
BOOMER: A Tool for Blending Visual
P-HomomorphicQueries on Large Networks

Yinglong Song1,2 Huey Eng Chua1 Sourav S Bhowmick1
Byron Choi3 Shuigeng Zhou2

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Shanghai Key Lab of Intelligent Information Processing, Sch. of Computer Science, Fudan University, China

3Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
ysong|hechua|assourav@ntu.edu.sg,bchoi@comp.hkbu.edu.hk,sgzhou@fudan.edu.cn

ABSTRACT

The paradigm of interleaving (i.e., blending) visual subgraph
query formulation and processing by exploiting the latency
offered by the gui brings in several potential benefits such
as superior system response time (srt) and opportunities to
enhance usability of graph databases. Recent efforts at imple-
menting this paradigm are focused on subgraph isomorphism-
based queries, which are often restrictive in many real-world
graph applications. In this demonstration, we present a novel
system called Boomer to realize this paradigm on more
generic but complex bounded 1-1p-homomorphic (bph) queries
on large networks. Intuitively, a bph query maps an edge of
the query to bounded paths in the data graph. We demon-
strate various innovative features of Boomer, its flexibility,
and its promising performance.

ACM Reference Format:

Yinglong Song, Huey Eng Chua, Sourav S Bhowmick, Byron Choi, S. Zhou.
2020. BOOMER: A Tool for Blending Visual P-Homomorphic Queries on
Large Networks. In 2020 International Conference on Management of Data
(SIGMOD ’20), June 14–June 19, 2020, Portland, OR, USA. ACM, NewYork,
NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384680

1 INTRODUCTION

Visual graph query interfaces (a.k.a gui) make it easy for
non-expert users to query graphs. A recent subgraph query-
ing paradigm [4, 5] exploits the latency offered by a gui to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384680

blend visual query construction and processing by generat-
ing and refining candidate result matches iteratively during
query formulation. It brings in several potential benefits such
as superior system response time (srt) and opportunities to
enhance usability of graph databases by facilitating query
suggestions and feedback. The early efforts, however, fo-
cused on subgraph isomorphism-based queries, which can
be restrictive in many real-world applications [2, 3].
Fan et al. introduced the notion of 1-1 p-homomorphic

(p-hom) queries [2] to alleviate the restrictive usage of sub-
graph isomorphism-based graph queries. Intuitively, a 1-1
p-hom query maps an edge of a query to paths instead of
edges in a data graph and measures similarity of vertices
that goes beyond vertex label equality. In this demonstration,
we present a novel framework called Boomer (Bounded 1-1
p-hom Query Blender) [6] to realize the aforementioned vi-
sual graph querying paradigm for a class of 1-1 p-hom graph
queries referred to as bounded 1-1 p-hom (bph) queries.

Intuitively, a bph query is a connected, undirected, simple
labeled graph where an edge is mapped to a path of bounded
length (i.e., it satisfies certain length constraints) in the un-
derlying data graph. Specifically, each edge e = (qi ,qj) in a
bph query is labeled with a pair of integers [lower ,upper],
referred to as lower and upper bounds, respectively, repre-
senting the minimum and maximum allowable path lengths
connecting a vertex pair (vi ,vj) in a data graph that matches
qi and qj (based on vertex label equality), respectively. The
query in Figure 2(a) is an example of a bph query.

Observe that bph queries are more general than subgraph
isomorphism-based queries as the edge-to-edge mapping of
the latter is unable to specify such connectivity constraints
in a data graph. Particularly, when lower = upper = 1, the
bounded 1-1 p-hom-based matching reduces to the subgraph
isomorphism-based matching.

Boomer exploits an online, adaptive data structure called
cap index to facilitate the interleaving of visual bph query
formulation and query processing. Specifically, it efficiently

https://doi.org/10.1145/3318464.3384680

Figure 1: Architecture of Boomer.

A B E

A

C

B

B A

A

C B C

G
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

A

B

[1,1]
q1

q2

E

[1,3]

[1,2]
q3

Q1

v12

v2

v5
v12v6

v3 v8

(a) (b) (c)

Figure 2: (a) bph query; (b) data graph; (c) cap in-

dex [6].

stores the candidate matching vertices that satisfy the upper
bound constraints of edges in a (partially) constructed bph
query. It defers the checking of paths satisfying lower > 1
until the visualization of result matches in order to reduce
the cap construction cost. Furthermore, since iterative edge-
to-path matching can be expensive, it exploits the gui latency
(i.e., time to construct a query vertex or an edge visually)
judiciously by deferring evaluation of an expensive query
edge to a more opportune time during query formulation
instead of evaluating it immediately after its formulation.
Lastly, since visualizing result subgraphs in a large graph is
cognitively challenging, each result match is displayed by
visualizing a small subgraph of the network that contains it.

In this demo, an audience can experience Boomer’s gen-
erality by easily formulating both bph and exact subgraph
queries visually on real-world networks. She will be able to
view deferred evaluation of expensive edges (if any) in her
query and appreciate fast processing of practical bph queries
due to this blending strategy. Finally, we shall demonstrate
how an audience can visualize result matches effectively.

2 SYSTEM OVERVIEW

Figure 1 depicts the architecture of Boomer, which mainly
consists of the followingmodules. The reader may refer to [6]
for detailed algorithms and performance study of Boomer.

The GUI Module. Figure 3 depicts the gui of Boomer.
It consists of the following panels: (a) Panel 1 depicts the
datasets available for querying. (b) Panel 2 is the canvas to
visually formulate a bph query. (c) Panel 3 contains a list of
distinct node/edge labels for the chosen dataset to aid query
formulation. (d) Panel 4 facilitates a user to initiate construc-
tion of a new query (in which case, a new query tab will
be generated in Panel 2), execute a bph query, and visualize
result matches. (e) Panel 5 contains a list of partial-matched

vertex sets that satisfies a bph query. Selection of a vertex
set allows a user to visualize (in Panel 6) the correspond-
ing region of the data graph containing the result subgraph
(i.e., matching subgraph) involving these vertices. (f) Panel 6
displays the result subgraphs for a selected partial-matched
vertex set. (g) Panel 7 displays the query processing plan (i.e.,
edge processing order, processing time, deferment (if any)),
which is updated dynamically as blending occurs.

The Preprocessor Module. This module preprocesses
the input data graph G to compute the average edge process-
ing time tavд and the pruned landmark labelling (pml) index1,
which are used during cap index construction. The former
is used to determine whether an edge in a bph query is ex-
pensive and the latter is used for processing distance queries
efficiently.
For a given data graph G, this module first computes the

pml index. Next, it computes tavд of G as follows. It utilizes
the pml index to process 1 million randomly selected distance
queries between vertex pairs in G. tavд is then computed as
the average processing time of these distance queries.

The CAP Index Constructor Module. As a bph query
is being drawn in Panel 2, the set of gui actions (i.e., adding
a vertex, connecting two vertices) is exploited continuously
to construct and maintain the cap (Compact Adaptive Path)
index. It enables efficient retrieval of candidate matching ver-
tices during query formulation and results generation as dis-
tances between vertices in G do not have to be computed re-
peatedly. In addition, unsuitable candidates (i.e., those which
subsequently violate the upper bounds) can be pruned im-
mediately. Note that the construction of a cap index starts
as soon as visual formulation of a bph query begins and
is completed after the user has clicked on the Run icon to
execute the query.
Given a (partial) bph query QB = (VB ,EB), a matching

order M (i.e., the order in which edges of the query is con-
structed), and a data graph G = (V ,E), intuitively a cap
index C = (VC ,EC) is a |VB |-level undirected graph contain-
ing vertices of V that match VB , i.e., VC ⊆ V . Each edge in
EC connects a pair of matching vertices in two different lev-
els of C if these vertices are connected by a path in G that
satisfies the upper bound constraint specified in the corre-
sponding edge in EB . Note that the check for e .lower > 1
is deferred and handled by Results Visualizer module. For
example, consider the data graph G and the query graph
Q1 in Figure 2(a) with matching order M : q1 → q2 → q3.
The corresponding cap index after the construction of Q1 is
shown in Figure 2(c). The matching vertices of q1, q2, and q3
that satisfy the upper bound constraints of edges in Q1 are

1The pml is based on 2-hop cover and is used for fast exact distance computation.
Althoughwe use it in our current implementation, Boomer is orthogonal to the choice
of exact distance computation technique.

Panel 1

Panel 2

Panel 4

Panel 3

Panel 5

Panel 6

Panel 7

Figure 3: The gui of Boomer. Best viewed in colour.

Vq1 = {v2,v3}, Vq2 = {v5,v6,v8}, and Vq3 = {v12}, respec-
tively. Observe that although v1 matches q1, it is pruned out
after the formulation of (q1,q2) edge as the paths connecting
vertices matching q1 and q2 do not satisfy the upper con-
straint. Hence, although v1 is initially retrieved when q1 is
constructed by the user, it is subsequently removed from the
index as soon as the correspondingupper is violated (i.e.,v1 is
called an isolated vertex). In contrast, the edge (v2,v12) exists
in the index as distance between v2 and v12 is 2, and satisfies
upper of (q1,q3). In our framework, three different strategies
are adopted to efficiently find these vertices as detailed in [6].
Intuitively, for a new edge e = (qi ,qj) it first retrieves the
candidate matching vertices Vqi and Vqj . If e .upper is 1 or 2
then the neighbor search or 2-hop search is used. Otherwise,
the large upper search scheme is utilized.

Note that processing of an edge e = (qi ,qj) can be expen-
sive if |Vqi | and |Vqj | are very large and e .upper is large as
well. Specifically, e is expensive ifTest > tlat and e .upper ≥ 3
where Test = |Vqi | × |Vqj | × tavд is the estimated time to
process a query edge e and tlat is the minimum gui latency
available for processing e [6]. Consequently, the cap index
construction for an expensive edge may take significantly
longer than the available gui latency. To address this chal-
lenge, this module realizes a deferment-based strategy called
Defer-to-Idle (di) for constructing the index. The key idea
here is to defer processing of expensive edges during query
formulation to a time when the query processor is idle.

Let us elaborate on the di strategy with a simple example.
Consider a sequence of edges E : e1 = (q1,q3) → e2 =
(q2,q3) → e3 = (q1,q2) constructed by a user during query
formulation. Assume that e1 is an expensive edge. Hence,
after it is formulated, its processing is deferred. Assume now
the processing time of e2 is t ′ ≪ tlat . Further, it prunes many
isolated vertices inVq3 . Consequently, our framework is now
“idle” after the construction and processing of e2 as there are
no new vertices or edges to process. Now assume that after
processing e2, e1 is no more an expensive edge as the size of
Vq3 has reduced significantly after the removal of isolated
vertices. In particular, |Vq1 | × |Vq3 | × tavд < tlat − t ′. Then,

based on the di strategy, e1 is processed now by leveraging
on the idle time. Panel 7 (Figure 3) displays the order of edge
processing in di, highlighting those that are deferred in red.
Once the complete query is formulated, a user may click

the Run icon to execute it. This triggers the evaluation of
unprocessed edges (if any) and completion of the cap index.

The Partial-Matched Vertex Sets Generator Module.

Once the construction of cap index is completed, this mod-
ule is invoked. Reconsider the cap index in Figure 2. Observe
that v2 matches q1, v5 matches q2, v12 matches q3 and the
edges (v2,v5), (v5,v12), and (v2,v12) in the cap index satisfy
the upper bounds of the corresponding edges inQ1. We refer
to this vertex set (i.e., {v2,v5,v12}) as a partial-matched ver-

tex set (denoted by VP). Intuitively, it represents vertices of a
matching result of the query that satisfies the upper bound
constraints. Clearly, there can be many partial-matched ver-
tex sets for a bph query. Hence, it first traverses C to extract
these vertex sets. Specifically, the original matching order
M is first reordered in increasing order of |Vqi | to ensure effi-
cient traversal of C. Next, it identifies VP by traversing the
cap index using depth-first-search (dfs) starting from the
first query vertex inM . Then, it displays this set of VP and
details of partial-matched vertices in Panel 5 (Figure 3).

The Results VisualizerModule. This module generates
and visualizes the results (result subgraphs) of a bph query on
Panel 6. Since it is cognitively challenging to visualize result
subgraphs on a large data graph, it deploys small region-based

visualization schemewhere it iteratively shows a color-coded
small subgraph of the underlying data graph that satisfies
the user-specified edge bound constraints. Boomer displays
at most k neighbours of a vertex (by default, k = 5) that
matches a query vertex to provide additional contextual in-
formation. In particular, it takes a just-in-time approach to
evaluate the lower bound constraints and to generate the
result subgraph involving VP . Given a VP , it checks whether
there exists a path satisfying the edge bounds by utilizing the
pml index. Note that if e .lower = 1, it does not need to per-
form any checking as e .lower ≤ e .upper . Panel 6 in Figure 3
shows an example of a result subgraph satisfying the query

in Panel 2. A user can iterate through different subgraphs
for a particular VP satisfying the path length constraints by
clicking on Previous and Next in Panel 6.

The Query Modifier Module. Since a user may modify
a bph query during query formulation, this module handles
it by updating the cap index efficiently [6]. If a deleted edge
is not yet processed (i.e., unprocessed edge), no change is
required on the cap index and it simply removes the un-
processed edge. Otherwise, deletion of a processed edge is
handled by reconstructing the affected region in the index.
For the case of alteration of bounds, there are two sce-

narios: alteration of lower and upper bounds. Since the cap
index considers only the upper bound, there is no change
in its structure when the lower bound is altered. In the lat-
ter case, when e is unprocessed, it updates the bound of
the unprocessed edge without modifying the index. On the
other hand, if e is processed and the upper bound is modified
to be stricter, a vertex may not satisfy the tighter distance
constraint anymore. Hence, it needs to examine every rele-
vant pair of vertices to reassess whether the new e .upper is
satisfied and remove ones that violate it. Conversely, when
the upper bound is loosened, a vertex that satisfies the new
e .upper may not be in the cap index. Hence, such vertices
are retrieved and the index is modified in the affected region.

The Query Blender Module. Lastly, this module coor-
dinates the aforementioned modules. In particular, it keeps
track of vertices and edges added to a bph query Q during
construction and processes them to construct and maintain
the online cap index by invoking the cap Index Constructor
module. When a user clicks the Run icon to execute Q , it
waits (if necessary) for completion of the construction of the
cap index and then invokes the Partial-Matched Vertex Sets

Generator module to generate the partial-matched vertex
sets. If a user modifies Q during formulation, it invokes the
Query Modifier module to update the cap index.

3 RELATED SYSTEMS & NOVELTY

The demonstrations in [4, 5] focus on blending visual sub-
graph isomorphism-based queries. Boomer exposes very
different user interaction experience compared to these sys-
tems. First, in Boomer, one needs to specify the lower and
upper bounds on each edge during query formulation (Panel
2), which is irrelevant in [4, 5]. Second, since the order of
execution of edges in [4, 5] are always identical to the query
formulation sequence, these systems do not expose users
to experience deferment-based execution strategy (Panels
2 and 7). Third, the result visualization experience (Panel
6) in Boomer is different as a user may iteratively visualize
matching subgraphs with varying path length constraints.

The internals of Boomer is also different from [4, 5]. The
query processing algorithm of Boomer can handle both edge-
to-edge and edge-to-path mapping and the processing of a

constructed edge may be deferred to a more opportune time.
Besides, the structure and construction process of the cap
index are different from the online indexes deployed in [4, 5]
as the latter do not capture bounded path length information.

4 DEMONSTRATION OVERVIEW

Boomer is implemented in Java JDK 1.7. Our demonstra-
tion will be loaded with real-world networks from different
domains and sizes (up to 2M nodes). Example bph and sub-
graph matching queries will be presented. Users can also
write their own ad-hoc queries through our gui.

A key objective is to enable the audience to interactively
experience the formulation and blending of visual bph queries.
First, one can select a dataset from Panel 1. Next, she can
formulate a bph query (or a subgraph matching query) in
Panel 2 by dragging and dropping vertex labels from Panel 3,
connecting them, and specifying the lower and upper bounds
for each edge in a modal box. Specifically, one can progress
from a subgraph matching query to a bph and vice versa
by simply modifying the bounds. One can also modify the
query fragment anytime during query formulation.
The blending of a query is visualized in Panels 2 & 7.

The query edges in Panel 2 are dynamically colour-coded
to differentiate unprocessed (black) and processed (blue or
red) edges during blending. Specifically, blue color denotes
immediate processing of an edge whereas a red edge is an
expensive edge whose processing is deferred (di strategy)
during formulation. One can right-click on an edge to view
various details (e.g., status, processing time). Panel 7 shows
the processing plan (order of execution of query edges, edge
processing time). The colour coding in Panel 2 applies here.

Finally, when one clicks the Run button (Panel 4), Boomer
displays the partial-matched vertex sets (VP s) in Panel 5.
One can select a VP to interactively view and explore result
matches in Panel 6 as discussed earlier. A user can iterate
through different subgraphs satisfying various path length
constraints involving a VP .

A short video to illustrate the main features using exam-
ple use cases is available at https://youtu.be/bdYoXYVVyCA.
Acknowledgments. The first three authors are supported by the
AcRF Tier-2 Grant MOE2015-T2-1-040. Byron Choi is supported by
HKRGC GRF 12201119 and 12201518.
REFERENCES

[1] T. Akiba, Y. Iwata, Y. Yoshida. Fast Exact Shortest-path Distance Queries on
Large Networks by Pruned Landmark Labeling. In SIGMOD, 2013.

[2] W. Fan, J. Li, S. Ma, H.Wang, Y.Wu. Graph Homomorphism Revisited for Graph
Matching. In PVLDB, 2010.

[3] W. Fan, J. Li, et al. Graph PatternMatching: from Intractable to Polynomial Time.
In PVLDB, 2010.

[4] H. Hung, S. S. Bhowmick, et al. QUBLE: Blending Visual Subgraph Query For-
mulation with Query Processing on Large Networks. In SIGMOD, 2013.

[5] C. Jin, et al. Gblender: Visual Subgraph Query Formulation Meets Query Pro-
cessing. In SIGMOD, 2011.

[6] Y. Song, H. E. Chua, et al. BOOMER: Blending Visual Formulation and Process-
ing of P -Homomorphic Queries on Large Networks. In SIGMOD, 2018.

https://youtu.be/bdYoXYVVyCA

	Abstract
	1 Introduction
	2 System Overview
	3 Related Systems & Novelty
	4 Demonstration Overview
	References

