
Mapping, Indexing & Querying of MPEG-7

Descriptors in RDBMS with IXMDB

Yang Chu, Liang-Tien Chia and Sourav S. Bhowmick

Center for Multimedia and Network Technology, School of Computer Engineering,
Nanyang Technological University, Singapore 639798

Abstract

MPEG-7 is a promising standard for the description of multimedia content. A num-
ber of applications based on MPEG-7 media descriptions have been set up for
research, commercial and industrial applications. Therefore, an efficient storage so-
lution for large amounts of MPEG-7 descriptions is certainly desirable. As a kind
of data-centric XML documents, MPEG-7 descriptions can be stored in the re-
lational DBMS for efficient and effective management. The approaches of storing
XML data in relational DBMS can be classified into two classes of storage model:
schema-conscious and schema-oblivious. The schema-conscious model, however, can-
not support complex XPath-based queries efficiently and the schema-oblivious ap-
proach lacks the flexibility in typed representation and access. Although the leading
database systems have provided functionality for the XML document management,
none of them can reach all the critical requirements for the MPEG-7 descriptions
management. In this paper, we present a new storage approach, called IXMDB, for
MPEG-7 documents storage solution. IXMDB integrates the advantages of both the
schema-conscious method and the schema-oblivious method, and avoids the main
drawbacks from each method. The design of IXMDB pays attention to both mul-
timedia information exchange and multimedia data manipulation. Its features can
reach the most critical requirements for the MPEG-7 documents storage and man-
agement. The translation mechanism for converting XQuery to SQL and the sup-
port of query from multimedia perspective are provided with IXMDB. Performance
studies are conducted by performing a set of queries from the XML perspective
and from the multimedia perspective. The experimental results are presented in the
paper and initial results are encouraging.

Key words: MPEG-7, relational DBMS, storing XML documents, IXMDB

Email addresses: pg00815938@ntu.edu.sg (Yang Chu), asltchia@ntu.edu.sg
(Liang-Tien Chia), assourav@ntu.edu.sg (Sourav S. Bhowmick).

Preprint submitted to Elsevier Science 8 February 2007

1 Introduction

MPEG-7[1] is a standard for describing the content of different types of mul-
timedia data. As the first standard of the Moving Picture Experts Group to
focus not on compression, but rather on metadata or descriptions for the mul-
timedia content, it offers richer semantics as compared with other existing
audiovisual metadata like Dublin Core[2] and TV-Anytime[3]. MPEG-7 docu-
ments can be defined and modified with the help of the Description Definition
Language (DDL), which is based on XML Schema with extensions to sup-
port array, matrix and some temporal data types. Fig.1 shows an MPEG-7
description example.

MPEG-7 provides a comprehensive standardized tool set for the detailed de-
scription of audiovisual media. Descriptions for the catalogue level (e.g. title),
the semantic level (who, what, when, where) and the structural level (spa-
tiotemporal region, color histogram, timbre, texture) can be used as the base
of all application domains making use of multimedia, such as classic multime-
dia archives, broadcast media selection, digital libraries, home entertainment,
e-commerce, AI, etc.

With MPEG-7, multimedia content can be exchanged between heterogeneous
systems; plain text files can be used to store and share multimedia informa-
tion; and multimedia data will be readily available to most users. Thanks
to these advantages, more and more applications are based on MPEG-7 de-

<?xml version="1.0" encoding="ISO-8859-1"?>
<Mpeg7 xmlns="http://www.mpeg7.org/2001/MPEG-7_Schema"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type="DescriptorCollectionType">
 <Descriptor size="7" xsi:type="DominantColorType">
 <ColorSpace type="HMMD" colorReferenceFlag="false"/>
 <ColorQuantization>
 <Component>H</Component>
 <NumOfBins>360</NumOfBins>
 <Component>Sum</Component>
 <NumOfBins>100</NumOfBins>
 <Component>Diff</Component>
 <NumOfBins>100</NumOfBins>
 </ColorQuantization>
 <SpatialCoherency>21</SpatialCoherency>
 <Values>
 <Percentage>4</Percentage>
 <ColorValueIndex>216 23 43 </ColorValueIndex>
 <ColorVariance>0 0 0 </ColorVariance>
 </Values>
 … …
 <Values>
 <Percentage>0</Percentage>
 <ColorValueIndex>55 35 9 </ColorValueIndex>
 <ColorVariance>1 0 1 </ColorVariance>
 </Values>
 </Descriptor>
 </DescriptionUnit>
</Mpeg7>

Fig. 1. An example of MPEG-7 document

2

scriptions, and the amount of MPEG-7 descriptions is inevitably increasing
dramatically. Therefore, a critical requirement has arisen: how to develop an
adequate database solution for the management of larger numbers of MPEG-7
descriptions.

As discussed in [4], a suitable MPEG-7 storage solution should satisfy several
critical requirements: fine-grained storage, representation and access, typed
representation and access, providing both classic one-dimensional index struc-
tures and multidimensional index structures for efficient access and query,
and providing path indexing to navigate through the hierarchical structure of
MPEG-7 documents and efficiently extract desired information. In addition
to these requirements, an appropriate MPEG-7 management solution should
emphasize other special issues. As pointed out in [4], one challenge of the
management of MPEG-7 descriptions is how to make use of MPEG-7 schemas
and fulfill the requirement of accessing and processing arrays and matrices
within the MPEG-7 documents which make up low-level multimedia content.
Another challenge is to provide an extensible high-dimension index structure
to support efficient multimedia retrieval applications based on MPEG-7 media
descriptions.

In order to provide an adequate storage solution for the management of
MPEG-7 descriptions, in this paper we introduce a novel XML storage method
known as IXMDB, abbreviated from “Integrated XML-Enabled MPEG-7 De-
scriptions Database.” 1 The motivation of IXMDB is to integrate the advan-
tages of two main RDBMS-based XML storage approaches: schema-conscious
approach and schema-oblivious approach. It offers adequate means to fulfill
fine-grained and typed representation and access requirements for the MPEG-
7 description storage. In addition to benefiting from the sophisticated in-
dex structures provided by RDBMS, our technique provides the path index
structure for MPEG-7 documents navigation. The flexible storage schema de-
fined by our technique makes it efficient to store and manipulate the special
datatypes within MPEG-7 descriptions, such as array, matrix, basicTimePoint
and basicDuration. Furthermore, the extensible high-dimensional index mech-
anism could be created on these array or matrix data to support multimedia
content retrieval. Our MPEG-7 descriptions storage solution could be used as
the back-end MPEG-7 data repository for all kinds of MPEG-7-based multi-
media applications.

The remainder of the paper is organized as follows: Section 2 elaborates the
limitations of existing XML storage approaches for the management of MPEG-
7 descriptions, and further represents the motivation of our work. Section 3
summarizes our novel approach for the storage of MPEG-7 descriptions with
RDBMS. Section 4 presents the database schema of our proposed approach:

1 Our earlier related work can be found in [5].

3

IXMDB. We will describe how an MPEG-7 description is mapped into an
RDBMS using IXMDB. In Section 5, we will explain the insertion and ex-
traction algorithm for IXMDB. In Section 6, we present how to translate
XML queries to SQL in IXMDB and the optimization technique to improve
query performance. This is followed by a discussion of the support of multi-
media content retrieval in IXMDB. The performance results of IXMDB and
corresponding analysis are given in Section 7. We give an introduction to
the existing RDBMS-based XML storage solutions and MPEG-7 descriptions
management systems in Section 8. Finally, in Section 9 the conclusions are
presented.

2 Motivation

Since MPEG-7 descriptions are also XML documents, the first consideration
of the management of MPEG-7 descriptions is how to employ an XML docu-
ment storage schema to fulfill the MPEG-7 descriptions storage requirements.
There exist many XML storage solutions: Native XML database solutions [20–
22], XML extensions of leading DBMS[25–28], and third-part middleware for
RDBMS-based XML management.

To store XML documents efficiently and effectively in a relational database,
there is a need to map the XML DTD/Schema to the database schema.
The RDBMS-based XML storage solutions can be classified into two major
categories according to their mapping schemas: schema-conscious approach
and schema-oblivious approach. In schema-conscious approach, design of the
database schema is based on the understanding of DTD or XML Schema. It
defines a relation for each DTD subgraph and uses primary-key and foreign-
key to describe the parent-child relationship between two elements. While in
schema-oblivious approach, a fixed database schema is used to store the struc-
ture and the data of any XML documents without the assistance of document
schema. The schema-conscious approach supports typed representation and
access for XML data. It has better query performance than schema-oblivious
approach since it partitions XML data based on DTD/XML Schema. While
the schema-oblivious approach keeps the whole hierarchical structure informa-
tion of an XML document. It will thus perform complex XPath-based query
more efficiently and make it easier to re-construct the data back into XML
format than schema-conscious approach.

Since there exist various XML storage solutions with different efficiency and
functions [15–18,11,12,19,29], the most puzzling problem is which one is the
most suitable choice for the MPEG-7 documents storage.

Native XML databases are designed especially for XML documents storage.

4

Mpeg7 XPath

Data

Values

… …

 … … Component NumOfBins

 … … type colorReferenceFlag

… …

… …

DescriptionUnit

… …

 … … xsitype

 … … Percentage ColorValueIndex ColorVariance

Descriptor

ColorSpace

 … … 4 216 23 43 0 0 0

… …

ColorQuantization

17 /Mpeg7/DescriptionUnit/Descriptor/Values/ColorVariance

ID XPathExpression

Schema-conscious Method Schema-oblivious Method

 … …

 … … size xsitype SpatialCoherency

... ...

... ... 14 NULL

... ... 15 4

... ... XPathID Label Value

... ... 1 NULL

... ... 16 216 23 43

... ... 17 0 0 0

... ...

1 /Mpeg7

2 /Mpeg7/DescriptionUnit

14 /Mpeg7/DescriptionUnit/Descriptor/Values

... ...

15 /Mpeg7/DescriptionUnit/Descriptor/Values/Percentage

16 /Mpeg7/DescriptionUnit/Descriptor/Values/ColorValueIndex

... ... 2 NULL

Fig. 2. Relational schemas for storing an MPEG-7 example with schema-conscious
and schema-oblivious

Its fundamental logical storage unit is XML document, which is represented
as text format. Traditional Native XML databases cannot support typed rep-
resentations of the data within MPEG-7 documents since they represent the
contents of an XML document as text. Recent research works on native XML
database have proposed the powerful XML storage schemas to support appro-
priate access to non-textual data, e.g., Berkeley DB XML[23] and TDOM[24].
However, Berkeley DB XML is not extensible with index structures to sup-
port the index on individual items in the array/matrix datatype, and the
multidimensional index on the multimedia data of which the MPEG-7 media
description tools make heavy use. TDOM is designed to represent the basic
contents of an XML document in a typed fashion and constitute a solid foun-
dation for an XML database solution enabling the adequate management of
MPEG-7 media descriptions [24]. However, as the other DOM-based native
XML databases, it is costly to build in-memory trees of very large documents
and then query those trees.

Furthermore, it is difficult for the Native XML database systems to create a
flexible and extensible index structure on the data with various datatypes and
query multimedia information across multiple MPEG-7 documents efficiently.

While for RDBMS-based XML storage solutions, no matter what approach we
use, schema-conscious approach or schema-oblivious approach, we also cannot
avoid their intrinsic drawbacks. Fig.2 shows the relational schema for stor-
ing an MPEG-7 example shown in Fig.1 with the basic idea of the schema-
conscious approach and the schema-oblivious approach respectively. For the
schema-conscious approach, it provides weak support for hierarchical structure

5

of the original XML documents. As shown in Fig.2, only the parent-child rela-
tionship between two elements can be reserved by creating the primary-foreign
keys between corresponding tables, whereas the path expression from root ele-
ment to an arbitrary element and the whole hierarchical structure information,
including ancestor-descendant relationships, will be lost. This drawback makes
it difficult to efficiently perform complex XPath-based queries. Furthermore,
the process of re-constructing data from RDBMS into XML format may be
expensive due to access to multiple tables and inflexible representations of
structure information.

As shown in Fig.2, due to using a fixed table to store each element or at-
tribute and the mapping process without the assistant of the DTD or the
XML schema, the schema-oblivious approach has to establish only a single
value column for storing the value of each element and attribute within XML
documents as strings, the most generic type. Such a storage scheme would
make it difficult to reflect all kinds of datatypes and then create an efficient in-
dex mechanism to speed up the queries with the conditions based on datatypes
other than the string type.

All the leading database systems, such as IBM DB2, Microsoft SQL Server and
Oracle, provide XML storage and management technology in their database
products. However, as analyzed in [4], none of them can fulfill all the MPEG-7
descriptions storage requirements. Furthermore, although these XML-enabled
databases support the queries of XML documents based on XPath, these
XPath operations are evaluated by constructing DOM from CLOB and using
functional evaluations. This can be very expensive when performing operations
on large collections of documents.

In addition to the drawbacks mentioned above, none of the existing XML
storage solutions address the problem of storage of the special datatypes in-
troduced in the MPEG-7 DDL, such as array, matrix, basicTimePoint and
basicDuration. One of the critical challenges for MPEG-7 descriptions manage-
ment solution is to provide an extensible multidimensional index mechanism
to support multimedia content retrieval. Unfortunately, the multidimensional
access methods are rarely available in the most of current RDBMS-based XML
storage solutions.

3 Overview of our approach

An MPEG-7 document can be viewed as an XML tree. In this tree struc-
ture, the internal node, the element type with element contents, represents
the structure of document and can be viewed as the node that is only mean-
ingful for document traversal. The leaf node, which is a single-valued attribute

6

or element type with text content, has little usage for XML tree navigation,
as it is always a ‘leaf’ in the XML tree. So it can be viewed as the node that
is only useful for holding value. IXMDB was designed to use schema-oblivious
approach to store all the internal nodes and schema-conscious method to store
all the leaf nodes. Since all the leaf nodes are stored with schema-conscious ap-
proach, the contents of MPEG-7 documents can be mapped into RDBMS with
fine-grained manner and appropriate data types. As all the internal nodes are
mapped with schema-oblivious approach, the complete hierarchical structure
information of the original MPEG-7 documents can be kept in the database.
Based on the fundamental scheme of IXMDB, we propose a method for stor-
ing complex datatypes within MPEG-7 descriptions with relational tables and
integrate the GiST framework[10] for indexing high-dimensional data.

We carried out a set of experiments to investigate the storage efficiency and
query performance of IXMDB. The amount of storage space IXMDB con-
sumed is between that of the existing schema-conscious methods (e.g., Shared-
Inlining) and schema-oblivious methods (e.g., SUCXENT++). The perfor-
mance of mapping XML documents to RDBMS with IXMDB is similar to
SUCXENT++ and slightly slower than Shared-Inlining. IXMDB can recon-
struct original XML documents from RDBMS up to two times faster than
Shared-Inlining, and the same as SUCXENT++. For the XPath-based queries,
IXMDB outperforms SUCXENT++ by up to 12 times and Shared-Inlining by
up to 20 times for most testing queries, including recursive queries and or-
dered XPath queries. Since IXMDB provides a special storage schema for the
complex datatypes defined in MPEG-7 DDL, e.g. basicTimePoint, basicDura-
tion, array and matrix, IXMDB outperforms all the other approaches for the
queries on these datatypes. The reasons for the different performance between
our technique and the existing approaches will be discussed in Section 7.

4 Relation Schema of IXMDB

An XML document is often represented as an XML tree. In an XML tree, the
internal nodes correspond to the element types with element content in the
XML document, while the leaf nodes correspond to the single-valued attributes
and element types with PCDATA-only content in the XML document. In order
to illustrate the tree structure of the XML documents and later introduce the
storage scheme of IXMDB, an MPEG-7 document showed in Fig.1 is used as
an example and its tree representation is shown in Fig.3.

The idea of IXMDB is to use schema-oblivious approach to map all the internal
nodes and use schema-conscious approach to map all the leaf nodes. In an
XML tree, the internal nodes depict the structure of the XML document

7

Mpeg7

DescriptionUnit

Descriptor
xsi:type

DescriptorCollectionType

size

7
 DominantColorType

xsi:type
 ColorSpace
 ColorQuantization
 SpatialCoherency
 Values
 Values

type
 colorReferenceFlag

HMMD
 false

Component
 NumOfBins

360
H

21

ColorVariance

ColorValueIndex

Percentage

Percentage

ColorValueIndex

ColorVariance

4

216 23 43

0 0 0

0

55 35 9

1 0 1

Root

Internal Node

Attribute

Leaf Node

String Value

1

1.1

1.1.1

1.1.1.2
1.1.1.1
 1.1.1.3
 1.1.1.9
...
...

...

Fig. 3. Tree representation of the example in Fig.1

and are only useful for document navigation. Storing them by using schema-
oblivious method, which can provide complete structure information of an
XML document, can support efficient and easy document traversal. The leaf
nodes hold all the data of XML document. They are the ‘leaves’ in the XML
tree, so they have little usage for the XML tree navigation. They can be
considered as the nodes only for storing the data of XML document. Using
schema-conscious approach to store them can better represent appropriate
datatype of each leaf node and provide a flexible storage scheme to satisfy
different storage requests.

4.1 Internal node storage

To speed up the processing of XML tree navigation, it is important to adopt an
efficient numbering scheme to encode the nodes of a tree and quickly determine
ancestor-descendant relationship between arbitrary two nodes in the XML tree
based on such a numbering scheme. Thus, for RDBMS-based XML storage
solutions, it is important to capture encoding information of each node into the
relational data model. Note that, unlike most pure schema-oblivious methods
that label all the nodes in an XML tree, our approach only needs to encode
internal nodes.

8

Motivated by searching XML documents efficiently, several research efforts
have addressed the problem of numbering scheme specification. In [6], the
authors proposed three order encoding methods that can be used to represent
XML order in the relational data model. These three methods are Global
Order, Local Order and Dewey Order. Among them, as claimed by the authors,
Dewey Order performs reasonably well on both queries and updates. With
Dewey Order, each node is assigned an id value, a sequence of numeric values
separated by a dot that represents the path from the document’s root to the
node. The root node is assigned a single numeric value. Child node id starts
with the id of the parent node appended by a dot and the local order of the
node, as illustrated in Fig.3.

With Dewey Order, the ancestor-descendant relationship can be determined
using only the id value. However, the id length depends on the tree depth and
a string comparison of the ids may degrade the query performance and deliver
wrong results with respect to the total node order, e.g., comparing 1.9 and
1.10. In [7], the authors provided a solution for avoiding these shortcomings
and proposed a novel hierarchical labeling scheme called ORDPATH.

ORDPATH provides a compressed binary representation of Dewey Order. It
uses successive variable-length Li/Oi bitstrings to represent the id value of
each node. Each Li bitstring, which are represented using a form of prefix-
free encoding, specifies the length in bits of the succeeding Oi bitstring. For
example, if the Li bitstring 01 is assigned length 3, this Li will indicate a 3-bit
Oi bitstring. The bitstrings (000, 001, 010, ..., 111) can represent Oi values
of the first eight integers, (0, 1, 2, . . ., 7). Thus ‘01101’ is the bitstring for
ordinal ‘5’ [7].

With ORDPATH, the id value of each node is constructed as binary string and
document order can be preserved and yielded by simple bitstring comparison.
The ancestor-descendent relationships between any two nodes X and Y can be
determined equally simply: X as a strict substring of Y or vice versa implies
there is an ancestry relationship.

IXMDB uses ORDPATH to encode the position of each internal node and con-
struct the document structure information in the relational database model.
Following are the relational schemas to store internal nodes:

xpath (xpathid, length, xpathexp)

internalnode (uid, xpathid, nodename, ordpath, parent, grdesc, lid, oid, tablename)

The semantics of the attributes in the above relations are as follows:

- The xpath table records the XPath information of the XML tree. xpathid
and xpathexp represent the XPath identifier and the path expression. The
number of edges for an XPath is recorded in the attribute length;

- The internalnode table represents the information of each internal node. uid

9

is used to identify each internal node. ordpath records the ORDPATH of
this internal node. lid is the internal node local identifier, which depicts the
position of a node among sibling nodes. oid is useful for the queries that
include index predicates. It is an index of the node that occurs more than
once in the XML document. tablename is used to indicate which table stores
the value of this internal node’s leaf nodes children; and

- The attributes parent and grdesc in the internalnode table are used for
ancestor-descendant relationship determination between two internal nodes.
In [7], the authors introduced two functions to determine the parent and an
upper bound on all descendents of a given node. One is PARENT(ORDPATH
X), which presents the parent of X, the other is GRDESC(ORDPATH X),
which is the smallest ORDPATH-like value greater than any descendent of
a node with ORDPATH X. We can use the user-defined functions (UDF)
in RDBMS to implement these two functions. However, not all RDBMS
support to create index on function, e.g., DB2. In order to benefit from
index mechanism in RDBMS and improve query process, we introduce two
columns, parent and grdesc, in the internalnode table to store the parent of
corresponding internal node and the smallest value greater than any descen-
dent of this node rather than using UDF.

4.2 Leaf node storage

In order to identify the datatype of each leaf node and map them into database
by using schema-conscious approach, a mapping schema is created to repre-
sent how to map them into database schema. The mapping schema is defined
via mapping processing definition (MPD) file, which is also an XML file. The
functionality of MPD file is like the DAD file in DB2 XML Extender, which
provides a map of any XML data that is to be stored in the database. Cur-
rently, the MPD file is created manually. In the future work, we will develop
an application to automatically generate a MPD file and a set of CREATE
TABLE statements from a DTD or an XML schema. The end users can modify
the MPD files according to their storage requirements. Fig.4 shows the DTD
defined for MPD file and an example of MPD file for mapping the Dominant-
Color descriptor.

IXMDB views an XML document as a tree of objects and then uses MPD file
to map these objects to a relational database. In this view, an internal node
is usually viewed as a class and mapped to a table. For example, as shown
in Fig.4, the following declares the internal node Descriptor to be a class and
maps it to the dominantcolor table:

<InternalNodeClass Name="Descriptor" ToTable="dominantcolor">
.

</InternalNodeClass>

The leaf nodes are usually viewed as properties and mapped to columns. For

10

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT MPD (InternalNodeClass+)>
<!ELEMENT InternalNodeClass (AttributeClass*,

LeafNodeClass*,
RepLeafClass*)>

<!ATTLIST InternalNodeClass
 Name CDATA #REQUIRED
 ToTable CDATA #IMPLIED
 RepLeafTable CDATA #IMPLIED
 ExtensionType CDATA #IMPLIED>
<!ELEMENT AttributeClass (AttributeType, ToColumn+) >
<!ELEMENT AttributeType EMPTY>
<!ATTLIST AttributeType
 Name CDATA #REQUIRED>
<!ELEMENT ToColumn EMPTY>
<!ATTLIST ToColumn
 Name CDATA #REQUIRED
 Datatype (char | varchar | smallint | integer

| float | date | time | timestamp | timepoint
| duration | array | matrix) #REQUIRED>

<!ELEMENT LeafNodeClass ((ElementType | PCDATA),
ToColumn+)>

<!ELEMENT ElementType EMPTY>
<!ATTLIST ElementType
 Name CDATA #REQUIRED>
<!ELEMENT PCDATA EMPTY>
<!ELEMENT RepLeafClass EMPTY>
<!ATTLIST RepLeafClass
 Name CDATA #REQUIRED>

DTD for MPD file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE MPD SYSTEM "mpd.dtd">
<MPD>
 <InternalNodeClass Name="Mpeg7" ToTable="mpeg7"/>
 <InternalNodeClass Name="DescriptionUnit"
 ToTable="descriptorcollection">
 <AttributeClass>
 <AttributeType Name="xsi:type"/>
 <ToColumn Name="xsitype" Datatype="varchar"/>
 </AttributeClass>
 </InternalNodeClass>
 <InternalNodeClass Name="Descriptor"
 ToTable="dominantcolor">
 <AttributeClass>
 <AttributeType Name="xsi:type"/>
 <ToColumn Name="xsitype" Datatype="varchar"/>
 </AttributeClass>
 <AttributeClass>
 <AttributeType Name="size"/>
 <ToColumn Name="size" Datatype="smallint"/>
 </AttributeClass>
 <LeafNodeClass>
 <ElementType Name="SpatialCoherency"/>

<ToColumn Name="spatialcoherency"
 Datatype="smallint"/>

 </LeafNodeClass>
 </InternalNodeClass>

 … …
 <InternalNodeClass Name="Values" ToTable="values" >
 <LeafNodeClass>
 <ElementType Name="Percentage"/>

<ToColumn Name="percentage"
 Datatype="smallint"/>

 </LeafNodeClass>
 <LeafNodeClass>
 <ElementType Name="ColorValueIndex"/>

<ToColumn Name="colorvalueindex"
 Datatype="array"/>
<ToColumn Name="arrayid" Datatype="integer"/>

 </LeafNodeClass>
 <LeafNodeClass>
 <ElementType Name="ColorVariance"/>
 <ToColumn Name="colorvariance" Datatype="char "/>
 </LeafNodeClass>
 </InternalNodeClass>
</MPD>

MPD for DominantColor Descriptor

Fig. 4. DTD for MPD file and the MPD for the DominantColor descriptor

example, the following schema, which is nested inside the above mapping
schema, declares the xsi:type and size attributes and the SpatialCoherency ele-
ment to be properties and maps them to the xsitype, size and spatialcoherency
columns respectively.

<AttributeClass>
<AttributeType Name="xsi:type"/>
<ToColumn Name="xsitype" Datatype="varchar"/>

</AttributeClass>
<AttributeClass>

<AttributeType Name="size"/>
<ToColumn Name="size" Datatype="smallint"/>

</AttributeClass>
<LeafNodeClass>

<ElementType Name="SpatialCoherency"/>
<ToColumn Name="spatialcoherency" Datatype="smallint"/>

</LeafNodeClass>

Our mapping schema for the leaf nodes is much simpler than the existing
schema-conscious methods. The information needed to map a single internal
node class only includes the table to which the internal node is mapped and
the information of each property in this internal node class. It is not necessary
to list its related internal node classes, such as its parent and child internal
nodes. Note that, the ancestor-descendant relationships have been mapped to
the relational model via schema-oblivious technique.

11

For internal nodes:
XPATHID LENGTH XPATHEXP

1 1 #/Mpeg7

2 2 #/Mpeg7#/DescriptionUnit

3 3 #/Mpeg7#/DescriptionUnit#/Descriptor

4 4 #/Mpeg7#/DescriptionUnit#/Descriptor#/ColorSpace

5 4 #/Mpeg7#/DescriptionUnit#/Descriptor#/ColorQuantization

6 4 #/Mpeg7#/DescriptionUnit#/Descriptor#/Values

(a) xpath table

UID XPATHID NODENAME ORDPATH PARENT GRDESC LID OID TABLENAME

1 1 Mpeg7 x'48 x'49 1 1

2 2 DescriptionUnit x'4A40 x'48 x'4A41 1 1 descriptorcollection

3 3 Descriptor x'4A52 x'4A40 x'4A53 1 1 dominantcolor

4 4 ColorSpace x'4A5290 x'4A52 x'4A5291 1 1 colorspace

5 5 ColorQuantization x'4A52B0 x'4A52 x'4A52B1 2 1 colorquantization

6 6 Values x'4A52D0 x'4A52 x'4A52D1 4 1 values

7 6 Values x'4A52F0 x'4A52 x'4A52F1 5 2 values

8 6 Values x'4A5304 x'4A52 x'4A5305 6 3 values

9 6 Values x'4A530C x'4A52 x'4A530D 7 4 values

10 6 Values x'4A5314 x'4A52 x'4A5315 8 5 values

11 6 Values x'4A531C x'4A52 x'4A531D 9 6 values

12 6 Values x'4A5324 x'4A52 x'4A5325 10 7 values

(b) internalnode table

For leaf nodes:

UID XSITYPE UID SIZE XSITYPE SPATIALCOHERENCY

2 DescriptorCollectionType 3 5 DominantColorType 0

(c) descriptorcollection table (d) dominantcolor table

UID LID OID NODENAME VALUE UID TYPE COLORREFERENCEFLAG

5 1 1 Component H 4 HMMD FALSE

5 2 1 NumOfBins 360 (f) colorspace table

5 3 2 Component Sum

5 4 2 NumOfBins 100
5 5 3 Component Diff
5 6 3 NumOfBins 100

(e) colorquantization table

UID PERCENTAGE COLORVALUEINDEX ARRAYID ARRAYID COL0 COL1 COL2

6 4 216 23 43 1 1 216 23 43
7 10 44 67 30 2 2 44 67 30

8 2 210 33 39 3 3 210 33 39

9 6 150 80 2 4 4 150 80 2
10 4 209 60 15 5 5 209 60 15
11 3 206 42 22 6 6 206 42 22
12 0 55 35 9 7 7 55 35 9

(g) values table (h) array table

Fig. 5. IXMDB database schema for the example of MPEG-7 document in Fig.1

The database schema for the MPEG-7 document example shown in Fig.1 is
shown in Fig.5.

4.3 Complex datatype representation

As introduced previously, MPEG-7 descriptions not only use the standard
datatypes, but also add the extension datatypes, including array, matrix, ba-
sicTimePoint and basicDuration. The appropriate MPEG-7 storage solution
should fit for two application requirements: multimedia information exchange,
and multimedia data manipulation. There is no problem for the storage of the

12

632

541

Normalized schema:

MATRIXID COLUMNID ROWID VALUE

1 0 0 1

1 1 0 4

1 2 0 5

1 0 1 2

1 1 1 3

1 2 1 6

Semi-normalized schema:

MATRIXID ROWID COL0 COL1 COL2

1 0 1 4 5

1 1 2 3 6

Denormalized schema:

MATRIXID R0_C0 R0_C1 R0_C2 R1_C0 R1_C1 R1_C2

1 1 4 5 2 3 6

Fig. 6. Three relational schemas for storing a matrix

data with standard datatypes with respect to these two requirements. How-
ever, it raises an efficiency problem that the storage schema for the above
extension datatypes has to give attention to both multimedia information ex-
change and multimedia data manipulation. Undoubtedly, text-based format is
the most efficient storage model for data exchange since it is not limited to any
computer platforms and languages. Thus, storing the above special datatypes
with text format in RDBMS enables the extraction of them from database
without any additional operations and exchange of them between normally
incompatible systems efficiently. However, such a storage schema makes it in-
efficient to manipulate these special datatypes due to the expensive process of
character string parsing and datatype conversion. In this subsection, we will
introduce how to store these complex datatypes in relational database and
avoid the above efficiency problem.

Array and Matrix
In order to manipulate the array or matrix data efficiently, we can store indi-
vidual cells in the array or matrix in a pure relational table with appropriate
datatype. There are three relational schemas for array and matrix storage
(Fig.6 illustrates these three schemas):
- Normalized schema - in this schema, each row will identify a cell in the

array or matrix. The schema would be (ARRAYID, COLUMNID, VALUE)
for array, or (MATRIXID, COLUMNID, ROWID, VALUE) for matrix;

- Semi-normalized schema - in this schema, each row will store a row in the
matrix. The corresponding schema would be (MATRIXID, ROWID, COL0,
COL1, ..., COLn) for m× n matrix; and

- Denormalized schema - in this schema, each row will record one array or
matrix. It would be (ARRAYID, COL0, COL1, ..., COLn) for array, or
(MATRIXID, R0 C0, R0 C1, ..., Rm Cn) for m× n matrix.

These three storage schemas have different flexibility and efficiency for the

13

Performance of three matrix storage schemas

0

200

400

600

800

1000

1200

1400

1600

1800

Insertion Extraction Query

Operations

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Normalized Semi-normalized Denormalized

Fig. 7. Performance of three matrix storage schemas

operations of insertion, extraction and query. To evaluate the performance
of these three array/matrix storage schemas, we performed a set of opera-
tions, including insertion, extraction and query (selecting an individual item),
with 100 21 × 21 matrices extracted from SoundClassificationModel DS. The
experimental results are shown in Fig.7.

For the semi-normalized and denormalized schemas, the length of the array
or matrix must be fixed, while the normalized schema is flexible enough to
store the arrays or matrices of arbitrary cardinality. However, compared to
the semi-normalized and denormalized schemas, the normalized schema needs
to load many more tuples when performing insertion process, and need more
joins to locate the desired individual items when performing queries. For array,
the semi-normalized and denormalized schemas have the same storage schema;
therefore, they have the same performance on insertion, extraction and query.
For matrix, the denormalized schema has better performance on insertion and
query than the semi-normalized schema because it inserts fewer tuples and
needs fewer joins for the query process. With the semi-normalized schema, each
row within a matrix will be still stored as a row in the database. Among these
three schemas, it is the easiest for the semi-normalized schema to compose the
data in the database to original matrix format. Thus, for extraction operation,
the semi-normalized schema has the best performance, while the normalized
schema performs the worst as it stores the array or matrix data fragmentally.

As a performance trade-off on the operations of insertion, extraction and query,
the semi-normalized schema can be used to store the arrays or matrices with
fixed cardinality. However, only normalized schema can be adopted to store
the arrays or matrices with arbitrary length.

Even though the individual cell in the array or matrix could be stored in the
special table with appropriate datatype, we still store the array or matrix as
character string type in the table, since the character string type is still the
most efficient format for data exchange. Although this storage schema requires
more space, it speeds up the operations of reconstructing the data into XML
format and exchanging required information between incompatible systems.

14

In addition, we define a column for storing ARRAYID or MATRIXID, which
points to the corresponding record in the ARRAY or MATRIX table, which
are defined to store array or matrix data. Referring to the right panel in Fig.4,
we define two columns for the element ColorValueIndex, which is defined as
an array type. One is for storing it as a character string type, and another
is for storing the ARRAYID that points to the records in the ARRAY table.
The corresponding example of database schema can be found in Fig.5.

Note that it is not necessary that the users use the above schema to store all
the arrays and matrices in MPEG-7 descriptions. This schema is designed to
speed up the operations on the individual items of an array/matrix. For many
arrays or matrices, however, no one is interested in a certain individual item,
e.g., the arrays in ColorStructure descriptor. The common operations on these
arrays or matrices require all the items in them. The above schema cannot
improve such operations since it needs more joins to get corresponding data
and the index on individual items is meaningless for such operations. They
can be only stored with character string datatype in the database.

The above storage schema, which stores the array/matrix data twice, may
raise the problem of data consistency and integrity. This problem can occur
during the updating of the array/matrix data. To solve this problem, we can
define the triggers in the relational database to support the data consistency
and integrity. If the array/matrix values stored as character string type are
updated, the triggers can perform the actions to update the corresponding
values stored in ARRAY/MATRIX table. In addition, one limitation of this
storage schema is to fail to support the nested arrays/matrices. Fortunately,
it is practically not very relevant to the storage of MPEG-7 descriptions.

basicTimePoint and basicDuration
The basicTimePoint datatype is used to describe a time point according to the
Gregorian dates, day time and the time zone. It is represented in the following
lexical format:

YYYY-MM-DDThh:mm:ss:nnn.ff FNNN±hh:mm [8]
‘T’ is the delimiter for the time specification and ‘F’ stands for the number of
fractions of one second. ‘±hh:mm’ represents the time zone.

The basicDuration datatype is used to specify the interval of time according
to days and time of day. The lexical format of this type is given by:

PnDTnHnMnSnNnfnF±hh:mmZ [8]
In this format, the separators specify the semantic of the number n: D (days),
H (hours), M (minutes), S (seconds), N (number of fractions), f (for a decimal
expression of fractions), F (number of fractions of one second) [8].

All the leading database systems support time point type, e.g., ‘timestamp’
datatype in DB2 and Oracle, and ‘datetime’ datatype in SQL Server. Although

15

Example of timepoint and duration extracted from ‘UserDescription’ description:

Mapping scheme in MPD file:

Database schema:

… … MEDIATIMEPOINT TIMESTAMP MEDIADURATION TIMESTAMPDURATION

… … 2000-10-09T19:10:12 2000-10-09-19.10.12.000000 PT1M45S 145

<MediaTime>

 <MediaTimePoint>2000-10-09T19:10:12</MediaTimePoint>

 <MediaDuration>PT1M45S</MediaDuration>

</MediaTime>

<NodeClass Name="MediaTime" ToTable="mediatime">

 <LeafNodeClass>

 <ElementType Name="MediaTimePoint" />

 <ToColumn Name="mediatimepoint" Datatype="timepoint" />

 <ToColumn Name="timestamp" Datatype="timestamp" />

 </LeafNodeClass>

<LeafNodeClass>

 <ElementType Name="MediaDuration" />

 <ToColumn Name="mediaduration" Datatype="duration" />

 <ToColumn Name="timestampduration" Datatype="varchar" />

 </LeafNodeClass>

</NodeClass>

Fig. 8. Storage scheme for basicTimePoint and basicDuration

the basicTimePoint datatype is based on ISO 8601, it is slightly different from
the format accepted by the database system. We cannot directly insert this
type into a relational table with built-in time point type in RDBMS without
conversion. We also use two columns in relational table to store the data with
basicTimePoint datatype to give attention to data exchange and manipula-
tion. One is for storing basicTimePoint as a character string for efficient data
exchange, and the other is defined as built-in time point datatype, e.g., times-
tamp in DB2, for time data operation. One of the most important operations
on the time point data is time comparison. The original time point values in
MPEG-7 descriptions are often represented with time zone. It is not efficient
to directly compare the time point values with different time zones. During the
mapping process, we first convert the time point data in MPEG-7 descriptions
into a format acceptable to the database system, translate the time point data
into local time, and store them into relational table with timestamp datatype;
thereby utilizing the relational DB functionalities to directly and efficiently
compare time point values.

The duration type may be involved in date and time arithmetic operations.
All leading database systems support such operations as addition and subtrac-
tion. However, they differ in date arithmetic operations and the representation
of duration operand. This article focuses on how to store basicDuration type
in DB2. DB2 introduces four types of durations: labeled-duration, date dura-
tion, time duration and timestamp duration. Since the basicTimePoint type
is stored as timestamp datatype, the timestamp duration type, which is ex-

16

pressed as a decimal number with precision 20 and scale 6, is the best mode
to represent basicDuration type and then utilize the date and time arithmetic
operations in DB2. For basicDuration type, we also use two columns, one for
storage as character string, and the other for manipulating and recording as
timestamp duration type.

Fig.8 uses an example extracted from a UserDescription description to illus-
trate the storage scheme for the basicTimePoint and basicDuration types. The
date and time operations between MediaTimePoint and MediaDuration can be
easily implemented with date and time functionalities provided by RDBMS.
For example, if a user would like to get the result of adding MediaDuration to
MediaTimePoint, the following simple SQL could be issued:
SELECT timestamp + decimal(timestampduration,20,6) FROM mediatime

4.4 Summary

According to the above storage schema, all the leaf nodes within MPEG-7 de-
scriptions are mapped in fine-grained manner to corresponding columns with
appropriate datatype. For the complex datatypes defined by MPEG-7 DDL,
such as array, matrix, basicTimePoint and basicDuration, a special storage
schema is designed to store them in relational database. Although such a stor-
age schema need more storage space and an additional mechanism to keep data
consistency, it can speed up the special queries on these complex datatypes.
It is somewhat similar to the data warehousing technique in RDBMS, which
stores the operational data repeatedly and increases the complexity of stor-
age process, but provides the powerful query capability. IXMDB can provide
the most support for the fine-grained and typed representation and access
of the contents of the MPEG-7 descriptions. With such storage schema, the
MPEG-7 description content can be indexed easily by built-in database in-
dexes. Since the path expressions of all the internal nodes are kept and each
internal node is labelled by ORDPATH, the sufficient structure information
of MPEG-7 documents can be stored in RDBMS.

5 Insertion and Extraction

5.1 Insertion Algorithm

The algorithm for inserting MPEG-7 data into RDBMS is shown in the Fig.9.
The input of the algorithm is the original MPEG-7 document. At the end of the
algorithm, all the data and structure information of the MPEG-7 document
would be stored in the relational database. The insertion proceeds as follows:

17

Input: D - the MPEG-7 document to be mapped

Output: S - collection of 'insert' SQL statements

 1: interNodeRows is the collection of row data of each internal node

 2: leafNodeRows is the collection of row data of leaf nodes

 3: document = parse(D)

 4: root = document.getDocumentElement()

 5: rootXPath = getXPath(root)

 6: rootORDPath = getORDPath(root)

 7: mappingNode(1, root, rootXPath, rootORDPath, null)

 8: S .addInsertStatement(interNodeRows)

 9: S .addInsertStatement(leafNodeRows)

10: return S

(a) Insertion Algorithm

Input: level, node, xpath, ordpath, parent_ordpath

Output: interNodeRows - collection of row data of internal nodes

 leafNodeRows - collection of row data of leaf nodes

 1: interNodeRow ←
 new InternalNodeRowClass(level, node, xpath, ordpath)

 2: interNodeRows.add(interNodeRow)

 3: leafNodeRow ← new RowClass()

 4: attributes = node.getAttributes()

 5: processAttributes(leafNodeRow, attributes)

 6: for (childNode = node.getFirstChild();

 7: childNode != null;

 8: childNode = childNode.getNextSibling()) do

 9: if (childNode is internal node) then

10: chileNode_xpath = getXPath(childNode)

11: childNode_ordpath = getORDPath(childNode,parent_ordpath)

12: mappingNode(level+1, childnode, childNode_xpath, childNode_ordpath, ordpath)

13: else if (childNode is leaf node) then

14: processLeafNode(leafNodeRow, childNode)

15: end if

16: end for

17: leafNodeRows.add(leafNodeRow)

18: return interNodeRows, leafNodeRows

(b) Procedure mappingNode

Fig. 9. Insertion Algorithm

(1) The original MPEG-7 document is first parsed and the corresponding
document tree is generated (line 3);

(2) Obtain the root element and corresponding XPath and ORDPath of root
element (lines 4 to 6);

(3) Call the function mappingNode() to process the root element (line 7);
(4) Generate ‘insert’ SQL statements (lines 8 to 9); and
(5) The function mappingNode is used to map each internal node which pro-

ceeds as follows (refer to Fig.9(b)):
- generate one row data for this internal node and add it to internal node

rows collection (lines 1 to 2);
- define a variable leafNodeRow as an instance of RowClass class to record

the row data of each leaf node that belongs to this internal node (line
3);

- call function processAttributes to process attributes of this internal node
with the aid of MPD file. After this process, the corresponding column
information and the value with appropriate datatype of each attribute
will be recorded into leafNodeRow (lines 4 to 5);

- process all children of this internal node (lines 6 to 16). If the child

18

node is also an internal node, call the function mappingNode to map
this node (lines 9 to 12). If the child node is a leaf node, call function
processLeafNode to process it, including getting column name, convert-
ing datatype and adding corresponding row information to leafNodeRow
(lines 13 to 14); and

- add leafNodeRow to leaf node rows collection (line 17).

5.2 Extraction Algorithm

Input: L1 {l1,l2,...lk} - list of internal nodes data ordered by

 UID, which is depth-first order of internal node 13: if n.level > p.level then

 L2 - list of all leaf nodes data 14: s.push(p)

Output: D - an XML document 15: else if n.level = p.level then

 1: n, p are instance of Class 'NodeClass' which including 16: p = s.peek()

XML node and level information. 17: else if

 2: s is a stack. 18: while n.level <= p.level do

 3: for all elements in L1 do 19: s.pop()

 4: if n = null then 20: p = s.peek()

 5: n.node = D.createElement(li.nodeName) 21: end while

 6: n.level = li.level 22: end if

 7: D.appendChild(n.node) 23: setLeafNodeChildren(n.node, L2)

 8: setLeafNodeChildren(n.node, L2) 24: p.node.appendChild(n.node)

 9: p = n 25: p = n

10: else if 26: end if

11: n.node = D.createElement(li.nodeName) 27: end for

12: n.level = li.level 28: return D

Fig. 10. Extraction algorithm

The extraction is the counter-procedure of insertion process. The first step
is to extract data from the database, and then reconstruct them to revert to
original XML format. The algorithm for reconstruction is presented in Fig.10.
The extraction proceeds as follows:

(1) Extract all the internal nodes data and leaf nodes data from the database
as the input parameters of reconstruction algorithm;

(2) The variables n and p are the instance of NodeClass class that records
XML node and its level information. n is for current node and p is for
the parent node of n and the node processed just previously;

(3) For all the internal nodes, the root element is first processed (lines 4 to
9). Then, the rest internal nodes are treated one by one;

(4) For each internal node data, after creating corresponding XML node (line
11) and getting its level information (line 12), we can find its parent node
information (lines 13 to 22). Then, add leaf nodes to the current internal
node (line 23) and append the current internal node to the parent node
as a child (line 24); and

(5) The function setLeafNodeChildren (line 8 and line 23) is used to insert
the leaf nodes to the current internal node as its children. With the aid
of MPD file, we can identify the element type of these leaf nodes, i.e.
attribute or element type with PCDATA-only content, and then insert

19

them into current internal node with correct positions.

6 Querying MPEG-7

6.1 XPath-based query

With IXMDB, applications can directly use SQL to access the contents of
media descriptions in a fine-grained manner. However, the database schema
of MPEG-7 storage solution is often not transparent to the users or applica-
tions. They prefer to access MPEG-7 media descriptions through some form of
declarative XML query language, e.g., XPath and XQuery. In order to support
the requirement of XML query language, it is necessary for the MPEG-7 de-
scription management solution to be powerful enough to provide appropriate
translators from XPath and XQuery to SQL.

XQuery[9] is a query language built on XPath expressions to find and extract
elements and attributes from XML documents. It has been broadly appli-
cable across many types of XML data sources. XQuery offers iterative and
transformative capabilities through FLWOR expressions, which stand for the
five major clauses: for, let, where, order by and return. To support XQuery
in IXMDB, we developed a translation mechanism for converting XQuery to
SQL. This mechanism supports many features of XQuery, which include simple
or recursive path expressions, predicate expressions (including order predicate
and value comparison predicate), arithmetic expressions, comparison expres-
sions and logical expressions[9]. However, due to the complexity of XQuery
and the gaps between XQuery and SQL, it is difficult to translate all the
features of XQuery into SQL. Fig.11 demonstrates the XQuery expression.

6.1.1 Query Translation Algorithm

XQuery :

for
 $b in doc(‘dominantcolor.xml’)/Mpeg7

/DescriptionUnit/Descriptor
where
 $b/Values/ColorValueIndex = ‘44 67 30’
 and $b/Values/Percentage > 5
return
 $b/SpatialCoherency

SQL :

select T1.spatialcoherency
from xpath X1, xpath X2,
 internalnode I1, internalnode I2,
 descriptor T1, values T2
where X1.xpathexp = ‘/Mpeg7/DescriptionUnit

/Descriptor’
 and X1.xpathid = I1.xpathid

 and X2.xpathexp = ‘/Mpeg7/DescriptionUnit
/Descriptor/Values’

 and X2.xpathid = I2.xpathid
 and I2.parent = I1.ordpath

 and T1.uid = I1.uid
 and T2.uid = I2.uid
 and T2.colorvalueindex = ‘44 67 30’
 and T2.percentage > 5

Fig. 11. An example of XQuery and corresponding SQL translated by IXMDB

20

There are several steps in our query translation process. First step is to use a
parser generator to parse the XQuery and then generate corresponding parse
tree. One example of a parser generator tool is JavaCC, the parser generator
used with Java applications. The second step is to walk this parse tree and
generate all the PathExpr and ComparisonExpr within the XQuery in ques-
tion. In XQuery, PathExpr represents a path expression that can be used to
locate nodes within XML tree, and ComparisonExpr represents a compari-
son expression that allows two values to be compared. For example, in the
XQuery shown in Fig.11, the PathExprs and ComparisonExprs are listed in
Fig.12. Finally, these PathExprs and ComparisonExprs can be translated into
corresponding SQL component. Fig.13 shows the translation algorithm for
IXMDB.

PathExpr :

//Descriptor
//Descriptor/Values/ColorValueIndex ($b/Values/ColorValueIndex)
//Descriptor/Values/Percentage ($b/Values/Percentage)

//Descriptor/SpatialCoherency ($b/SpatialCoherency)

ComparisonExpr :

$b/Values/ColorValueIndex = '44 67 30'
$b/Values/Percentage > 5

Fig. 12. PathExprs and ComparisonExprs of the XQuery in Fig.11

Input: XQuery query X
Output: Translated SQL query S

 1: parse tree T = parse (X)
 2: E = walkParseTree(T)
 3: SelectClause s = S.getSelectClause()
 4: FromClause f = S.getFromClause()
 5: WhereClause w = S.getWhereClause()
 6: for all PathExpr pi in E.allPathExpr do
 7: processPathExpr(pi, f,w)
 8: if pi included in return clause then
 9: s.add(“Ti.” + pi.getColumn())
10: end if
11: end for
12: for all ComparisonExpr ci in E.allComparisonExpr do
13: processComparisonExpr(ci, f,w)
14: end for
15: return S

Fig. 13. Translation algorithm

The translation proceeds as follows:

(1) Parse the XQuery and generate parse tree (line 1). Then, walk the parse
tree and generate all the PathExprs and ComparisonExprs in XQuery
(line 2);

(2) Process all the PathExprs (lines 6 to 11). Procedure processPathExpr will
be called to generate corresponding ‘from’ and ‘where’ clause; and

21

Input:
 PathExpression pi, FromClause f, WhereClause w
Output:
 FromClause f, WhereClause w

 1: f.add(“xpath Xi, internalnode Ii”)
 2: w.add(“Xi.xpathexp = ” + pi.getPathExpr() + “ and Xi.xpathid = Ii.xpathid”)
 3: if the end node in pi is leaf node then
 4: tablei = pi.getTable() /* get the table which stores this leaf node */
 5: f.add(tablei + “ Ti”)
 6: end if
 7: for all FilterExpr fj in pi do
 8: PathExpr pij0 = prefix pathexpr of fj
 9: if pij0.length = pi.length then
10: pij0 = pi
11: else
12: f.add(“xpath Xij0, internalnode Iij0”)
13: w.add(“Xij0.xpathexp = ” + pij0.getPathExpr() + “ and Xij0.xpathid = Iij0.xpathid”)
14: addRelationship(pij0, pi, w)
15: end if
16: if fj is index predicate then /* handle PathExpr like //Descriptor[6]/Values/… */
17: if the end node in pij0 is leaf node then
18: w.add(“Ti.oid=” + fj.getIndexPredicate())
19: else /* the end node in pij0 is internal node */
20: w.add(“Iij0.oid=” + fj.getIndexPredicate())
21: end if
22: else if fj is comparison express then
23: if the first node in filter is leaf node then
24: tableij0 = pij0.getTable()
25: column = column corresponding to this leaf node
26: f.add(tableij0 + “ Tij0”)
27: w.add(“Tij0.” + column + fj.getOperator() + fj.getRightOperand())
28: else /* the first node in the filter is internal node */
29: pij1 = full pathexpr of left operand of the comparison express in fj
30: tableij1 = pij1.getTable()
31: column = pij1.getColumn()
32: f.add(tableij1 + “ Tij1”)
33: w.add(“Tij1.” + column + fj.getOperator() + fj.getRightOperand())
34: addRelationship(pij0, pij1, w)
35: end if
36: end if
37: end for
38: return f,w

Fig. 14. Procedure processPathExpr

(3) Procedure processComparisonExpr is called to process all the Compar-
isonExprs (lines 12 to 14).

Procedure of processPathExpr is shown in Fig.14 and this procedure proceeds
as follow:

(1) Since the path expressions are stored in ‘xpath’ table and the internal
node information is stored in ‘internalnode’ table, we need to join the
two tables to get the internal node information (lines 1 to 2);

(2) If the end node of this path expression is leaf node, add corresponding
table name to FROM clause (lines 3 to 6);

(3) Lines 7 to 37 are for processing filter expressions in the path expression.
First, parse each filter expression to extract prefix path expression and
filter path expression, and then add corresponding FROM and WHERE
clauses (lines 8 to 15). For example, in the following path expression:

//Descriptor[Values/Percentage=‘3’]/SpatialCoherency

the prefix path expression is //Descriptor, the filter path expression is
//Descriptor/Values/Percentage, and path expression //Descriptor/

22

SpatialCoherency could be called a destination path expression. In later
processes, we may check the ancestor-descendant relationships among
these three types of path expression to gain the final result; and

(4) Handle the conditions in filter expression (lines 16 to 36). There are two
types of conditions to be handled: index predicate and comparison pred-
icate.
- index predicate

Consider the following example:
//Descriptor[6]/Values/...

In our storage schema, the column oid is introduced to store the ordinal
information of each element. In the above example, if element Descrip-
tor is a leaf node (repeatable leaf node), the following statement would
be added in WHERE clause: T.oid = 6, where T is the alias of the table
that stores this leaf node value (lines 17 to 18). In the tables that store
the repeatable leaf nodes, we also introduce the column oid to record
the corresponding ordinal information of each repeatable leaf node (see
Fig.5 (e) colorquantization table). If element Descriptor is an internal
node, the following statement would be added in WHERE clause: I.oid
= 6, where I is the alias of corresponding internalnode table (lines 19
to 20); and

- comparison predicate
If the first element of filter path expression is a leaf node, for example,
the element Percentage in the path expression

//Descriptor/Values[Percentage=‘3’]/...,
the following statement would be added in WHERE clause: T.percentage
= 3, where T is the alias of the table that corresponds to the internal
node Values (lines 23 to 27). If the first element of filter path expres-
sion is an internal node, for example, the element Values in the path
expression

//Descriptor[Values/Percentage=‘3’]/...,
after adding the statement T.percentage = 3, we need to add the state-
ment to check the parent-child relationship between //Descriptor and
//Descriptor/Values (lines 28 to 34). In subsection 3.1, we have dis-
cussed how to get parent-child or ancestor-descendant relationship be-
tween two nodes with ORDPath. The following statement would imple-
ment the above relationship evaluation: I1.ordpath = I2.parent, where I1

is the alias of the internalnode table that corresponds to //Descriptor

and I2 corresponds to //Descriptor/Values.

Fig.15 shows the procedure of processComparisonExpr. This procedure follows:

(1) Obtain left and right operands and operator in the comparison expression
(lines 1 to 3); and

(2) Two types of comparison expression need to be handled.
- In the first type, the right operand is literal, e.g.

23

Input:
 ComparisonExpr ci, WhereClause w
Output:
 WhereClause w

 1: PathExpr l = ci.getLeftOperand()
 2: operator = ci.getOperator()
 3: r = ci.getRightOperand()
 4: if r is Literal then
 5: w.add(l.getTableAlias() + ”.” + l.getColumn() + operator
 + r.getLiteralExpr())
 6: else if r is PathExpr then
 7: w.add(l.getTableAlias() + ”.” + l.getColumn() + operator
 + r. getTableAlias() + “.” + r.getColumn())
 8: end if
 9: return w

Fig. 15. Procedure processComparisonExpr

//Descriptor/Values/Percentage=‘5’.
The following SQL statement would be added in WHERE clause:

T.percentage = 5,
where T is the alias of the table that corresponds to the internal node
Values (lines 4 to 5); and

- In the second type, the right operand is also a path expression, e.g.
//FilteringAndSearchPreferences/PreferenceCondition/Place/Name

= //BrowsingPreferences/PreferenceCondition/Place/Name.
The following SQL statement would be added in WHERE clause:

Tl.name = Tr.name,
where Tl is the alias of the table that corresponds to the left path ex-
pression and Tr corresponds to the right path expression (lines 6 to
7).

The SQL result for translating the XQuery example in Fig.11 according to the
above translation algorithm is shown in the right panel in Fig.11.

With the aid of the XPath expressions in XQuery and the position information
of related nodes stored in the database, the return of results could be organized
with XML format. The output algorithm is similar to the corresponding parts
of extraction algorithm.

6.1.2 Query Rewriting

To evaluate the performance of the above translation procedure, we captured
information about the access plan of the above SQL statement. The captured
information helps us understand how individual SQL statements are executed
so that we can tune the statements. The access plan of the SQL statement
in Fig.11 that is based on 1GB MPEG-7 dataset is shown in the Fig.16 (a).
In this access plan graph, rectangles represent tables and diamonds represent
operators. Operator is either an action that must be performed on data, or the
output from a table or an index, when the access plan for an SQL statement

24

RETURN

DESCRIPTOR

INTERNALNODE

INTERNALNODE

XPATH

VALUES

XPATH

MSJOIN

Cost:

3,311,047,168

FILTER

Cost:

40,135.71

FETCH

Cost:

40,119.86

TBSCAN

Cost:

4,248

TBSCAN

Cost:

166,917

NLJOIN

Cost:

166,895

TBSCAN

Cost:

25

NLJOIN

Cost:

166,895

FETCH

Cost:

166,869

TBSCAN

Cost:

25

FETCH

Cost:

166,869

NLJOIN

Cost:

1,588,178,816

NLJOIN

Cost:

738,041

TBSCAN

Cost:

166,910

(a) Without optimization

RETURN
 HSJOIN
 FETCH

HSJOIN
 TBSCAN

HSJOIN
 FETCH

FETCH

DESCRIPTOR

INTERNALNODE

INTERNALNODE

VALUES

Cost:

2,062,786,176

Cost:

40,119

Cost:

2,774,331

Cost:

4,236

Cost:

353,772

Cost:

166,869

Cost:

166,869

(b) With optimization

Fig. 16. Access plan for SQL statement in Fig.11

is executed. The operators occurred in this graph are explained as follows:
RETURN – Represents the return of data from the query to the user;

MSJOIN – Represents a merge join, where both outer and inner tables must be in join-predicate order;

NLJOIN – Represents a nested loop join that accesses an inner table once for each row of the outer table;

FILTER – Filters data by applying one or more predicates to it;

TBSCAN – Retrieves rows by reading all required data directly from the data pages; and

FETCH – Fetches columns from a table using a specific record identifier.

The number under each operator indicates the total cost that is the estimated
total resource usage necessary to execute corresponding operation. Cost is
derived from a combination of CPU cost (in number of instructions) and I/O
cost (in numbers of seeks and page transfers).

In our optimization study with access plan, we noticed that the joins between
the xpath and internalnode tables consumed a considerable portion of the
query processing time, and the cost of such joins cannot be decreased with
the query optimizer of database system. The main effects of the joins between
xpath and internalnode on the total query performance for the large dataset,
is that large amounts of records in internalnode table increase the size of joins
between xpath and internalnode tables dramatically.

In order to avoid these time-consuming joins, we re-wrote the queries to opti-

25

mize the query process. This process is similar to the optimization technique
discussed in SUCXENT++[11]. In the query rewriting process, the join ex-
pression:

xpath.xpathexp = xpath and internalnode.xpathid = xpath.xpathid
would be placed with:

internalnode.xpathid = n
where n is the xpathid value corresponding to the path expression in the xpath
table. Similarly, the following expression:

xpath.xpathexp like xpath% and internalnode.xpathid = xpath.xpathid
is replaced with:

internalnode.xpathid in (...)
where the value in the parentheses is the set of xpathid values corresponding
to the path expression in the xpath table. The rewriting query process includes
two steps: first, accessing xpath table and getting the xpathid value correspond-
ing to the path expression; second, using these values to write the final SQL
statement and then perform it to get the final result. The optimized access
plan for SQL in Fig.11 is shown in Fig.16 (b).

Although such optimized query process need to access database multiple times,
it avoids the joins between xpath and internalnode tables. When there exists a
large amount of data in internalnode table, the query performance is improved
dramatically (up to 10 times in our experiment).

6.2 Multimedia Content Retrieval

To enhance our system to support extensible indexing mechanism, we inte-
grated the GiST framework [10] into IXMDB. GiST provides a framework for
building any kind of balanced index tree on multidimensional data. However,
the GiST framework runs as its own process separately from the database
system. In order to connect our RDBMS-based MPEG-7 storage solution to
the GiST framework, we developed a set of user defined functions. With these
database functions, the users can access the external multidimensional in-
dex system via simple SQL statements. The current GiST version is prepack-
aged with extensions for some spatial access methods, such as R-tree[32], R*-
tree[33], SS-tree[34] and SR-tree[35]. To support the similarity searching func-
tion based on metric space, the M-tree[36], a representative of metric-based
indices is added in IXMDB.

7 Experimental Results

In order to check the effectiveness of our method we have implemented IXMDB
using JDK1.5 and carried out a series of performance experiments. In this

26

section, experimental results will be presented. First, we present the elapsed
time for insertion and extraction executions and storage space requirements
of IXMDB. We compare it with SUCXENT++[11], which has been proven
to outperform the other existing schema-oblivious approaches, and Shared-
Inlining[12], which is the representative of existing schema-conscious methods.
Next, we compare the query performances of IXMDB to these approaches.
To test how our system supports the queries from multimedia perspective
efficiently, we performed a set of experiments to evaluate the efficiency of
the multidimensional index system. The hardware platform used is a Dell
PowerEdge 2650 with Xeon CPU 2.8GHz and 1.00GB RAM running Windows
Server 2003 Enterprise Edition. The data base system is IBM DB2 Universal
Database Enterprise Server Edition V8.1. The application has been developed
and the running environment is Java JDK 1.5.

7.1 Data Set

Dataset
No of Internal

Nodes

No of Leaf

Nodes

No of

Attributes

No of

Nodes
Size (MB) Max Depth

BENCH001 7802 9330 3919 21051 1.1 12

BENCH01 76749 91116 38265 206130 11.3 12

BENCH 762838 903477 381878 2048193 113.0 12

MPEG-7 5013953 10158454 3819292 18991699 1030.0 11

Fig. 17. Characteristics of the experimental data sets

We used two experimental data sets. One is a synthetic dataset, which is from
the XMark project[13], a benchmark for XML data management. The other
is a real dataset, which consists of MPEG-7 descriptions. These two data sets
were used for comparison of storage size, insertion and extraction times. Since
MPEG-7 descriptions are also XML documents, in order to test the effec-
tiveness of IXMDB from XML perspective, we used XMark benchmark data
as one of experimental data sets. We generated the XMark benchmark data
with different scale factors. Three different sizes of data are used: BENCH001
(which means 1% of the original BENCH) with 1.1MB size, BENCH01 with
11.3MB size and BENCH with 113MB size. The MPEG-7 descriptions data
set with the size of 1GB includes four Description Schemes: UserDescrip-
tion DS, Object DS (including SpatialMask D), StateTransitionModel DS and
SoundClassificationModel DS, and eight low-level descriptors extracted from
about 240,000 pictures: ColorLayout, ColorStructure, ContourShape, Domi-
nantColor, EdgeHistogram, HomogeneousTexture, RegionShape and Scalable-
Color. Fig.17 summarizes the characteristics of the experimental data sets.

Test queries need to be carefully selected for the performance study. XMark
issues 20 benchmark queries that cover different aspects of XML queries for
accessing XML data. 2 We also issued twelve common queries to test query

2 These queries could be found on the following web site: www.xml-benchmark.org

27

MPEG-7

- MQ1. Find whether user 'John Doe' requests that his identity is revealed to third parties or not.

- MQ2. List the collected actions' type for user 'John Doe' in his usage history.

- MQ3. Return the user name who conducted 'Record' action over a period of six hours on the evening of October 10,2000.

- MQ4. Return the end time point of the user John Doe's observation that started at 18:00, October 10,2000.

- MQ5. Return the DominantColor descriptor information of the sixth image.

- MQ6. Return the value of ColorValueIndex with the maximum Percentage value for the 88th image.

- MQ7. Return the ScalableColor descriptor information of the sixth image.

- MQ8. Return the images that have red dominant color with more than 30 Percentage value.

- MQ9. Return the local-edge distribution information (edge histogram descriptor) of the images that have blue dominant color

with more than 20 Percentage value.

- MQ10. Return the object name which locates at the right of point (10,10) in the image which media URL is 'image0.jpg'.

- MQ11. Return the transition probability from 'Pass' to 'Shot on goal'.

- MQ12. Return the largest transition probability among the states and the labels of corresponding two states in the sound model

which ID is 'ID3'.

Fig. 18. Queries

performance on MPEG-7 documents. These queries are shown in Fig.18. In
our performance study, we labelled the XMark queries as Q1-Q20, and the
MPEG-7 queries as MQ1-MQ12. The corresponding SQLs with IXMDB for
these queries are shown in Appendix A. To evaluate the effectiveness of the
multidimensional index system, we performed similarity search on four low-
level descriptors with different dimensions.

7.2 Insertion Performance and Storage Size

0

500

1000

1500

2000

2500

3000

3500

BENCH001 BENCH01 BENCH MPEG-7

Data Set

Insertion Performance

R
u

n
n

in
g

 T
im

e
 (

s
)

IXMDB

SUCXENT++

Inlining

Fig. 19. Experimental Result: Insertion Performance

Fig. 19 presents the insertion performance (including index creation during
insertion process) for different sample data set. This figure shows that the
Shared-Inlining is the best, while IXMDB and SUCXENT++ have similar
performance. This is because these methods store different amounts of data
during insertion process.

Shared-Inlining method creates tables for the internal nodes, and their leaf
node children, and some of leaf node descendants may be inlined into these

28

Approach Dataset
No of

Tuples

Table size

(MB)

Index size

(MB)

BENCH001 18498 1.6 0.6

BENCH01 183326 15.4 6.6

BENCH 1814296 149.2 60.8

MPEG-7 9411958 910.3 420.5

BENCH001 13946 1.3 0.8

BENCH01 136262 12.4 9.1

BENCH 1339355 120.5 113.3

MPEG-7 14409746 1126.9 814.8

BENCH001 7971 0.6 0.3

BENCH01 78126 5.8 3.6

BENCH 772838 56.8 32.5

MPEG-7 5089703 660.7 129.5

IXMDB

SUCXENT

Shared-Inlining

Fig. 20. Storage size

tables. Therefore, the number of inserted tuples with Shared-Inlining is close
to the number of internal nodes. SUCXENT++ only stores leaf nodes, thus
the number of its inserted tuples is equal to the number of leaf nodes. For
IXMDB, all internal nodes need to be inserted; and for each internal node
that has attributes or leaf nodes, one tuple would be inserted to store its leaf
node children. Therefore, the number of inserted tuples with IXMDB is close to
double of the number of internal nodes. Compared to SUCXENT++, Shared-
Inlining and IXMDB have a disadvantage for insertion process. That is, they
need to insert data into more tables than SUCXENT++ does. However, such
disadvantages can be compensated by the smaller size of inserted tuples and
less elapsed time for index creation with Shared-Inlining and IXMDB. Since
SUCXENT++ stores the data in several fixed tables, inserting the value of
each leaf node would require additional storage process, i.e., storing additional
information into the columns other than the column that records the value
of leaf node in the table. While for Shared-Inlining and IXMDB, the value of
each leaf node is stored in corresponding column and do not raise additional
storage requirement. Furthermore, SUCXENT++ needs to create the index
on all the values with character string type, while IXMDB and Shared-Inlining
generate the indexes on the required columns with different datatypes. Thus,
IXMDB and Shared-Inlining take less time to create indexes. In summary,
these methods have slight difference in insertion performance due to their
intrinsic advantage and disadvantage in insertion process.

Fig.20 shows their different storage requirements. The above discussions can
also explain why SUCXENT++ needs more storage space to store the values
of leaf nodes and consumes more storage size for indexes.

7.3 Extraction Performance

Fig. 21 shows the extraction performance of these approaches. Extraction is
the reverse operation of insertion process. That means extraction operation

29

0

50

100

150

200

250

300

350

BENCH001 BENCH01 BENCH

Data Set

Extraction Performance

R
u

n
n

in
g

 T
im

e
 (

s
)

IXMDB

SUCXENT++

Inlining

Extraction Construction Extraction Construction Extraction Construction

IXMDB 0.6 0.4 5.8 2.8 141 55

SUCXENT++ 0.4 1.1 2.6 6.8 70 146

Inlining 1.5 0.6 10.5 3.1 240 66

Running time in terms of two steps of extraction process

BENCH001 BENCH01 BENCH

Fig. 21. Experimental Result: Extraction Performance

is the process to extract the data from database and reconstruct them with
original XML format. The extraction time is made up of the time taken to
extract the relevant data from database and main memory processing time
to reconstruct the data into XML document. Fig.21 also shows the running
time of these methods in terms of the two steps of extraction process. Based
on this figure, we observe the followings: there are slight difference between
IXMDB and SUCXENT++, and they are about 50% faster than Shared-
Inlining method in terms of extraction performance.

In the process of extracting relevant data from database, the performance of
SUCXENT++ is the best since it only retrieves the data of leaf nodes. IXMDB
needs to retrieve all internal nodes and corresponding leaf node children. Note
that it is not necessary to join internalnode table and each leaf nodes table to
get the leaf nodes data, since with the aid of MPD file and the given document
identifier, it is easy to extract all the leaf nodes value from database without
any internal nodes information.

However, for the process of reconstructing the extracted data into XML for-
mat, SUCXENT++ performs the worst due to its storage schema. SUCX-
ENT++ only stores the path expressions of leaf nodes and there is a lack of
the information about each internal node. When SUCXENT++ creates the
XML document tree, it needs to first parse the path expression of each leaf
node, gain the internal nodes within this path expression, and then decide the
appropriate positions of these internal nodes and leaf nodes in the document
tree. Therefore, with SUCXENT++, although the performance of extract-

30

ing data from database is better, the time taken for reconstruction is more.
IXMDB consumes the least memory processing time to reconstruct XML doc-
ument becuase it creates the document tree by only organizing the internal
nodes. With the aid of an MPD file the corresponding leaf nodes of each inter-
nal node can be efficiently placed to the appropriate position in the document
tree.

Although Shared-Inlining returns the smallest number of tuples among these
approaches when extracting data from database, the performance is worse
than the others because Shared-Inlining uses primary key and foreign key to
represent the parent-child relationship between two nodes. Such relationship
information needs to be gained to generate XML document tree. This means a
large amount of join queries need to be executed to extract data. The extrac-
tion process would become more expensive when there exist many relations
for storing XML documents.

7.4 Query Performance

7.4.1 Queries from the XML perspective

Fig.22 represents the query performance of each approach for different queries
introduced in the beginning of this section. This figure shows that IXMDB
has encouraging query performance for most of the queries. Fig.23 summa-
rizes the number of queries that each method performed best or worst, and
also shows the query performance statistic, including the minimum, maxi-
mum, average, and standard deviation of the query performance for all the
test queries. According to Fig.23(a), we can observe that IXMDB primely
converges the advantages of schema-conscious approach and schema-oblivious
approach (having the largest number of queries with the best performance),
and avoids their intrinsic disadvantages (no queries with the worst perfor-
mance). We discuss the observations in detail as follows.

IXMDB vs. SUCXENT++
The common feature of the above queries is to apply predicates related to sev-
eral sub-elements. In general, for such queries, the schema-conscious approach
outperforms the schema-oblivious approach due to the reason described in [14].
Schema-conscious approach clusters elements corresponding to the same real
world object while schema-oblivious approach loses such benefit and it has to
issue more SQL joins to capture the parent-children or ancestor-descendant
relationships between XML elements. Consider the following XQuery:

//Descriptor/Values[Percentage>5]/ColorValueIndex

With schema-conscious approach, elements Percentage and ColorValueIndex,
which are children of element Values, would be clustered as two attributes of

31

(a) XMark(1M)

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Query

R
u
n
n
in

g
 T

im
e
 (

m
s
)

IXMDB(with optimization) IXMDB(without optimization) SUCXENT++ Inlining

(b) XMark(10M)

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Query

R
u
n
n
in

t
T

im
e
 (

m
s
)

IXMDB(with optimization) IXMDB(without optimization) SUCXENT++ Inlining

(c) XMark(100M)

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Query

R
u
n
n
in

g
 T

im
e
 (

m
s
)

IXMDB(with optimization) IXMDB(without optimization) SUCXENT++ Inlining

(d) MPEG-7(1G)

1464113953

0

1000

2000

3000

4000

5000

MQ1 MQ2 MQ3 MQ4 MQ5 MQ6 MQ7 MQ8 MQ9 MQ10 MQ11 MQ12

Query

R
u
n
n
in

g
 T

im
e
 (

m
s
)

IXMDB(with optimization) IXMDB(without optimization) SUCXENT++ Inlining

Fig. 22. Experimental Result: Query Performance from the XML perspective

one relation. The above XQuery can be translated into a simple SQL:
select colorvalueindex from values where percentage>5

where table values corresponds to the element Values and columns percentage
and colorvalueindex correspond to the elements Percentage and ColorValueIn-
dex respectively. While with schema-oblivious approach, these two elements
cannot be clustered and would be stored in separate rows. Schema-oblivious
approach needs more joins to check sibling relationship between elements Per-
centage and ColorValueIndex. Fig.24 shows another example, the translated
SQL with SUCXENT++ for the XQuery shown in Fig. 11. According to its
storage schema, IXMDB can also benefit from the above advantage of schema-
conscious approach. Thus, SUCXENT++ needs more joins to check sibling

32

Min Max Ave. S.D.

Best Worst Best Worst Q1 102 703 397 300

IXMDB 13 0 8 0 Q2 515 1312 861 408

SUCXENT++ 2 7 2 7 Q3 10254 16523 12441 3537

Inlining 5 13 0 3 Q4 160 625 418 236

Q5 78 325 234 136

Q6 91 1394 823 666

Q7 63 1550 1024 833

Min Max Ave. S.D. Q8 656 1147 886 246

MQ1 412 562 463 85 Q9 2037 4150 3406 1187

MQ2 453 4466 1901 2227 Q10 2775 50437 19111 27137

MQ3 797 13953 5203 7577 Q11 32703 61721 51418 16235

MQ4 866 14641 5594 7837 Q12 14563 31253 24280 8676

MQ5 3012 4352 3543 711 Q13 2181 6234 3659 2238

MQ6 906 3215 1995 1160 Q14 6105 9136 7164 1709

MQ7 1144 1521 1298 197 Q15 110 1360 537 712

MQ8 245 605 432 180 Q16 1116 12946 5540 6453

MQ9 547 1325 962 391 Q17 343 1932 945 861

MQ10 760 2652 1632 954 Q18 188 271 221 43

MQ11 210 530 382 161 Q19 750 16856 6540 8955

MQ12 378 1865 1039 756 Q20 172 403 315 125

(a) Query performance summary

(c) Query performance statistics on XMark

XMark MPEG-7
Approach

(b) Query performance statistics on MPEG-7

Fig. 23. Query performance summary and statistic

SELECT v3.LeafValue
FROM Path p1, Path p2, Path p3,
 PathValue v1, PathValue v2, PathValue v3,

 DocumentRValue r1, DocumentRValue r2
WHERE p1.PathExp = ‘/Mpeg7/DescriptionUnit/Descriptor/V alues/ColorValueIndex’

 and p2.PathExp = ‘/Mpeg7/DescriptionUnit/Desc riptor/Values/Percentage’
 and p3.PathExp = ‘/Mpeg7/DescriptionUnit/Des criptor/SpatialCoherency’

 and v1.PathId = p1.PathId
 and v2.PathId = p2.PathId

 and v3.PathId = p3.PathId
 and v1.LeafValue = ‘44 67 30’

 and cast(v2.LeafValue as integer) > 5
 and r1.Level = 4

 and abs(v1.BranchOrderSum - v2.BranchOrderSu m) < r1.RValue
 and r2.Level = 3

and abs(v1.BranchOrderSum - v3.BranchOrderSum) < r2 .RValue

Fig. 24. Translated SQL with SUCXENT++

relationships in comparison with the translated SQL with IXMDB shown in
Fig.11.

Schema-conscious approach and IXMDB store the leaf nodes value in many
different tables, while schema-oblivious approach, e.g. SUCXENT++, stores
all leaf nodes value within a single table. Therefore, schema-conscious ap-
proach and IXMDB require the join of many smaller tables when performing
queries, whereas schema-oblivious approach needs to self-join a single large ta-
ble. The performance of schema-oblivious approach is substantially degraded
when large collections of XML documents exist. Fig.25 shows the access plan
for MQ3 with IXMDB and SUCXENT++ respectively. According to this fig-
ure, we can observe that SUCXENT++ requires more joins and performs this
query at a much higher cost.

The above analysis explains why IXMDB outperforms SUCXENT++ for

33

RETURN

OBSERVATIONPERIOD

INTERNALNODE

INTERNALNODENLJOIN

Cost:

513,134

NLJOIN

Cost:

64,877

HSJOIN

Cost:

685,680,520

NAME

INTERNALNODE

NLJOIN

Cost:

705,856,448

(a) IXMDB

RETURN

PATH

PATHVALUE

DOCUMENTRVALUE

PATH

PATHVALUEMSJOIN

Cost:

12,510,309,376

NLJOIN

Cost:

717,117

HSJOIN

Cost:

327

NLJOIN

Cost:

226

NLJOIN

Cost:

5,831,971

HSJOIN

Cost:

929,100

DOCUMENTRVALUE

PATH

PATHVALUEHSJOIN

Cost:

928,746

(b) SUCXENT++

Fig. 25. Access plan for MQ3

queries Q1, Q8-10, Q14, Q17, MQ1-3, etc.

Furthermore, schema-oblivious approach cannot provide the typed represen-
tation and access of the content within the XML documents. With schema-
oblivious approach, the data within the XML documents will be only stored as
character string datatype and the corresponding index system is only created
on string datatype. However, IXMDB and schema-conscious approach can
benefit from the efficient index mechanism created on all kinds of datatypes.
For some test queries, SUCXENT++ has to spend time to convert datatype,
for example, Q5, Q11, Q12 and Q18, which include numeric comparison.

Compared to the other schema-oblivious approaches, SUCXENT++ only stores
the leaf nodes information and the internal nodes information has been elim-
inated. This gives rise to a drawback that it is inefficient to implement the
queries with conditions on internal nodes, for example, Q2-4, MQ5, MQ7 and
MQ8, which are ordered access queries, and Q6 and Q7, which are to count the
occurrence of given internal nodes. To perform these queries, SUCXENT++
needs the assistance of an additional programming code.

Because the required data is stored in several tables and the extraction process
involves several joins with IXMDB; for reconstructing a fragment of original
XML document, e.g., Q13, MQ5 and MQ7, IXMDB performs worse than
SUCXENT++. According to Fig.21, the extraction performance of IXMDB
is slightly better than SUCXENT++. However, for IXMDB, the process of
reconstructing a fragment of document is different from the process of re-
constructing the whole document. During the former process, several joins

34

between the leaf node tables and the internal node tables are involved when
extracting the required data, while for reconstructing the whole document,
these joins are not necessary, since with the document identifier and the table
information kept in MPD file, we can extract the required data from leaf node
tables directly.

IXMDB vs. Shared-Inlining
The main drawback of the schema-conscious approach, like Shared-Inlining,
is the lack of path expression information and path index. For the recursive
queries (e.g. Q6, Q7, Q14 and Q19) and the queries including longer path
expressions (e.g. Q15 and Q16), the Shared-Inlining method performs worse
than IXMDB and the schema-oblivious approaches. Shared-Inlining only keeps
the parent-children relationships by defining a set of primary keys and foreign
keys. IXMDB only requests two θ-joins to check the ancestor-descendent re-
lationships, while Shared-Inlining may perform large number of equijoins to
check ancestor-descendent relationships or travel from root node to destina-
tion node along the path expression to access appropriate data. The number
of equijoins depends on the depth of the path expression. Therefore, the re-
cursive queries in which the exact depth is unknown and the path expression
with large depth affect the query performance of Shared-Inlining. Fig.26 shows
the access plan for Q15 with IXMDB and Shared-Inlining respectively, and
illustrates the great impact of the long path expression on the performance of
Shared-Inlining.

RETURN

INTERNALNODE

HSJOIN

Cost:

19,358,310

Cost:

19,799,140

XPATH

KEYWORD

HSJOIN

(a) IXMDB

RETURN

PARLIST

DESCRIPTION

NLJOIN

Cost:

240

Cost:

498

NLJOIN

Cost:

1,085

ANNOTATION

LISTITEM

NLJOIN

Cost:

102,339

Cost:

47,673,091

NLJOINNLJOIN

Cost:

743,741

PARLIST

LISTITEM

TEXT

NLJOINMSJOIN NLJOIN NLJOIN

EMPH

Cost:

8,728,527

KEYWORD

Cost:

100,468,572

CLOSED_AUCTION

CLOSED_AUCTIONS

SITE

HSJOIN

Cost:

184

HSJOIN

Cost:

195

Cost:

325,101,468

(b) Shared-Inlining

Fig. 26. Access plan for Q15

Queries on complex datatypes in MPEG-7 descriptions
MQ4 and MQ8-12 are the queries for testing the performance on complex
datatypes defined in MPEG-7 DDL. None of the existing XML storage so-

35

lutions provide the schema to handle the complex datatypes in MPEG-7 de-
scriptions. These datatypes are only stored as character string type in the
database. It makes manipulation on these datatypes very inefficient.

MQ4 is to test the performance of date arithmetic operation on basicTime-
Point and basicDuration types. As these types are stored as character string,
the existing XML solutions need additional program code to implement date
arithmetic operations. While IXMDB only requests a single SQL to implement
this query.

Queries MQ8-12 include the operations on array and matrix data. The detailed
discussion can be found in the following subsection.

7.4.2 Performance on array and matrix data

To evaluate further the efficiency of our storage schema for array and matrix
data, we generated additional MPEG-7 description data sets with the size
of 1MB, 10MB and 100MB, which include DominantColor D, Object DS,
StateTransitionModel DS and SoundClassificationModel DS. DominantColor
D has the array data with 3 dimensions and we used semi-normalized schema
to store them. StateTransitionModel DS has 3×3 matrices, while the matrices
in Object DS and SoundClassificationModel DS have the dimensions of 2× 4,
2×5, 20×20, 31×20, etc. We used normalized schema to store these matrices.
Fig.27 shows the characteristic of these three data sets and the table sizes of
IXMDB for storing these arrays and matrices. We used MQ8-12 for testing
and Fig.28 shows the experimental results.

Queries MQ8 and MQ9 include the operations on the individual item within
the array data. For example, for the DominantColor descriptor, if the colour
space is HMMD, the value of ColorValueIndex, which is defined as array type
with 3 length, would be a set of three components: Hue, Diff and Sum. As
shown in MQ9, if the users want to find the pictures with blue dominant
colour, the following condition will be issued: “the value of Hue should be
from 160 to 210” (this value range specifies the blue colour). According to the
storage schema for the array or matrix data designed with IXMDB, IXMDB
can benefit from the index on the individual items of the array data and
speed up these queries. However, the other methods, which store the array
data as character string, need to parse each candidate array string, get the
individual item within the array string, convert the datatype, and then test
whether it accords with the query condition. Thus, IXMDB outperforms them
undoubtedly.

Queries MQ10-12 are the queries for testing the performance on the matrix
datatype. They are issued against Object DS, StateTransitionModel DS and
SoundClassificationModel DS respectively. Same as the performance on array

36

Dataset
Num of

arrays

Num of

matrices

Num of tuples

in array table

Size of array

table (MB)

Num of tuples

in matrix table

Size of matrix

table (MB)

1M 4048 58 4048 0.17 19816 0.65

10M 44431 592 44431 1.85 118773 3.92

100M 440965 6069 440965 18.32 1189151 39.04

Fig. 27. Features of array/matrix storage

Performance on array/matrix (1M)

0

10

20

30

40

50

60

70

MQ8 MQ9 MQ10 MQ11 MQ12

Query

R
u

n
n

in
g

 T
im

e
 (

m
s
)

IXMDB SUCXENT++ Inlining

Performance on array/matrix (10M)

0

50

100

150

200

250

300

350

400

MQ8 MQ9 MQ10 MQ11 MQ12

Query

R
u

n
n

in
g

 T
im

e
 (

m
s
)

IXMDB SUCXENT++ Inlining

Performance on array/matrix (100M)

0

200

400

600

800

1000

1200

1400

1600

1800

MQ8 MQ9 MQ10 MQ11 MQ12

Query

R
u

n
n

in
g

 T
im

e
 (

m
s

) IXMDB SUCXENT++ Inlining

Fig. 28. Experimental Result: Query Performance on Array/Matrix

data, SUCXENT++ and Shared-Inlining underperform IXMDB due to the
additional operations on character string parsing, datatype conversion and
without index on the individual items of the matrices. Furthermore, to parse
the character string, SUCXENT++ and Shared-Inlining need the value of
the attribute dim, which records the dimension information of the matrix.
This results in one more join for SUCXENT++ to get the value of dim that
corresponds to the matrix in question.

According to the Fig.28, we observed that for the small data set, the ad-
vantage of IXMDB is slight. In fact, our array/matrix storage schema has a
disadvantage. It needs more joins (joins between leaf node table and array/ma-
trix table) to get required array/matrix data. Compared to the other methods
without the indices on the individual items of array/matrix data, however,
with large collections of array/matrix data, the impact of index mechanism in
IXMDB results in the significant efficient performance.

7.4.3 Queries from the multimedia perspective

As mentioned in the previous section, the GiST framework is connected with
our RDBMS-based MPEG-7 storage system via a set of UDFs. This enables
our system to support efficient multimedia-related queries. To test the per-
formance from the multimedia perspective, we performed a similarity search
on four low-level MPEG-7 descriptors extracted from 300,000 pictures. The
tested descriptors include ColorLayout(CLD) with 12 dimensions, Region-
Shape(RSD) with 35 dimensions, EdgeHistogram(EHD) with 80 dimensions,
and ColorStructure(CSD) with 128 dimensions. The similarity search in our
experiment is to find the top 10 objects that are the most similar to the
given object based on each descriptor. In this experiment, we adopted M-Tree
in IXMDB, since M-Tree is based on distance function. Fig.29 presents the
corresponding experimental result.

37

Similarity Searching Performance

0

10

20

30

40

50

CLD(12-d) RSD(35-d) EHD(80-d) CSD(128-d)

MPEG-7 Descriptors

R
u

n
n

in
g

 T
im

e
 (

s
)

IXMDB SUCXENT++ Inlining

Fig. 29. Experimental Result: Query Performance from the multimedia perspective

According to this figure, IXMDB outperforms the existing XML storage sys-
tems for similarity searching. Due to lack of efficient high-dimensional index
mechanism, the existing XML storage systems can only perform sequence
scan to achieve similarity matching, while IXMDB can benefit from the GiST
framework. Furthermore, the existing XML storage systems need to extract
desired multimedia content from their MPEG-7 descriptions repository before
performing similarity searching. The performance of this extraction process
depends on the complexity of related multimedia content and their storage
schema. Such an extraction process may be expensive. For example, for the
ColorLayout descriptor, the related multimedia content is stored in several ele-
ments. Thus, SUCXENT++ needs several joins to extract related information
and this operation is expensive.

8 Related Research

As introduced in the previous section, the existing RDBMS-based XML stor-
age approaches can be classified into two major categories: schema-conscious
approach and schema-oblivious approach. Some typical examples of schema-
oblivious approach include The Edge Approach[15], Monet[16], Xrel[17], XPar-
ent[18], SUCXENT++[11], etc. The Edge approach stores XML data graphs
(a directed graph) in a single Edge table. As a variation of the Edge approach,
Monet partitions the schema of XML documents by all possible paths. For
each unique path, Monet creates a table. Unlike Monet, XRel explicitly keeps
all unique path expression as tuples in a table. XRel records elements relation-
ships using the notion of region, which is a pair of numbers that represents the
start and end positions, respectively, of a node in an XML document. XPar-
ent is a four (or five) table database schema and materializes the ancestor-
descendant relationship in a special table. SUCXENT++ is different from the
above approaches in that it only stores leaf nodes and their associated paths.

Some examples of schema-conscious approach can be found in Basic, Shared
and Hybrid Inlining Technique[12] and LegoDB[19]. The Inlining technique is

38

an early proposal of schema-conscious approach. With this approach, com-
plex DTD specifications are first simplified with a set of transformation rules
and corresponding transformed DTD graphs are obtained. Then, three tech-
niques, including Basic Inlining, Shared Inlining and Hybrid Inlining, are used
for converting the simplified DTD to a relational schema. The LegoDB can
automatically find an efficient relational configuration for a target XML ap-
plication.

The database products of leading database system vendors have extended their
relational database functions to support the XML documents storage. They
can be viewed as XML-Enabled databases, which also provide RDBMS-based
XML storage solutions. Some products of these include DB2 XML Exten-
der[25], XML Support in SQL Server[26,27] and Oracle XML DB[28]. These
XML-Enabled database systems introduce one or more special datatypes for
XML storage and provide a set of functions on these datatypes to support
XML management. The intact XML content can be stored in a column with
VARCHAR or CLOB datatype. A set of powerful built-in functions or meth-
ods is provided to query and modify XML instances and they also accept
XQuery.

There exist some research works that focus on the hybrid relational and XML
database system, e.g. System RX[29], which enables XML and relational data
to co-exist and complement each other. Some other research works focus on
how to implement XQuery in a relational database. These works can be found
in [30,31].

There are a few research works on the MPEG-7 descriptions management
systems. The examples of these works are the MPEG-7 Multimedia Data Car-
tridge (MDC)[37] and PTDOM[38]. MPEG-7 MDC is a system extension of
the Oracle 9i DBMS to provide a new indexing and query framework for var-
ious types of retrieval operations and a semantically rich metadata model for
multimedia content relying on the MPEG-7 standard. Although the MPEG-
7 MDC provides a robust storage solution for MPEG-7 descriptions, it falls
short when evaluated in terms of the requirements listed in [4]. First, MDC
is a system extension of the Oracle 9i DBMS. It defines a set of object types
to map the MPEG-7 standard into a database model. The data within such
object types, e.g., XMLType object type, may not be represented and accessed
in fine-grained and typed manner. Second, the predefined object types may
not be suitable for the non-fixed MPEG-7 descriptions with volatile struc-
tures. Finally, it is difficult to provide path index for navigation and extraction
of fragment information within MPEG-7 descriptions. PTDOM is a schema-
aware native XML database system originally developed for the management
of MPEG-7 descriptions. The core of PTDOM is made up of a schema cata-
log capable of managing schema definitions written in MPEG-7 DDL [38]. To
represent the contents of the MPEG-7 descriptions, the document manager of

39

PTDOM applies the TDOM[24], an object model in the tradition of DOM.

9 Conclusions

In this paper, IXMDB, a new approach to mapping, indexing and retriev-
ing MPEG-7 documents and other data-centric XML documents using rela-
tional database system, has been described. IXMDB integrates the advan-
tages of schema-conscious approach and schema-oblivious approach. Unlike
the schema-conscious method, IXMDB supports XPath-based query efficiently
without involving many joins in SQL. Compared with the schema-oblivious
method, IXMDB solves the datatype problem in schema-oblivious approach
without sacrificing the performance, and IXMDB even performs better than
most schema-oblivious approach in the case of many XPath based queries.
Furthermore, IXMDB provides a flexible storage schema to satisfy all kinds
of storage requirements, especially for the special datatypes within MPEG-7
descriptions, such as array, matrix, basicTimePoint and basicDuration. Al-
though IXMDB cannot avoid the assistance of MPEG-7 scheme, it can support
arbitrary MPEG-7 description storage. IXMDB supports the most critical re-
quirements for the MPEG-7 descriptions management, such as fine grained
and typed representation and access, index system and XPath-based query.
Finally, we also introduced a multidimensional index system based on exten-
sible GiST framework to support multimedia content retrieval.

References

[1] José M. Mart́ınez, MPEG-7 Overview (version 8), ISO/IECJTC1/SC29/WG11-
N4980, Klangenfurt, 2002, Available at
http://www.mpeg-industry.com/mp7a/w4980 mp7 Overview1.html.

[2] Diane Hillmann, Using Dublin Core, Dublin Core Metadata Initiative (DCMI),
2005, Available at http://dublincore.org/documents/usageguide/.

[3] The TV-Anytime Forum, Specification Series: S-3 On: Metadata, 2003,
Available at http://www.tv-anytime.org/.

[4] Utz Westermann and Wolfgang Klas, An Analysis of XML Database Solutions
for the Management of MPEG-7 Media Descriptions, ACM Computing Surveys
35(4) 2003 pp. 331-373.

[5] Yang Chu, Liang-Tien Chia and Sourav S. Bhowmick, SM3+: An XML
Database Solution for the Management of MPEG-7 Descriptions, in:
Proceedings of the 16th International Conference on Database and Expert
Systems Applications (DEXA), Copenhagen, 2005, p. 134.

40

[6] Igor Tatarinov and Stratis D. Viglas, Storing and Querying Ordered XML Using
a Relational Database System, in: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, Madison, Wisconsin, 2002,
pp. 204-215.

[7] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller
and Nigel Westbury, ORDPATHs: Insert Friendly XML Node Labels,
in: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, Paris, France, 2004, pp. 903-908.

[8] ISO/IEC JTC 1/SC 29, Information Technology - Multimedia Content
Description Interface - Part 2: Description Definition Language, ISO/IEC FDIS
15938-2, 2001.

[9] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie and Jérôme Siméon, XQuery 1.0: An XML Query Language, W3C
Working Draft 29, 2004, Avalibale at http://www.w3.org/TR/xquery/.

[10] Joseph M. Hellerstein, Jeffrey F. Naughton and Avi Pfeffer, Generalized Search
Trees for Database Systems, in: Proceedings of 21st International Conference
on Very Large Data Bases (VLDB’95), Zurich, Switzerland, 1995, pp. 562-573.

[11] Sandeep Prakash, Sourav S. Bhowmick and Sanjay Madria, Efficient Recursive
XML Query Processing in Relational Database Systems, in: Proceedings of 23rd
International Conference on Conceptual Modeling (ER2004), Shanghai, China,
2004, pp. 493-510.

[12] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David
DeWitt and Jeffrey Naughton, Relational Databases for Querying XML
Documents: Limitations and Opportunities, in: Proceedings of 25th
International Conference on Very Large Data Bases (VLDB’99), Edinburgh,
Scotland, 1999, pp. 302-314.

[13] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu and Ralph Busse, XMark: A Benchmark for XML Data
Management, in: Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB’02), Hong Kong, China, 2002, pp. 974-985.

[14] Feng Tian, David J. DeWitt, Jianjun Chen and Chun Zhang, The design and
performance evaluation of alternative XML storage strategies, ACM Sigmod
Record 31(1) (2002) pp. 5-10.

[15] Daniela Florescu and Donald Kossmann, Storing and querying XML data using
an RDBMS, IEEE Data Engineering Bulletin 22(3) (1999) pp. 27-34.

[16] Albrecht Schmidt, Martin Kersten, Menzo Windhouwer and Florian Waas,
Efficient Relational Storage and Retrieval of XML Documents, in: Proceedings
of the Third International Workshop on the Web and Databases (WebDB 2000),
Dallas, Texas, USA, 2000, pp. 137-150.

[17] Masatoshi Yoshikawa and Toshiyuki Amagasa, XRel: A path-based approach
to storage and retrieval of XML documents using relational databases, ACM
Transactions on Internet Technology 1(1) (2001) pp. 110-141.

41

[18] Haifeng Jiang, Hongjun Lu, Wei Wang and Jeffrey Xu Yu, XParent: An
Efficient RDBMS-Based XML Database System, in: Proceedings of the 18th
International Conference on Data Engineering (ICDE’02), San Jose, CA, USA,
2002, p. 335.

[19] Philip Bohannon, Juliana Freire, Prasan Roy, Jérôme Siméon, From XML
Schema to Relations: A Cost-Based Approach to XML Storage, in: Proceedings
of the 18th International Conference on Data Engineering (ICDE’02), San Jose,
CA, USA, 2002, p. 64.

[20] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer
Widom, Lore: A database management system for semistructured data,
SIGMOD Record, 26(3) (1997) pp. 54-66.

[21] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, et al, Timber: A native
xml database, The VLDB Journal, 11(4) (2002) pp. 274-291.

[22] Carl-Christian Kanne and Guido Moerkotte, Efficient storage of XML data,
in: Proceedings of the 16th International Conference on Data Engineering
(ICDE’00), San Diego, California, USA, 2000, p. 198.

[23] Sleepycat Software, Introduction to Berkeley DB XML, Technical
Documentation, Sleepycat Software, Massachusetts, USA, 2005.

[24] Utz Westermann and Wolfgang Klas, A Typed DOM for the Management of
MPEG-7 Media Descriptions, Multimedia Tools and Applications, 27(3) (2005)
pp. 291-322.

[25] Josephine Cheng and Jane Xu, IBM DB2 XML Extender: An end-to-end
solution for storing and retrieving XML documents, Reprinted, with permission
from the 16th International Conference on Data Engineering (ICDE ’00), San
Diego, California, USA, 2000.

[26] Shankar Pal, Mark Fussell, and Irwin Dolobowsky, XML Support in Microsoft
SQL Server 2005, The Microsoft Developer Network (MSDN), Microsoft
Corporation, 2004.

[27] Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giakoumakis
and Vasili Zolotov, Indexing XML Data Stored in a Relational Database, in:
Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB’04), Toronto, Canada, 2004, pp. 1134-1145.

[28] Mark Drake, Oracle XML DB, Oracle Technical White Paper, Oracle
Corporation, 2004.

[29] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, et al, System RX: one
part relational, one part XML, in: Proceedings of the 2005 ACM SIGMOD,
Baltimore, Maryland, 2005, pp. 347-358.

[30] David DeHaan, David Toman, Mariano P. Consens and M. Tamer özsu, A
comprehensive XQuery to SQL translation using dynamic interval encoding,
in: Proceedings of the 2003 ACM SIGMOD, San Diego, California, 2003, pp.
623-634.

42

[31] Shankar Pal, Istvan Cseri, Oliver Seeliger, et al, XQuery implementation in a
relational database system, in: Proceedings of the 31st international conference
on Very large data bases (VLDB), Trondheim, Norway, 2005, pp. 1175-1186.

[32] Antonin Guttman, R-trees: a dynamic index structure for spatial searching,
in: Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, Boston, Massachusetts, 1984, pp. 47-57.

[33] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard Seeger,
The R*-tree: an efficient and robust access method for points and rectangles,
in: Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, Atlantic City, New Jersey, United States, 1990, pp. 322-
331.

[34] David A. White and Ramesh Jain, Similarity Indexing with the SS-tree,
in: Proceedings of the 12th International Conference on Data Engineering,
Lillehammer, Norway, 1996, pp. 516-523.

[35] Norio Katayama and Shin’ichi Satoh, The SR-tree: an index structure for
high-dimensional nearest neighbor queries, in: Proceedings of the 1997 ACM
SIGMOD international conference on Management of data, Tucson, Arizona,
United States, 1997, pp. 369-380.

[36] Paolo Ciaccia, Marco Patella and Pavel Zezula, M-tree: an efficient access
method for similarity search in metric spaces, in: Proceedings of the 23rd
International Conference on Very Large Databases (VLDB’97), Athens, Greece,
1997, pp. 426-435.

[37] Mario Döllera and Harald Koscha, An MPEG-7 Multimedia Data Cartridge,
in: Proceedings of SPIE Conference on Multimedia Computing and Networking
2003 (MMCN 2003), Santa Clara, 2003, pp. 126-137.

[38] Utz Westermann and Wolfgang Klas, PTDOM: a schema-aware XML database
system for MPEG-7 media descriptions, Software-Practice & Experience, 36(8)
(2006) pp. 785-834.

43

APPENDIX

A SQL queries in IXMDB

We don’t list all the SQLs. The unlisted queries are similar to the following
queries, or cannot be implemented with single SQL.

Q1

SELECT p.name

FROM person p,internalnode i, xpath x

WHERE x.xpathexp = '#/site#/people#/person'

and i.xpathid = x.xpathid

and p.id='person0'

and p.uid=i.uid

Q2

SELECT b.increase

FROM bidder b, internalnode i, xpath x

WHERE x.xpathexp = '#/site#/open_auctions#/open_auction#/bidder'

and i.xpathid = x.xpathid

 and i.oid=1 and b.uid=i.uid

Q5

SELECT count(c.price)

FROM closed_auction c,internalnode i, xpath x

WHERE x.xpathexp = '#/site#/closed_auctions#/closed_auction'

and i.xpathid = x.xpathid

and c.uid=i.uid

and c.price>=40

Q6

SELECT count(i.uid)

FROM internalnode i, xpath x

WHERE x.xpathexp like '#/site#/regions#%/item'

and i.xpathid = x.xpathid

Q8

SELECT p.name, count(b.person)

FROM xpath x1,xpath x2,internalnode i1,internalnode i2,buyer b,person p

WHERE x1.xpathexp = '#/site#/closed_auctions#/closed_auction#/buyer'

and x2.xpathexp = '#/site#/people#/person'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid

and b.uid=i1.uid and p.uid=i2.uid

and b.person=p.id

GROUP BY p.name

Q11

SELECT pe.name,count(o.uid)

FROM xpath x1,xpath x2,xpath x3,internalnode i1,internalnode i2,internalnode i3,

open_auction o,profile pr,person pe

WHERE x1.xpathexp = '#/site#/people#/person#/profile'

and x2.xpathexp = '#/site#/open_auctions#/open_auction'

and x3.xpathexp = '#/site#/people#/person'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid and i3.xpathid = x3.xpathid

and pr.uid = i1.uid and o.uid=i2.uid and pe.uid=i3.uid

and pr.income > 5000*o.initial

and i1.parent = i3.ordpath

GROUP BY pe.name

44

Q15

FROM xpath x,internalnode i,keyword k

WHERE x. xpathexp = '#/site#/closed_auctions#/closed_auction#/annotation#/description#/parlist#/listitem

#/parlist#/listitem#/text#/emph#/keyword'

and i.xpathid = x.xpathid

and k.uid=i.uid";

Q17

SELECT p.name

FROM xpath x,internalnode i,person p

WHERE x. xpathexp = '#/site#/people#/person'

and i.xpathid = x.xpathid

and p.uid = i.uid

and p.homepage is null

Q18

SELECT MULTIPLY_ALT(2.20371,o.reserve)

FROM xpath x,internalnode i, open_auction o

WHERE x. xpathexp = '#/site#/open_auctions#/open_auction'

and i.xpathid = x.xpathid

and o.uid=i.uid"

and o.reserve is not null

Q19

SELECT it.name,it.location

FROM xpath x,internalnode i,item it

WHERE x. xpathexp like '#/site#/regions#%/item'

and i.xpathid = x.xpathid

and it.uid=i.uid

ORDER BY it.name

Q20

WITH temp(id,level) AS

(SELECT p.uid, CASE

WHEN p.income >= 100000 THEN 'preferred'

WHEN p.income >= 30000 and p.income < 100000 THEN 'standard'

WHEN p.income < 30000 THEN 'challenge'

ELSE 'na'

END

FROM xpath x,internalnode i,profile p

WHERE x. xpathexp = '#/site#/people#/person#/profile'

and i.xpathid = x.xpathid

and p.uid=i.uid)

SELECT t.level, count(t.id)

FROM temp t

GROUP BY t.level

MQ1

SELECT u.protected

FROM xpath x1,xpath x2,internalnode i1,internalnode i2,useridentifier u,name n

WHERE x1.xpathexp like '#%/UserIdentifier#/Name'

and x2.xpathexp like '#%/UserIdentifier'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid

and n.uid = i1.uid and u.uid = i2.uid

and i1.parent=i2.ordpath

and n.value = 'John Doe'

MQ4

SELECT o.timestamp + decimal(o.timestampduration,20,6)

FROM xpath x1,xpath x2,xpath x3,internalnode i1,internalnode i2,internalnode i3,name n,observationperiod o

WHERE x1.xpathexp like '#%/UsageHistory'

 and x2.xpathexp like '#%/UsageHistory#/UserIdentifier#/Name'

and x3.xpathexp like '#%/UsageHistory#/UserActionHistory#/ObservationPeriod'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid and i3.xpathid = x3.xpathid

and n.uid = i2.uid and o.uid = i3.uid

and i2.ordpath > i1.ordpath and i2.ordpath < i1.grdesc

and i3.ordpath > i1.ordpath and i3.ordpath < i1.grdesc

and n.value = 'John Doe'

and o.timepoint like '%2000-10-10T18:00%'

45

MQ9

SELECT e.bincounts

FROM xpath x1,xpath x2,xpath x3,internalnode i1,internalnode i2,internalnode i3,

values v,edgehistogram e,array a

WHERE x1.xpathexp like '#%/Descriptor#/Values'

and x2.xpathexp like '#%/Descriptor'

and x3.xpathexp like '#%/Descriptor'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid and i3.xpathid = x3.xpathid

and i1.parent = i2.ordpath

and v.uid = i1.uid

and e.uid = i3.uid

and i3.oid = i2.oid

and v.percentage > 20

and v.arrayid = a.id

and a.col0 > 160 and a.col0 < 210

MQ10

WITH temp(id,value) AS (SELECT matrixid,min(value) FROM matrix WHERE columnid=0 GROUP BY matrixid)

SELECT l.name

FROM xpath x1,xpath x2,xpath x3,xpath x4,internalnode i1,internalnode i2,internalnode i3,internalnode i4

label l, medialocator m, coords c,temp t

WHERE x1.xpathexp like ' #%/Object'

and x2.xpathexp like ' #%/Object#/Label'

and x3.xpathexp like ' #%/Object#/MediaOccurrence#/MediaLocator'

and x4.xpathexp like ' #%/Object#/MediaOccurrence#/SubRegion#/Polygon#/Coords'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid

and i3.xpathid = x3.xpathid and i4.xpathid = x4.xpathid

and i2.parent = i1.ordpath

and i3.ordpath > i1.ordpath and i3.ordpath < i1.grdesc

and i4.ordpath > i1.ordpath and i4.ordpath < i1.grdesc

and l.uid=i2.uid and m.uid = i3.uid and c.uid = i4.uid

and m. mediauri = ‘image0.jpg’

and c.matrixid=t.id

and t.value>10

MQ11

WITH temp(id,value) AS

(SELECT i1.oid,l.name

 FROM xpath x1,xpath x2,internalnode i1,internalnode i2, label l

 WHERE x1.xpathexp like '#%/Model#/State'

and x2.xpathexp like '#%/Model#/State#/Label'

and i1.xpathid = x1.xpathid and i2.xpathid = x2.xpathid

and i2.parent = i1.ordpath)

SELECT m.value

FROM xpath x1,internalnode i1,transitions t,matrix m,temp te

WHERE x1.xpathexp like '#%/Model#/Transitions '

and i1.xpathid = x1.xpathid

and t.uid=i1.uid

and t.matrixid=m.matrixid

and m.columnid=te.id and te.value=’Pass’

and m.rowid=te.id and te.value=’Shot on goal’

46

