertices and 25.76 edges,
on average. The number of distinct vertex labels is 81.
« If M(j, k) is not flipped, there is no information leakageQuery sets For each of the aforementioned datasets, we used

Case 2 If @ is not subgraph isomorphic ta-,4, there is a
violation betweern),; andG,. Hence, theSP knows (@, and
G4 do not falsify Formula 1. However, if; is isolated inQq,
the first predicate of Formula 1 slwaysfalse; and ifv, is

Proposition 6.3: Under SPRefine, the following holds:

and its existing query set®)4, Q8, Q12, Q16, Q20 and Q24,
o Otherwise, which can be downloaded from [15]. Ea§m contains 1,000
PIAQ) =1 = P(a+1) and query graphs, wherg is the number of edges for each query.
- o P(m)lgﬁ(ff)l)flw (8) Test runs. The queries were generated from random sampling
PLAG) =1 = smmeri=n of the above datasets and their associated query sets. éfor ea

dataset and query sétn, we randomly sampled 1,000 graphs

wherea = |[MaxDeg(Q)|™", b = |MaxDeg(G)|™*,  and 10 query graphse. for eachQn, we performed 10,000

and MaxDeg(G) is the maximum degree of the verticesypgraph isomorphism testings. In addition, the average de

of G. sities of the sample graphs and queries are the same as those

Proof: (Sketch)Due to space limitation, we present theof the original data and query sets, respectively. We rephert
proof idea here and the detailed derivation in Appendix Be Traverage of the test runs by default. We use the abbreviation
proof of Proposition 6.3 is again established by a case aisaly AQT for average query time.
The Sl are protected by the encryption and its operationBefault values of parameters. The parameters used in
However, wherMI(j, k) is flipped, theSP is certain that there SPRefine and SPEnum are set as follows. We set the default
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1900 e ‘ o Fig. 9. Effectiveness of the starting pruning depth d.
_ 1600 Smea”{c'ﬁ ﬁ 7 2 PUBCHEM Fomms ) ) . ) .
gggg SPEnm = “ times are shown in Fig. 8(e). For most queries, the querystime
Ep ] are smaller than 1s. The query time @8 is the longest but
2 >4
§§E§ i _k! g, - it is still smaller than 1.4s.
e = IR Ql Q!e L Q'y Performance at the client side We report the performance
© Z"QTQBO:é;OE‘;S:e;;’nS ® Avg gueeg;;ep ion time at the client side in Fig. 8(f). The times required are tiry, f
instance, about 9ms froi)8 of PubChem and clearly smaller
35 T T T 160 T T T .
© e g TENTST R than 2ms for other queries. The average number of rounds
2. =120 . . . .
e Z100 i betweenSP and client is usually small (Fig. 8(g)). Since man
220 @
: o \ invalid partial mappings are pruned, the total messagessiae
210 r—R . . . .
“s 4|£ | E ; r B to the client (Fig. 8(h)) is small (around 150KB in worst case
M RN & il N
O s iz i aa aat i aue e ot In each round, at most 16KB of messages are sent.
9) Avg.?;w(y)?z?oundings () Avg. messagguegl;zé the client received COomparison with the naive method Assume that the whole
Fig. 8. Performance on varying query sizes. database was transferred to the client. We run one of the

most popular non-indexing subgraph isomorphism algosthm
VF2 [7]. The total AQT for all query sets onAids and
PubChen at the client side are up to 20ms and 30ms, respec-
tively. In comparison, after the encryption for each quéng
computation of our techniques at the client side requirdg on

7.2 Experiments on Real Datasets -~ . )
, . a few milliseconds on average (Fig. 8(f)). That is, we save
7.2.1 Performance by Varying Query Sizes most of the computations at the client.

We first show the performance of various query sizes in Fig. 8.
Encryption time by varying query sizes We report the 7.2.2 Effectiveness of SPEnum
average encryption times in Fig. 8(a). The encryption tim@ Fig. 9, we verify the effectiveness GPEnum by varying
of a query @ involves (1) the time for generatinglq; the starting pruning deptth to (3, 4, 5). The query set i98.
(2) the time of encryption ofMq by CGBE; and (3) the Performance at the SP. Fig. 9(a) shows the query time at
time of encryption ofSlq by ASPE. We observe that the SP. It is obvious that as the valué increases, the search
average encryption times are around 100ms and 150ms $pace increases, the query time increases.
Aids and PubChem, respectively. The encryption d¥Iq by Performance at the client side Fig. 9(b) shows the decryp-
our proposedCGBE is efficient, which only costs severaltion time at the client side increases witland its trend closely
milliseconds on a commodity machine. Further, the query fillows that of the query times. The average number of rounds
encryptedonly once betweenSP and client (Fig. 9(c)) decreases as the valle
Performance at the SP. There are two types of queries inincreases because the protocol SREnum is a BFS. The
the processing o8Psublso. The first type of the queries aremessage size increases according,tas shown in Fig. 9(d).
thoseprunedby SPRefine. Fig. 8(b) reports the percentage oHowever, importantly, by Prop. 6.2, the probabilities ti5a®
such queries. In particular, we note that theésChem queries can determine the structures decrease withcreases.
@16-24 are completely pruned. Fig. 8(c) shows the average ) )
query time of those pruned queries, which is largely ocmhpi%-z-3 Effectiveness of SPRefine
by the private inner product. It is unsurprising that theegimWe verify the effectiveness d§PRefine by varying SI. We
increases with the query size. They are smaller than 65ms aadgedmaxH, and the maximum values fdvlaxDeg, Occur
140ms onAids andPubChem, respectively. andSup from 4 to 8. In this experiment, the query set(s,
The second type is thenon-pruned queries that pass and the starting pruning depthof SPEnum is 3.
SPRefine. For these queries, we report the percentage Bhcryption time. Figs. 10 (a) and (b) show the encryption
pruned possible mappings in Fig. 8(d), which can be caledlattimes of G and @, respectively. As the maximum values
by the number of flipped 1s b§PRefine. The average query increase, the encryption times of bathand @ increase.

maxH, and maximum values foMaxDeg, Occur, and Sup
to 6. We set the starting pruning depthof the protocol of
SPEnum to 3.
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number of small graphs. Their work protects the privacy of
the query, index and data features. This work does not solve
& the problem of the subgraph isomorphism testings of the
candidate graphs. Such testings are required to be periorme
at the client side. Cao et al. [1] study tree pattern queries
over encrypted XML documents. The traversal order for each
query is predetermined. In the context of graphs, the order
cannot be predetermined. In our recent work [34], [35], we
propose privacy-preserving reachability query servicesr o
encrypted index and data to preserve both of the query and
graph structure, under the same system model of this work.
e e e He et al. [17] analyze the vertex reachability of the graph
(€) Avg. % of Qns pruned bySPRefine(d) AQT on Qns pruned bySPRefine  data, with the preservation of edge privacy. Kundu et al.
[22] propose a series of methods to verify the authenticity
of a given portion of datawithout any leakage of extraneous
information about the data (tree/graph/forest). Gao ef14l]
propose neighborhood-privacy protected shortest distamc

k the paradigm of cloud computing. This method aims to p-
B e vae Sromans © s v para 1 reserve all of the neighborhood connections and the stortes
(6) AQT on non-prunedyns () Avg. decrypiion time distances between each two vertices in outsourced graph dat
However, it allows some connection and distance infornmatio
between vertices to be exposed. Mouratidis et al. [26] pepo
the shortest path computation with no information leakage b
using the PIR [6] protocol. The high computational cost of
PIR is known to be a concern. Karwa et al. [20] present some
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(9) A%aafa;egfpaﬁ)ﬂzdings (h) Avg. mesg'g;aemesoif;aéavt"hi client received nO\{el E.i|gOl’ithm.S for rgleas!ngubgraph COUI’]tS).f a grap.h by
Fig. 10. Effectiveness of Sl. satisfying the differential privacy of edges, which reggsithat

Effectiveness ofSPRefine. Fig. 10(c) shows the average perihe presence or absence of a certain edge be hidden. Fan et al.
centage of queries that are pruned3BRefine with different [10] propose efficient authenticated subgraph query sesvic
maximum values irsl. We note that the pruning effectivenesginder the same setting of data outsourcing. In [9], Fan et al.
on different maximum values are similar to each other, whidfOPOSe an asymmetric structure-preserving subgraphy,quer
are almost 96% for queries on bathds andPubChem. That Where the privacy of the data graphs has been relaxed.
means for each; € V(Q), v, € V(G), h-Hop,(v) may differ Subg_raph isomorphism query. UIIr_nann [30] is a.semlnal
with each other withind hops with very high probabilities &lgorithm for subgraph isomorphism. Its basic ideathe

if M(j,k) is flipped to 0. However, th&P has no precise search with bac;ktragkmg W|th respect to the matrix that
knowledge about the encrypt&ds. Further, by Prop. 6.3, the fepresents possible |§omorph|c relatlonshl'ps the recent
probability that theS7? can determine the structures decreasé§cade, several algorithme.§, VF2 [7], QuickSI [29] and

as maxH increases. Turbog, [14]) have been proposed to enhance the Ullmann’s
Performance at the SP. Fig. 10(d) shows the average quenglgorithm. They all require taraversethe query on graph data.
time of queries pruned b$PRefine, which mainly involves FOr instance, VF2 [7] relies on a set of state transitions and
the time for private inner products. As expected, the tintes draversals on the graph and query. QuickSI [29] optimizes th
small. Since the pruning &l is very similar under different ordering in traversals of graphs. Tugbo[14] exploits neigh-
maximum values (by Fig. 10(c)), the query times for thodeorhood information and local regions of vertices to furthe
non-pruned queries (the queries p&§Refine) are similar, optimize query performance. Turhginvolves determining an
shown in Fig. 10(e). The times are around 400ms and 1.4s Riftimal traversal in query processing. However, the tisaisr
Aids andPubChem, respectively. themselves carry structural information, which makesguyv
Performance at the client side Since the query times arePreservation complicated if it is possible at all.

s_imilar to differ_ent m_aximum val_ues_oﬁl, the decryption 9 CONCLUSION

times at the client side shown in Fig. 10(f) are also very

similar. The average number of rounds betweengfieand This paper presents the first work on query services
the client are shown in Fig. 10(g), which are around 8 and f@r structure-preserving subgraph isomorphis{&Psublso).

for Aids and PubChen respectively. The size of the receivecpPsublso comprises three major steps: (Lptructure-
messages at client is shown in Fig. 10(h), which are arouREEServing matchingSPMatch) involves a novetyclic group

17KB and 145KB, respectively. based encryption(CGBE) scheme to compute whether a
mapping betweeid) and G is valid, in an encrypted domain.
8 RELATED WORK (2) Structure-preserving enumeratiofbPEnum) comprises

Privacy-preserving graph query. Cao et al. [2] propose to a protocol that involves the client for further pruning. (3)
support subgraph query over an encrypted database witlStaucture-preserving refinemei@®PRefine) exploits a static
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indexfor pruning the search space of possible mappings. Q1] H. Wang, J. Li, J. Luo, and H. Gao. Hash-base subgraphryque
analysis shows that the structural information is preskrve — processing method for graph-structured xml documents.PVit.DB,
Under_SEMa_tCh and presents the privacy preservation d 2] w. K. Wong, D. W.-I. Cheung, B. Kao, and N. Mamoulis. Seilnn
to optimizations. Our experiments on both real and syntheti  computation on encrypted databases SIGMOD, 2009.

datasets confirm th&Psublso is efficient. In future work, we [33] X. Yan, P.S. Yu, and J. Han. Graph indexing: a frequenicstire-based

will investigate relaxations of privacy requiremenesg, [9]). |34 approach. IrSIGMOR 2004.
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o =5
SPMatch susmurs

Y= [ — information from this, due to the encrypted operations. How
— ever, the flip ofM(j, k) implies that there is a violation caused
—i by v; andv;, between the subgrapl@, and G, whereQ,
— (resp.,Gy) is the induced subgraph ¢f (resp.,G), containing

[ SPEnUM meesmex
800 |-

Avg. query time (ms)
@
3
s

Avg. decryption time (ms)
N

"B Qlézz & proggey T at mosta (resp.,b) vertices that are reachable from (resp.,
(2) AQT on non-prunedns (b) Avg. ggg;;;,non time vg) within maxH hops. This affects the probabilities similar

to that in the proof of Prop. 6.2 as follows:

» Vertices inV(Q,) are allisolated The ngmber gf the
APPENDIX A possible Q containing such aQ, is 27 —(e+)” =
EXPERIMENTS ON SYNTHETIC DATASETS P(m)/P(a+1); and

) ) o » Vertices inV(G,) are connected to all other vertices.
In this appendix, we highlight the performance $®sublso The number of the possiblé&’ containing suchG) is
on synthetic datasets. For the synthetic datasets, wetsglec — on*—(b+1)> _ P(n)/P(b+1).
three synthetic datasets (denotedS&s-1, SYN-2 andSYN-3) . s I
o \We obtain the probabilities as follows (similar to the
from [15]. We note that the number of distinct vertex Iabela - ) : o -
o X erivations of Prop. 6.2's proof): R4(Q) = 1] =
significantly affects the performance. We varied the number 1 - P(at1) and PRA(G) = 1] =
of distinct vertex labels of these three datasets to 20, B8, af’(m)—P(m)/P(a+1) P(ﬂlg)((P(aH)—l)’ S

80, respectively. The average size and density of each graptty—p i)/p(bﬂ) = BayPoT DT "espectively.

are 30 and 0.5 respectively. Finally, each flip is independent because the subgraph of
We note that their experimental results are similar to thoéé: and G, of eachSPRefine can be arbitrarily different. [

of real datasets (presented in Sec 7). Hence, we only report

two major performance results, shown in Fig. 11. Fig. 11 (a)

reports the average query times on non-pruned queriesfAll o

them are no larger than 1s. Fig. 11 (b) shows the decryption

time at the client side. The decryption time @16 undersyN-

2 is the largest, which is only 5ms. In general, the average ti

spent at the client side is very small.

Fig. 11. Performance on synthetic dataset.

APPENDIX B
THE PROOF OF PROPOSITION 6.3

Proposition 6.3 Under SPRefine, the following holds:
« If M(j, k) is not flipped, there is no information leakage;

and
o Otherwise,
PIAQ) =1] = prorpam-mand o
PIAG) =1] = pl0tD ©)
HAG) =1] = smre—

wherea = |MaxDeg(Q)|™>H, b = |MaxDeg(G)|m>H,
and MaxDeg(G) is the maximum degree of the vertices
of G. -
Proof: Recall that for anyv;, € V(Q),v, € V(G),
Slq,[v;] or Slg,[vx] themselves do not leak any structural
information against CPA by Lemma. 6.5. Therefore, we on-
ly consider the private inner product betwe8ly, [v;] and
Slg, [vx]. For eachM(j,k) = 1, we divide it into two
exhaustive cases as follows:
Casel: If M(j, k) is not flipped, Slq[v,] - Slg[vk] = Slg[v;]
- Slq[v;] by Prop. 5.4. By Lemma 6.55P cannot learn any
structural information fromSlq, [v;] and Slg, [vx]. The only
information theSP can deduce is that the (four) conditions
listed in Prop. 5.3 hold. Since all the values\d$xDeg, Occur,
PreLabel and Sup are encrypted, th&P does not learn any
structural informationi(e., ¢ and &) of v; andwvy. Hence,
there is no information leakage; and
Case?2: If M(j, k) is flipped, Slq[v;] - Slglvx] # Slqlv;] -
Slq[v;]. Similar to Casel, the SP cannot deduce structural



