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Abstract. This paper presents a novel pattern called temporal indirect associ-
ation. An indirect association pattern refers to a pair of items that rarely occur
together but highly depend on the presence of a mediator itemset. The exist-
ing model of indirect association does not consider the lifespan of items. Con-
sequently, some discovered patterns may be invalid while some useful patterns
may not be covered. To overcome this drawback, in this paper, we take into ac-
count the lifespan of items to extend the current model to be temporal. An algo-
rithm, MG-Growth, that finds the set of mediators in pattern-growth manner is
developed. Then, we extend the framework of the algorithm to discover temporal
indirect associations. Our experimental results demonstrated the efficiency and
effectiveness of the proposed algorithms.

1 Introduction
Association rule mining was initially introduced by Agrawal et al. [1]. Tradi-
tional association rules discover knowledge from frequent itemsets, i.e., a set
of items frequently occur together. However, it has been noted that some of the
infrequent itemsets may provide useful insight about the data as well. In [6], a
particular type of patterns called indirect associations was proposed. A pair of
items, x and y, is said to be indirectly associated via an itemset M if they rarely
occur together while their respective occurrence highly depends on the presence
of the itemset M.

As observed in [3], a notable feature of transaction data is that they are
temporal, e.g. transaction products have lifespan. The current model of indirect
associations does not take into account the lifetime of items, which might lead to
some unfair measurement. We explain the incurred problems with the following
illustrative examples.

Example 1. Without considering the lifespan of transaction items, some dis-
covered indirect associations may not be valid. Figure 1 (a) shows the publica-
tion date of a set of web pages. Figure 1 (b) is an example database where each
record is a set of pages visited in a web user session. Let the support threshold
be 0.4. Based on traditional indirect associations, a pair of two pages is an infre-
quent itempair if the absolute support of the pair is less than d12×0.4e=5, where
12 is the size of the complete database. Since the absolute support of {A,E} is
3 (< 5), traditional indirect association will discover indirect associations for
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Fig. 1. Motivating example.

this pair of items, via some mediators, such as {C}. However, since page E
is published in Aug 05, it is unfair to compute support of itempairs containing
page E with respect to the complete database, which contains records starting
from Jul 05. Actually, {A,E} is frequent with respect to the set of records from
Aug 05, e.g. absolute support of {A,E} is 3 ≥ d7×0.4e=3. Thus, traditional
indirect associations discovered for {A,E} are not valid.

Example 2. Without considering the lifespan of transaction items, some
valid indirect associations may not be covered. The traditional indirect asso-
ciation model discovers a pair of items as an indirect association pattern only
if there exists an itemset M that occurs frequently together with the two items
respectively. Since the pair of itemset {E,F} in Figure 1 is infrequent, we need
to search whether there exists a mediator itemset M such that E and F are
indirectly associated via M . Consider the itemset {B, C}. Since the absolute
support values of {E,B, C} and {F,B, C} are 3 and 2 respectively, both of
which are less than d12×0.4e=5, {B, C} will not be considered as a candidate
mediator of {E, F}. However, since page E was published in Aug 05, itemset
{E, B, C} is frequent w.r.t. the set of records from Aug 05, so does itemset
{F, B, C}. Thus, {B,C} should be considered as a candidate mediator while
traditional indirect association misses it.

Therefore, considering the lifespan of items, the current indirect associa-
tion model is not able to discover the complete set of valid indirect association
patterns. In this paper, we incorporate time in the current model of indirect as-
sociations to discover Informally, we discover a pair of items, x and y, as an
indirect association pattern via a mediator M only if 1) x and y are infrequent
in their maximal common existing period; 2) the occurrence of x (resp. y) de-
pends on M in their maximal common existing period as well. Particularly, we
call such type of patterns as temporal indirect associations. Temporal indirect
associations are useful in the applications of traditional indirect associations,
such as competitive product analysis [6] and Web usage mining [5], when the
lifespan of items are taken into account.

The main contributions of this paper are summarized as follows.



– We proposed the notion of temporal indirect association considering lifes-
pan of items.

– We designed a novel algorithm to discover indirect association patterns and
extended the framework of the algorithm to discover temporal indirect as-
sociation patterns.

– We implemented the developed algorithms and conducted extensive experi-
ments to evaluate the performance of the algorithms.

2 Problem Statement
Considering the time factor, each transaction item is associated with a lifetime.
Similar to the definition in [4], we associate each item with a starting time but
no ending time as most applications are interested in existing items. Thus, we
define a temporal transaction database as follows.

Definition 1 (Temporal Transaction Database). Let P =< p1, · · · , pn > be
a sequence of continuous time periods such that each period is a particular
time granularity, e.g. month, quarter, year etc. ∀ 1 ≤ i ≤ j ≤ n, pi occurs
before pj , denoted as pi ≤ pj . Given a temporal item x, its starting period is
denoted as S(x). Given a temporal itemset X , S(X) = max({S(x)}), where
x ∈ X . Let I be a set of temporal items s.t. ∀x ∈ I, S(x) ≤ pn. Let T be a
temporal transaction, T ⊆ I . The occurring period of T is denoted as O(T ).
Then, D={T |p1 ≤ O(T ) ≤ pn} is temporal transaction database on I over P .

For example, Figure 1 (b) is a temporal transaction database D over three peri-
ods, P =< p1, p2, p3 >, in accordance with the “month” granularity. I ={A, B,
C, D, E, F}, where each item is associated with a starting period. For example,
S(F ) = p3. Each transaction in D is also associated with an occurring period.
For example, for the 8th transaction T = {A,B, C, E}, O(T ) = p2.

For the purpose of incorporating lifespan of items, the measures involved in
traditional indirect association, support and dependence [6], need to be extended
to be temporal. We now define the temporal measures as follows.

Definition 2 (Temporal Support). Let D be a temporal transaction database
on I over P =< p1, · · · , pn >. Let X be a set of temporal items, X ⊆ I .
The temporal support of X with respect to the subset of D from the period pi,
denoted as TSup(X, pi), is defined as:

TSup(X, pi) =
|{T |X ⊆ T, O(T ) ≥ pi, T ∈ D}|

|{T |O(T ) ≥ pi, T ∈ D}|

Then the temporal support of X , denoted as TSup(X), can be computed as
TSup(X,S(X)).



That is, the temporal support of an itemset X is the ratio of the number of
transactions that support X to the number of transactions that occur from the
starting period of X . For example, consider the temporal transaction database in
Figure 1. Let X = {B, C,E}. Then, S(X) = p2 (because of E). TSup(X) =
3/7 since it is supported by three transactions while there are seven transactions
starting from p2.
Definition 3 (Temporal Dependence). Let D be a temporal transaction database
on I over P = < p1, · · · , pn >. Let X , Y be two temporal itemsets, X ⊆ I ,
Y ⊆ I . The temporal dependence between X and Y , denoted as TDep(X,Y ),
is defined as:

TDep(X,Y ) =
TSup(X ∪ Y )√

TSup(X,S(X ∪ Y ))TSup(Y, S(X ∪ Y ))
Since the correlation between two attributes makes sense only when both at-
tributes exist, we calculate the probability of X and Y (in the denominator)
with respect to the subset of D from the period where X ∪ Y starts. Similar
to the traditional definition of dependence in [6], the value of temporal depen-
dence ranges from 0 to 1. The higher the value of temporal dependence, the
more positive correlation between the two itemsets. For example, consider the
two temporal itemsets X = {B,C} and Y = {E} in Figure 1. As computed
above, S(X ∪ Y ) = p2, TSup(X ∪ Y ) = 3/7. Since TSup(X, p2) is 4/7 and
TSup(Y, p2) is 5/7, the TDep(X, Y )= 3/7√

4/7×5/7
= 0.67.

Based on the temporal support and temporal dependence extended above,
the temporal indirect association can be defined as follows.
Definition 4 (Temporal Indirect Association). A temporal itempair {x, y} is
a temporal indirect association pattern via a temporal mediator M , denoted as
< x, y|M >, if the following conditions are satisfied:

1. TSup({x, y}) < ts (Itempair Support Condition).
2. TSup({x}∪M) ≥ tf ,TSup({y}∪M) ≥ tf (Mediator Support Condition).
3. TDep({x},M) ≥ td, TDep({y},M) ≥ td (Mediator Dependence Condi-

tion).

where ts, tf , td are user defined itempair support threshold, mediator support
threshold and mediator dependence threshold respectively.

For example, consider the pair of temporal items {E,F} in Figure 1. Let user
defined thresholds ts, tf , td be 0.4, 0.4 and 0.6 respectively. Since TSup({E, F})
= 1/3 < 0.4, {E, F} is an infrequent itempair. Consider {B,C} as a candidate
mediator. TSup({E,B, C}) = 3/7 ≥ 0.4, TSup({F,B, C}) = 2/3 ≥ 0.4.
Meanwhile, TDep({E}, {B, C}) = 0.67 ≥ 0.6 and TDep({F}, {B,C}) =
0.82 ≥ 0.6. Thus, < E, F |{B,C} > is a temporal indirect association pattern.
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Fig. 2. Indirect association mining.

Problem Statement. Let D be a temporal transaction database over a se-
quence of time periods P =< p1, · · · , pn >. Given user defined thresholds ts,
tf and td, the problem of temporal indirect association mining is to discover
the complete set of patterns s.t. each pattern < x, y|M > satisfies the condi-
tions: 1) TSup({x, y}) < ts; 2) TSup({x}∪M)≥ tf , TSup({y}∪M) ≥ tf ;
3) TDep({x}, M) ≥ td, TDep({y},M) ≥ td.

3 Algorithm
In this section, we discuss the algorithm for temporal indirect association min-
ing. We first present a novel algorithm for indirect association mining and then
extend it to support temporal transaction database.

3.1 Indirect Association Mining
An algorithm called HI-Mine was proposed in [7] to use the divide-and-conquer
strategy to discover mediators. However, HI-Mine generates a complete set of
mediators for each item x although some of the mediators are useless, e.g. there
exists no item y such that {x, y} is infrequent and y depends on these mediators
as well. Our algorithm addresses this problem by generating a mediator only if
there exists an infrequent itempair such that both items depend on it.

Basically, we first construct a frequency graph which is used to find infre-
quent itempairs and items that are possible mediators of each infrequent item-
pair. For each infrequent itempair, we then construct a mediator graph with
these possible mediator items. Then, the complete set of mediators for the infre-
quent itempair will be generated from the mediator graph.

We use a vertical bitmap representation for the database. For example, con-
sider the transaction database in Figure 2 (a). The bitmap for item A is [11010].
Then a frequency graph can be defined as follows (For the clarity of exposition,
we assume ts = tf in the following. The algorithm in Figure 3 explains the
situation when ts 6= tf . Let ts and tf be absolute support threshold).
Definition 5 (Frequency Graph). Given a database D on itemset I , and the
user defined mediator (itempair) support threshold tf , a frequency graph, de-
noted as FG = (N, E), can be constructed such that N is a set of nodes repre-
senting frequent items {x|b(x) ≥ tf , x ∈ I} and E is a set of edges representing



itempairs. Each node x is associated with the bitmap b(x). Each edge (x, y) is
frequent if b(x) ∩ b(y) ≥ tf . Otherwise, it is infrequent.

For example, let the threshold tf be 2. All individual items in the database in
Figure 2 (a) are frequent and the constructed frequency graph is shown in Fig-
ure 2 (b) where infrequent edges are drawn in dashed lines.

Traverse edges in a frequency graph. For each infrequent edge, which corre-
sponds to an infrequent itempair, we collect a set of candidate mediator nodes.

Definition 6 (Candidate Mediator Node). Given a frequency graph FG =
(N,E), for an infrequent edge (x, y) ∈ E, its candidate mediator nodes, de-
noted as MN(x, y), is a set of nodes: {n|b(n) ∩ b(x) ≥ tf , b(n) ∩ b(y) ≥
tf , n ∈ N}.

For example, for the infrequent edge (A,C) in Figure 2 (b), MN(A,C) =
{B,D, E}. Then, a mediator graph for an infrequent edge can be constructed
with the set of candidate mediator nodes.

Definition 7 (Mediator Graph). Given a frequency graph FG and an infre-
quent edge (x, y), a mediator graph created for (x, y) is a directed graph,
denoted as MG(x, y) = (N,E), where N is a set of nodes such that N =
MN(x, y) and E is a set of directed edges. Each node n is associated with a
bitmap b(n) as in FG. Each edge (m → n), originating from m if m precedes
n according to lexicographical order, is frequent if b(m) ∩ b(n) ≥ tf .

For example, the mediator graph constructed for infrequent edge (A,C) is shown
in Figure 2 (c). Likewise, infrequent edges are shown in dashed lines.

From the mediator graph MG(A,C), we now present how to compute the
set of mediators for infrequent itempair {A,C}. Let the threshold of support be
0.4 and threshold of dependence 0.6. We first consider the candidate mediator
node B. support({A, B}) = 3/5 because b(A)∩b(B) = 3. dependence(A,B)

support({A,B})√
support(A)×support(B)

= 3√
3×5

= 0.77. The support and the dependence be-

tween C and B can be calculated similarly and we discover an indirect associa-
tion pattern < A, C|{B} >.

The remaining nodes in the mediator graph that have frequent edges origi-
nating from node B consist of B′s conditional mediator base, from which we
construct B′s conditional mediator graph. For each node n in the conditional
mediator graph of node B, its bitmap is updated by joining with the bitmap of
node B. After that, each edge (m → n) is frequent if b(m) ∩ b(n) ≥ tf . For
example, Figure 2 (d) shows the conditional mediator graph of node B. Then,
we compute the mediators involving B, such as {BD} and {BE}, for itempair
{A,C}. Similarly, the support and dependence between A and {BD} can be
calculated by joining b(A) with b(D) (Note that b(D) represents the support of
{BD} now) while the support and dependence between C and {B, D} can be



(a) MG-Growth (b) TMG-Growth

Input: Database D, ts, tf and td
Output: The complete set of indirect associations S

Description:
1: Scan D to find F1 = {x|Sup(x) ≥ tf}.
2: Construct the frequency graph FG with F1.
3: for each edge (x, y) in FG do
4: if Sup(x, y) < ts then
5: Construct mediator graph MG(x, y)
6: if MG(x, y) 6= ∅ then
7: MGrowth(MG(x, y), M, 0, C)
8: S =S ∪ C
9: end if

10: end if
11: return S
12: end for
13: function MGrowth(MG(x, y), M, dep, C)
14: for each node n in MG(x, y) do
15: M [dep] = n; dep + +
16: if Sup(n, x) ≥ tf && Dep(n, x) ≥ td

&& Sup(n, y) ≥ tf && Dep(n, y) ≥ td
then

17: C = C ∪ {< x, y|M >}
18: end if
19: Construct conditional mediator graph

MGn(x, y)
20: if MGn(x, y) 6= ∅ then
21: MGrowth(MGn(x, y), M, dep, C)
22: end if
23: dep−−
24: end for
25: end function

Input: Temporal transaction database D, ts, tf and
td

Output: The complete set of indirect associations S

Description:
1: Scan D to find F1 = {x|TSup(x) ≥ tf}.
2: Construct the frequency graph FG with F1.
3: for each edge (x, y) s.t.S(x) = pi, S(y) = pj

in FG do
4: if TSup(x, y) < ts then
5: Construct mediator graphs

{MGpi (x, y), · · · , MGpn (x, y)}
6: for each graph MGpk (x, y) 6= ∅ do
7: TMGrowth(MGpk (x, y), M, 0, C)
8: S =S ∪ C
9: end for

10: end if
11: return S
12: end for
13: function TMGrowth(MGpk (x, y), M, dep, C)
14: for each node n in MGpk (x, y) do
15: if dep == 0 && n is non-extendable then
16: return;
17: end if
18: M [dep] = n; dep + +
19: if TSup(n, x)≥tf && TDep(n, y)≥td

&& TSup(n, y)≥tf && TDep(n, y)≥td
then

20: C = C ∪ {< x, y|M >}
21: end if
22: Construct MG

pk
n (x, y)

23: if MG
pk
n (x, y) 6= ∅ then

24: TMGrowth(MG
pk
n (x, y), M, dep, C)

25: end if
26: dep−−
27: end for
28: end function

Fig. 3. Algorithms of MG-Growth and TMG-Growth.

computed with b(C) ∩ b(D). The complete algorithm, MG-Growth, is given in
Figure 3 (a).

3.2 Temporal Indirect Association Mining
Based on the measure of temporal support, a frequency graph consisting of
frequent items can be constructed similarly. For example, let the threshold of
temporal support be 0.4. The constructed frequency graph is shown in Figure 4
(b).

Before discussing how to construct a mediator graph for an infrequent item-
pair, we highlight that the downward closure property does not hold for mediator
discovery in temporal indirect association mining, e.g even if B is not a medi-
ator of the infrequent itempair {A,C}, it is possible that {BD} is a mediator
of {A,C}. Hence, in order to discover the complete set of mediators for each



1 A C
2 A B
3 C
4 A B D
5 B C D E

TID Items

A

B

CD

E[,01]

(b)

[110,10]

[010,11]

[101,01][,11]

(a)

p1

p2

p1 pn
pi pjpi+1

... ... ...

x yl m n

(c)

...

items:

periods:

mediators: M
pi M

pnM
pi+1

D B

[,11] [,11]

(d)
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infrequent itempair, we divide the set of mediators according to their lifespan.
Given a sequence of periods P =< p1, · · · , pn > as shown in Figure 4 (c), the
complete set of mediators M of an infrequent itempair {x, y}, where S(x) = pi

and S(y) = pj (pi ≤ pj), can be divided into n− i + 1 subsets as shown in the
figure: M = Mpi∪Mpi+1∪· · ·∪Mpn , where Mpi = {X|X ∈ M,S(X) ≤ pi}
and ∀pi+1 ≤ pk ≤ pn,Mpk = {X|X ∈ M,S(X) = pk}. When discovering
mediators of Mpi , we use the two corresponding subsets of database as count-
ing bases (for computing temporal support and temporal dependence of x and
mediators, y and mediators respectively). We create different temporal mediator
graphs for discovering different subsets of mediators.

Consider the frequency graph in Figure 4 (b). We now explain how to dis-
cover mediators for the infrequent edge (A,C) where S(A) = S(C) = p1.
First, we construct the mediator graph for mining Mp1 , which involves item
B only. Since edge (B,C) is infrequent, there is no candidate mediator nodes
and the graph is empty. Then, we construct the mediator graph for mining Mp2 ,
which involves items D and B because the edge (B,C) turns to be frequent with
respect to the subset of database from p2. Note that, D is an extendable mediator
node while B is non-extendable3. The constructed mediator graph is shown in
Figure 4 (d), where non-extendable nodes are depicted in dashed lines. From
this graph, we recursively examine whether {D} and {D, B} are mediators of
{A,C}. The algorithm for mining temporal indirect associations is shown in
Figure 3 (b).

4 Performance Evaluation
In this section, we evaluate the performance of developed algorithms. All exper-
iments are conducted on a 2GHz P4 machine with 512M main memory, which
runs Microsoft Windows XP. All the algorithms are implemented in C++. In
order to obtain comparable experimental results, the method we employed to
generate synthetic datasets is similar to the one used in prior works [7]. With-
out loss of generality, we use the notation Tx.Iy.Dz to represent a data set
where the number of transactions is z, the average size of transaction is x and

3 See the definitions of extendable and non-extendable mediator nodes in our online version [2].
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Fig. 5. Experimental Results I.

the average size of potentially large itemsets is y. Additionally, we use the no-
tation Tx.Iy.Dz.Pn to represent a temporal transaction database which is over
a sequence of n periods.

Comparison of MG-Growth and HI-Mine. we compare the performance
of MG-Growth with HI-Mine, which is the clear winner of the other exist-
ing algorithms [7]. We ran experiments on two datasets: T10.I5.D10K and
T10.I5.D20K. The threshold of ts and tf are set as the same. The threshold of
td is set as 0.1. The results are shown in Figure 5. MG-Growth is more efficient
than HI-Mine, especially when tf (ts) is small. This is because when the thresh-
old is small, there are more frequent individual items. Consequently, HI-Mine
needs to discover all the set the mediators for more items no matter whether
these mediators are useful or not. On the contrary, MG-Growth discovers a me-
diator only if it is depended on by an infrequent itempair. Thus, the performance
of MG-Growth will not deteriorate significantly with the decrease of mediator
(itempair) support threshold.

We further examine the scale-up feature of MG-Growth. Figure 5 (c) shows
the results with the variation of data size from 200K to 1M . The scale-up per-
formance under two different thresholds of tf are studied. The execution times
are normalized with respect to the execution time for the data set of 200K. We
observed that the run time of MG-Growth increases slightly with the growth of
data size, which demonstrated the good scalability of MG-Growth.

Comparison of TMG-Growth and THI-Mine. In order to evaluate the per-
formance of the temporal version of MG-Growth, TMG-Growth, we also ex-
tend the HI-Mine to support temporal transaction database [2]. Correspond-
ingly, we denote the temporal version of HI-Mine as THI-Mine. We compare
the performance of TMG-Growth and THI-Mine with respect to two datasets:
T10.I5.D10K.P3 and T10.I5.D20K.P5. Figures 6 (a) and (b) present the re-
sults respectively. Obviously, the temporal version of MG-Growth outperforms
the temporal version of HI-Mine as well. When the number of periods increases,
the gap between the two algorithms is apparent even if the mediator support
threshold is large.
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Fig. 6. Experimental Results II.

We evaluate the quality of temporal indirect association patterns by com-
paring the results of the traditional model and the temporal model on the same
temporal transaction database. Figure 6 (c) shows the results with respect to the
variation of tf threshold, where black blocks depict the percentage of patterns
shared by two models, white blocks depict the percentage of patterns missed by
the traditional model and the gray blocks depict the percentage of invalid pat-
terns. It can be observed that the set of temporal indirect association patterns is
significantly different from the results of the traditional model.

5 Conclusions
In this paper, we take into account the lifespan of items to explore a new model
of temporal indirect association. We first develop an algorithm MG-Growth for
indirect association mining. Under MG-Growth, a set of mediators are generated
only if both items in an infrequent itempair depend on them. Then, we extend the
framework of MG-Growth so that mediators starting from different periods are
discovered separately. Our experimental results showed that MG-Growth out-
performs the existing algorithm significantly and its extended version discovers
the temporal indirect association pattern efficiently.
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