
AURORA: Data-driven Construction of Visual Graph
Query Interfaces for Graph Databases

Sourav S Bhowmick‡ Kai Huang ‡,§ Huey Eng Chua‡ Zifeng Yuan‡,§
Byron Choi† Shuigeng Zhou§

‡School of Computer Science and Engineering, Nanyang Technological University, Singapore
§Shanghai Key Lab of Intelligent Information Processing, Sch. of Computer Science, Fudan University, China

†Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
assourav|hechua@ntu.edu.sg,bchoi@comp.hkbu.edu.hk,khuang14|zfyuan16|sgzhou@fudan.edu.cn

ABSTRACT

Several commercial and academic frameworks for querying
a large collection of small- or medium-sized data graphs
(e.g., chemical compounds) provide visual graph query in-
terfaces (a.k.a gui) to facilitate non-programmers to query
these sources. However, construction of these visual inter-
faces is not data-driven. That is, it does not exploit the un-
derlying data graphs to automatically generate the contents
of various panels in a gui. Such data-driven construction
has several benefits such as facilitating efficient subgraph
query formulation and portability of the interface across
different application domains and sources. In this demonstra-
tion, we present a novel data-driven visual subgraph query
interface construction engine called aurora. Specifically,
given a graph repository D containing a collection of small-
or medium-sized data graphs, it automatically generates the
gui for D by populating various components of the interface.
We demonstrate various innovative features of aurora.

ACM Reference Format:

Sourav S Bhowmick, Kai Huang, Huey Eng Chua, Zifeng Yuan, Byron Choi,
Shuigeng Zhou. 2020. AURORA: Data-driven Construction of Visual Graph
Query Interfaces for Graph Databases. In 2020 International Conference on
Management of Data (SIGMOD ’20), June 14–June 19, 2020, Portland, OR,
USA. ACM, NewYork, NY, USA, 4 pages.
https://doi.org/10.1145/3318464.3384681

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384681

1 INTRODUCTION

Visual graph query interfaces (a.k.a gui) widen the reach of
graph querying frameworks by enabling non-programmers
to use them. Consequently, several commercial and aca-
demic frameworks for querying a large collection of small- or
medium-sized data graphs (i.e., graph database) expose such
interfaces for formulating subgraph queries. For instance,
PubChem provides a visual query interface for structure-
based chemical compound search (https://pubchem.ncbi.nlm.
nih.gov/edit3/index.html).
A core component of many real-world subgraph query

interfaces is a panel containing a set of patterns (i.e., small
subgraphs), which potentially expedites a visual query for-
mulation task by reducing the number of query formula-
tion steps (steps for brevity) [3, 8]. Specifically, a pattern
enables a user to construct multiple nodes and edges in a
subgraph query by performing a single click-and-drag action
(i.e., pattern-at-a-time mode) in lieu of iterative construction
of edges one-at-a-time (i.e., edge-at-a-time mode). For ex-
ample, the gui of PubChem provides a library of patterns
containing benzene ring, carboxyl group, etc.

The contents of several components of a gui are typically
created manually based on domain knowledge [3, 8]. For
example, the patterns to be displayed on a gui are manually
selected by a programmer or a domain expert and then coded
using a programming language. Unfortunately, such manual
creation is very challenging as it demands a comprehensive
topological knowledge of the underlying data graphs. As a
result, the selected content may not be diverse enough to
expedite formulation of a wide range of subgraph queries [8].
Naturally, such manual selection also limits the portability
of guis across different domains and sources as one has to
reimplement and customize the gui for each one of them [3].
In this demonstration, we present a novel data-driven vi-

sual subgraph query interface construction system called au-
rora (dAta-driven qUery inteRface cOnstruction for gRaph
dAtabases). Given a graph databaseD, aurora automatically

https://doi.org/10.1145/3318464.3384681
https://pubchem.ncbi.nlm.nih.gov/edit3/index.html
https://pubchem.ncbi.nlm.nih.gov/edit3/index.html

Figure 1: Architecture of aurora.

populates various panels (e.g., node labels, patterns) of the
gui from D. Although the set of labels of nodes/edges for
populating the Attribute panel can be easily generated by
traversing the underlying data graphs, automatically gener-
ating diverse patterns is a NP-hard problem [8]. Particularly,
the data-driven nature of auroramakes it highly portable as
it can automatically construct the visual query interface for
any domain-specific graph querying application (e.g., drug
discovery, computer vision) centered around a collection
of small- or medium-sized data graphs. Note that aurora
focuses on the interface for query formulation and not for
visualization of query results. The latter is application- and
query-specific and can be built on top of the former.

It is worth noting that aurora goes against the traditional
mantra of “one constructor does not fit all” in visual query
interface generation. Visual interfaces for graph query for-
mulation are traditionally manually constructed for each
data source or domain. We argue that as more and more
graph data sources become prevalent in a wide variety of do-
mains, one constructor will have to fit all in order to minimize
the cost of development and maintenance of user-friendly
interfaces that support efficient query formulation. The au-
rora approach paves the way for a single framework to
automatically construct the query formulation interface for
any domain or source involving graph databases.

2 DESIGN PHILOSOPHY

aurora is designed to give end users the freedom to easily
and quickly construct a visual query interface for any data
source without resorting to coding. Concretely, its design is
based on the following three principles:

(1) Workwith independent graphdatabases.Our data-
driven approach should be able to work with any data
source or application domain centered around a col-
lection of small- or medium-sized data graphs. As the
number of such sources grows with time, aurora will
offer sufficient benefits to developers and end users
of graph databases by making generation of visual
interfaces for query formulation effortless.

(2) Cognitive load-aware pattern selection. A key is-
sue in exposing patterns to support query formulation

is that a user should be able to visually interpret a pat-
tern (i.e., edge relationships) quickly so that she can
determine if it is useful for her query. Such efficient
interpretation naturally reduces the overall time a user
may take to formulate a query. Hence, the aurora
framework needs to select subgraphs that potentially
impose low cognitive load on users.

(3) Oblivious to query logs. aurora is query log-oblivious
as such log data may often be unavailable in practice,
especially in “cold start” cases. In the case where query
logs are available, the pattern generation framework
should be easily extensible to incorporate them [8].

In practice, any graph database system can easily integrate
aurora in the following way. It can first invoke aurora to
generate the gui for a data source and then install it on top
of the query engine for query formulation and processing.

3 SYSTEM OVERVIEW

Figure 1 depicts the architecture of aurora. It consists of
the following components.

The GUI module. Figure 2 depicts a screenshot of the
aurora gui. Panel 1 enables a user to select a graph data-
base, specify a pattern budget for canned patterns (minimum
and maximum size, number of patterns to display on the
gui), and load previously generated patterns. Specifically,
when a user invokes the gui of aurora, she first chooses
her graph repository of interest and specifies the pattern
budget using this panel. Note that the user can easily cus-
tomize the interface according to her needs by specifying
the budgets accordingly. Panel 2 contains a list of distinct
vertex labels in the selected dataset. An edge label list can
be easily incorporated if required. Panel 3 tracks statistics
related to a subgraph query formulation activity. Panel 4 is
used for query formulation. aurora generates two types of
patterns, basic and canned, and displays them in Panels 5 and
6, respectively. The former are patterns with size less than 3
(e.g., 1-edge, 2-edge) and the latter are larger in size.

Observe that the contents of Panels 1 and 4 are provided
by a user and the contents of Panel 3 depends on a user’s
actions in Panel 4. On the other hand, the contents of Panels
2, 5, and 6 depend on the graph repository. Hence, the goal
of aurora is to automatically populate Panels 2, 5, and 6.
Small graph clustering module. A large collection of

small- or medium-sized data graphs D is likely to contain
groups of graphs having similar topology. Hence, the goal
of this module is to partition D into a set of graph clusters

C = {C1,C2, . . . ,Cd }, where Ci ⊆ D, Ci ∩ Cj = ∅ ∀i , j,
and it maximizes a clustering property objective function
f : C → R. Here we present an overview of the generation
of C. The reader may refer to [8] for details.
A 2-step clustering approach is used to partition D. The

first step (coarse clustering) is a feature vector-based approach

Figure 2: Visual interface constructed by aurora.

Figure 3: Cognitive load and diversity of patterns.

that uses frequent subtrees [4] of D as feature vector for k-
means clustering where the k seeds are chosen using the
k-means++ algorithm [2]. Note that the clusters (referred
to as coarse clusters) generated by coarse clustering may
still be large and expensive for generating cluster summary

graphs (csgs). The second step (fine clustering) is performed
on those coarse clusters that exceed themaximum cluster size
threshold N . In particular, it leverages maximum connected

common subgraph (mccs) as the clustering property.
Sampler module. Since clustering can be computation-

ally expensive for large D, eager sampling is performed prior

to the small graph clustering phase and the lazy sampling is
performed after the coarse clustering phase [8]. The former
generates a random sample of data graphs from D. Since
some clusters generated by coarse clustering may still be too
large for efficient processing, the latter performs stratified
random sampling of large clusters to further reduce their
sizes. Note that fine clustering still needs to be performed if
the size of the sampled graphset is larger than N .

CSG generator module. This module [8] summarizes
data graphs in each cluster Ci ∈ C into a closure graph gen-
erated by leveraging the technique in [5]. We refer to it as
cluster summary graph (csg). A closure graph [5] is a general-
ized graph generated by performing a union on the structures
of a set of graphs. It integrates graphs of varying sizes into
a single graph referred to as extended graph (denoted by
G∗ = (V ∗,E∗)) by inserting dummy vertices or edges with
a special label ε such that every vertex and edge is repre-
sented in G∗. Given two extended graphs G∗

1 and G
∗
2 and a

mapping ϕ between them, a vertex closure and an edge closure

can be obtained by performing an element-wise union of
the attribute values of each vertex and each edge in the two
graphs, respectively. Then the closure graph ofG∗

1 andG
∗
2 is a

labelled graphGc = (Vc ,Ec)whereVc is the vertex closure of

V ∗
1 and V ∗

2 and Ec is the edge closure of E∗1 and E
∗
2 . Note that

these closures may contain attribute values ε corresponding
to a dummy vertex or edge, which are removed from Gc .

Label generator module. This module traverses the un-
derlying data graphs to generate the set of unique labels in
D, which is then displayed on the gui (Panel 2).

Cannedpattern selectormodule.Given a user-specified
pattern budget b = (ηmin ,ηmax ,γ) where ηmin > 2 (resp.
ηmax) is the minimum (resp. maximum) size of a canned pat-
tern and γ is the number of patterns to be displayed on Panel
6, the aim is to select a set of canned patterns P satisfying b
from the set of csgs S.
In particular, the goal is to select P by maximizing cov-

erage and diversity and minimizing cognitive load of P [8].
A pattern p ∈ P covers a data graph G ∈ D if G contains a
subgraph s that is isomorphic to p. The pattern set P should
ideally cover as many data graphs in D as possible. Further-
more, it should contain structurally diverse patterns to make
efficient use of the limited display space on the gui. For ex-
ample, consider the patterns in Figures 3(b) and (c). aurora
avoids selecting both simultaneously for display as they are
structurally very similar. Note that a user needs to view the
canned patterns in Panel 6 during query formulation and
determine the ones that are relevant. However, recent re-
search reveal that viewing a large, dense and complex graph
may demand substantial cognitive load (i.e.,memory demand
or mental effort required to perform a given task) from a
user [6]. For example, intuitively a user may take more time
to visually inspect the pattern in Figure 3(a) to determine if
it is useful for formulating her query compared to the one in
Figure 3(b) or Figure 3(c). This is because the former pattern
is denser and more complex than the latter. Hence, given
two candidate patterns p1 and p2, aurora prefers p1 to p2
if p1 has lower cognitive load than p2. In particular, in au-
rora, diversity and cognitive load of a pattern are computed
using a graph edit distance-based and graph density-based
techniques, respectively [8].

Given a set of csgs S, a greedy iterative approach based on
weighted random walks is undertaken for selecting canned
patterns based on the aforementioned constraints [8]. First,
each edge in every csg is assigned a weight based on its label
coverage in the dataset and in the cluster. Next, it performs
random walks on these weighted csgs. Given a weighted
csg S , for each size in the range [ηmin − ηmax] (i.e., pattern
budget b), it leverages on the statistics obtained from the
walks to propose a variety of potential candidate patterns
(pcp) from which a final candidate pattern (fcp) is derived.
Note that each random walk starts with a seed edge (i.e.,
edge with largest weight). The walk proceeds by moving
to an adjacent edge until the required number of edges is
traversed or when no more edges can be added. The adjacent
edge is selected from a list of candidate adjacent edges (cae).

Particularly, edges with higher weights are selected with
higher probability. Then, the fcp of a particular size ηi for a
csg is found by retrieving a connected subgraph of size ηi
with the most frequently traversed edges during the walks.
A pattern score sp based on coverage, diversity, and cognitive
load is computed for each fcp. The candidate pattern with
the largest pattern score is selected as the best pattern to be
added to P. Weights of the csgs are then updated using the
multiplicative weights update approach [1]. These steps are
repeated until either γ patterns are found or when no new
pattern can be found.
Note that the above approach can be extended to handle

query logs (if they are available). Specifically, the weights of
the edges in S can be modified to incorporate information of
subgraphs that appear frequently or infrequently in a log.

Basic pattern selector module. This module generates
the basic patterns (edge, 2-edge) after the selection of canned
patterns. Specifically, Panel 5 in aurora gui provides m
(default is 5) basic patterns. The steps for selecting the basic
patterns for each pattern type (the edge pattern is used for
illustration) are as follows: (1) Rank the edges in decreasing
level of support in D. The ranked list is denoted as Er . (2)
Compute the number of steps (stepe (e1)) required to draw e1
on Panel 4 using edge-at-a-time approach where e1 ∈ Er is
the edge with the highest support. (3) Compute the minimum
number of steps (minStepp (e1)) required to draw e1 on Panel
4 using pattern-at-a-time approach. Note that patterns in
Panels 5 and 6 are utilized here and edge deletion is allowed.
(4) Select e1 as a basic pattern if stepe (e1) < minStepp (e1)
and |Bedдe | < α where Bedдe is a set of basic edge pattern
and α is the maximum number of such patterns allowed in
Panel 5. Remove e1 from Er . (5) Repeat Steps 2 to 4 until
|Bedдe | = α . Note that 2-edge basic patterns can be selected
by following similar steps after selecting 2-edge candidates
using any state-of-the-art frequent pattern mining technique.

Pattern visualizer module. This module facilitates visu-
alization of the patterns on the gui. All patterns are displayed
using ForceAtlas2 layout [7]. A user may select different op-
tions (group-by-size, single-page, x-per-page) available in a
drop-down box of Panel 6 to display the canned patterns.

Query tracker module. Finally, this module tracks vari-
ous information related to subgraph query formulation ac-
tivities (e.g., number of steps taken, query formulation time).

4 RELATED SYSTEMS

Most germane to this work is the DaVinci system presented
in [9]. In particular, it neither incorporates frequent tree-
based clustering nor sampling strategies to handle larger
graph databases. Furthermore, canned patterns are gener-
ated greedily using breadth-first-search by ignoring diversity
and cognitive load of these patterns. Also, candidate pattern
generation and selection are treated as two separate phases.

In contrast, they are intertwined in aurora by utilizing a
random walk-based strategy. Additionally, basic patterns are
not extracted in [9]. Lastly, the gui of aurora is different
and superior to DaVinci. Panels 3 and 5 are unavailable in
DaVinci. Our canned pattern display panel (Panel 6) is more
flexible and compact compared to DaVinci. In summary,
except for the Label Generator and csg Generator modules,
all modules are novel in aurora compared to DaVinci [9].

5 DEMONSTRATION OVERVIEW

aurora is implemented in Java JDK 1.8 and Javascript 1.6.
Our demonstration will be loaded with real datasets (e.g.,
aids). Example query graphs that can be constructed using
the patterns will be presented for formulation. Users can also
write their own ad-hoc queries through our gui. The key
objectives of the demonstration are as follows.

Data-driven construction of gui. Through aurora’s
gui (Figure 2), the audience will be able to select a graph
database and a pattern budget using Panel 1 to automatically
construct the contents of Panels 2, 5, and 6. One will also
be able to interactively select different graph repositories
as well as pattern budgets (through Panel 1) to appreciate
the portable and data-driven nature of aurora. Specifically,
by utilizing the same interface (Figure 2), one will be able
to generate different graph query interfaces across different
application domains and sources.

Formulation of subgraph queries. Using Panels 2, 5,
and 6, an audience can quickly and interactively formulate
all possible subgraph queries on a graph database. An audi-
ence may also formulate the same query using a commercial
gui such as PubChem and experience first-hand query con-
struction inefficiencies (using Panel 3) of these interfaces.

A short video to illustrate the main features using exam-
ple use cases is available at https://youtu.be/pUfVzU2HDJk.
Acknowledgments. The first four authors are supported by the
AcRF Tier-2 Grant MOE2015-T2-1-040. Byron Choi is supported by
HKRGC GRF 12201119 and 12201518.

REFERENCES

[1] S. Arora, E. Hazan, S. Kale. The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications. Theory Comput. 8(1), 2012.

[2] D. Arthur, S. Vassilvitskii. k-means++: The Advantages of Careful Seeding. In
SIAM, 2007.

[3] S. S. Bhowmick, et al. Data-driven Visual Graph Query Interface Construction
and Maintenance: Challenges and Opportunities. PVLDB, 9(12), 2016.

[4] Y. Chi, et al. Indexing and Mining Free Trees. In ICDM, 2003.
[5] H. He, A.K. Singh. Closure-tree: An Index Structure for Graph Queries. In ICDE,

2006.
[6] W. Huang, P. Eades, S.H. Hong. Measuring Effectiveness of Graph Visualiza-

tions: A Cognitive Load Perspective. Inf. Vis., 8(3), 2009.
[7] M. Jacomy, T. Venturini, S. Heymann, M. Bastian. ForceAtlas2, a Continuous

Graph Layout Algorithm for Handy Network Visualization Designed for the
Gephi Software. PloS one, 9(6), e98679, 2014.

[8] H. Kai, H.-E Chua, et al. CATAPULT: Data-driven Selection of Canned Patterns
for Efficient Visual Graph Query Formulation. In SIGMOD, 2019.

[9] J. Zhang, et al. DaVinci: Data-driven Visual Interface Construction for Sub-
graph Search in Graph Databases. In ICDE, 2015.

https://youtu.be/pUfVzU2HDJk

	Abstract
	1 Introduction
	2 Design Philosophy
	3 System Overview
	4 Related Systems
	5 Demonstration Overview
	References

