
DTD-Diff: A Change Detection Algorithm for

DTDs

Erwin Leonardi a, Tran T. Hoai a, Sourav S Bhowmick a and
Sanjay Madria b

aSchool of Computer Engineering, Division of Information Systems, Nanyang
Technological University, Singapore 639798

bDepartment of Computer Science, University of Missouri-Rolla, Rolla 65409

Abstract

The DTD of a set of XML documents may change due to many reasons such as
changes to the real world events, changes to the user’s requirements, and mistakes in
the initial design. In this paper, we present a novel algorithm called DTD-Diff to
detect the changes to DTDs that defines the structure of a set of XML documents.
Such change detection tool can be useful in several ways such as maintenance of
XML documents, incremental maintenance of relational schema for storing XML
data, and XML schema integration. We compare DTD-Diff with existing XML
change detection approaches and show that converting DTD to XML Schema (XSD)
(which is in XML document format) and detecting the changes using existing XML
change detection algorithms is not a feasible option. Our experimental results show
that DTD-Diff is 5–325 times faster than X-Diff when it detects the changes to
the XSD files. Compared to XyDiff, DTD-Diff is up to 38 times faster. We also
study the result quality of detected deltas.

Key words: Change detection, DTD, XML, algorithm, performance.

1 Introduction

XML has emerged as the leading textual language for representing and ex-
changing data over the Web. Since Web data changes frequently, a key feature
of XML data is its dynamic property. That is, XML data may change at any
time in any way. Hence, a tool is needed to detect such changes automat-
ically. Consequently, there has been increasing research efforts in detecting

Email addresses: assourav@ntu.edu.sg, madrias@umr.edu (Sanjay Madria).

Preprint submitted to Elsevier Science 29 May 2006

changes to XML data [7,13–15,22]. These approaches primarily focus on de-
tecting changes to XML documents. However, in many applications a schema
(i.e., Document Type Definition (DTD) or XML schema (XSD) [2]) is asso-
ciated with a set of XML documents to define their legal structures. Schema
of such XML documents may also need to be updated for various reasons
[8,20,9]. Systems must be adapted to the real-world changes. Schemas may be
initially defined as drafts and are subsequently refined due to changes to the
real-world or due to the need of fixing errors in the previous versions. Com-
mercial alliances change and expand. For example, consider the DTD D1 in
Figure 1(a) at time t1. It may evolve to D2 (Figure 1(b)) at time t2 because
the university may wish to restructure the information due to change in the
university administrators’ requirements. Hence, there is a strong need for a
tool to detect changes to DTDs. Such change detection tool can be useful in
at least following three ways.

• Maintenance of XML documents. A DTD change detection tool can be use-
ful for incremental maintenance or revalidation of a set of XML documents
when their DTD evolves. Note that many documents can be associated with
the same DTD/schema and the brute-force approach of revalidating a com-
plete document is known to be high [17]. For instance, let X be a set of XML
documents where each document xi ∈ X conforms to DTD D. Assume that
due to mistakes in the initial design, D is modified to D′. Consequently,
xi ∈ X may not conform to D′ anymore. Therefore, it is necessary to detect
the differences between D and D′ (denoted by 4(D,D′)) automatically so
that it can be used to transform xi ∈ X to x′i such that x′i conforms to
D′. The basic idea is to keep track of the changes made to the DTD and
to identify the portion of the DTD/schema that, because of these changes,
requires revalidation. The document portions affected by those changes can
then be identified and revalidated, thus avoiding a costly revalidation of the
whole document.

• Incremental maintenance of relational schema. Recently, there has been a
substantial research effort in storing and processing XML data using re-
lational databases [12]. These approaches can be classified into two major
categories. In the schema-conscious approach [19], a relational schema is
created based on the DTD/schema of the XML documents. In the schema-
oblivious approach [12], a fixed relational schema is used to store XML
documents. The basic idea is to capture the tree structure of an XML doc-
ument. This approach does not require existence of an XML schema/DTD.
A DTD change detection tool can be particularly useful for incremental
maintenance of the relational schema generated by a schema-conscious ap-
proach. This is because if the DTD is changed, then the respective relational
schema may also need to be modified. The differences between the old and
new versions of a DTD can help us in maintaining the relational schema
incrementally.

2

1 <xs:schema xmlns:xs='… … … … '>
2 <xs:element name='course'>
3 <xs:complexType mixed='true'>
4 <xs:attribute name='code' use='required'/>
5 <xs:attribute name='year'/>
6 </xs:complexType>
7 </xs:element>
8 <xs:element name='courses'>
9 <xs:complexType>
10 <xs:sequence>
11 <xs:element ref='course' minOccurs='0'
 maxOccurs='unbounded'/>
12 </xs:sequence>
13 </xs:complexType>
14 </xs:element>
15 <xs:element name='dean'>
16 <xs:complexType mixed='true'>
17 </xs:complexType>
18 </xs:element>
19 <xs:element name='information'>
20 <xs:complexType>
21 <xs:sequence>
22 <xs:element ref='address'/>
23 <xs:choice>
24 <xs:element ref='telp'/>
25 <xs:element ref='fax'
26 maxOccurs='unbounded'/>
27 <xs:element ref='website'/>
28 </xs:choice>
29 </xs:sequence>
30 </xs:complexType>
31 </xs:element>
32

1 <xs:schema xmlns:xs='… … … … '>
2 <xs:element name='course'>
3 <xs:complexType mixed='true'>
4 <xs:attribute name='code' use='required'/>
5 <xs:attribute name='year' use='required'/>
6 </xs:complexType>
7 </xs:element>
8 <xs:element name='courses'>
9 <xs:complexType>
10 <xs:sequence>
11 <xs:element ref='course'
 maxOccurs='unbounded'/>
12 </xs:sequence>
13 </xs:complexType>
14 </xs:element>
15
16 <xs:element name='information'>
17 <xs:complexType>
18 <xs:sequence>
19 <xs:element ref='address'/>
20 <xs:choice>
21 <xs:element ref='website'/>
22 <xs:element ref='telp'/>
23 <xs:element ref='fax' minOccurs='0'/>
24 </xs:choice>
25 </xs:sequence>
26 </xs:complexType>
27 </xs:element>
28

(c) XSD of D1 (d) XSD of D2

1 <!ENTITY univName “Open University”>

3 <!ELEMENT university (information,school+)>

8 <!ELEMENT course (#PCDATA)>
9 <!ELEMENT name (#PCDATA)>

12 <!ELEMENT telp (#PCDATA)>
13 <!ELEMENT fax (#PCDATA)>
14 <!ELEMENT website (#PCDATA)>
15 <!ELEMENT address (#PCDATA)>
16 <!ATTLIST course code CDATA #REQUIRED

2 <!ENTITY univName “Open University”>

4 <!ELEMENT university (information,school+)>

11 <!ELEMENT course (#PCDATA)>
12 <!ELEMENT name (#PCDATA)>

14 <!ELEMENT website (#PCDATA)>
15 <!ELEMENT telp (#PCDATA)>
16 <!ELEMENT fax (#PCDATA) >
17 <!ELEMENT address (#PCDATA) >
18 <!ATTLIST course code CDATA #REQUIRED (a) D1

(b) D2

4 <!ELEMENT information
 (address,(telp|fax+|website))>

5 <!ELEMENT school (name,dean,department*)>
6 <!ELEMENT department (name,hod,courses)>

7 <!ELEMENT courses (course*)>

7 <!ELEMENT sinfo (%info;)>

6 <!ELEMENT school (sinfo,department*)>

9 <!ELEMENT dinfo (%info;)>

8 <!ELEMENT department (dinfo,courses)>

1 <!ENTITY % info “name,head,website,telp,fax”>

10 <!ELEMENT courses (course+)>

2 <!ENTITY myScript SYSTEM “script.pl” NDATA pl>

3 <!ENTITY myScript SYSTEM “newScript.pl”
 NDATA pl>

5 <!ELEMENT information
 ((telp|website|fax?),address)>

 year CDATA #REQUIRED >

11 <!ELEMENT hod (#PCDATA)>
10 <!ELEMENT dean (#PCDATA)>

 year CDATA #IMPLIED>

13 <!ELEMENT head (#PCDATA)>

Fig. 1. Two versions of a DTD and corresponding XSD files.

• Maintenance of XML access control policies. Changes to the DTD or XML
schema can impact on the access control policies defined on the XML doc-
uments. Hence, it is necessary to incrementally maintain the access policies
as the DTD changes.

In this paper, we propose a novel algorithm, called DTD-Diff, for detecting
the changes to DTDs 1 . At this point, one would question the justification
of this work. At first glance, it may seem that the DTD change detection
problem can easily be addressed by existing change detection tools for XML
documents [7,13–15,22]. Specifically, we can first transform two versions of a

1 A shorter version of this paper is going to appear in [16].

3

DTD to XML Schemas (XSD), that are in XML format, using tools such as
Syntex dtd2xs (www.syntext.com/downloads/index.htm) and LuMrix dtd2xs
(http://www.lumrix.net/dtd2xs.php). For example, Figures 1(c) and 1(d) are
the XSD representations of the DTDs in Figures 1(a) and 1(b), respectively.
Then, the changes to the DTDs can be detected using existing XML change
detection tools (such as X-Diff [22] and XyDiff [7]). Although this approach will
clearly detect changes, we argue that it may often fail to detect semantically
correct and optimal changes. For example, these algorithms may detect that
the name of a school element in D1 in Figure 1(a) has been updated to
sinfo in D2 in Figure 1(b) (Figure 2). However, this is semantically incorrect!
Furthermore, these algorithms are not efficient as far as DTD change detection
is concerned as they do not exploit the structure and semantics of the DTDs to
improve response time. We shall elaborate on these issues further in Section 2.

In summary, the main contributions of this paper are as follows. (1) In Sec-
tion 3, we present the data model to represent the changes to DTDs. By using
this data model we are able to detect the changes to DTDs correctly. (2) In
Section 4, we propose a novel algorithm called DTD-Diff for detecting the
changes to DTDs. To the best of our knowledge, this is the first approach that
addresses the DTD change detection problem. The algorithm takes as input two
versions of a DTD that are represented using our DTD data model and detects
the changes directly without converting them to XSD format. (3) Through an
extensive experimental study in Section 5, we show that our approach is sig-
nificantly faster than state-of-the-art XML change detection algorithms such
as X-Diff and XyDiff. Note that in our study, we convert DTDs to XSD files
prior to employing X-Diff/XyDiff to detect the changes. We also show that
DTD-Diff is also able to produce optimal or at least near-optimal deltas.

2 Related Work

To the best of our knowledge, there are not any published works on detecting
changes to DTDs. In the preceding section, we mentioned that the two versions
of a DTD can be first converted to XML schema using tools such as Syntex
dtd2xs and then we can detect the changes using any existing XML change
detection algorithm. Hence, we first compare our approach with existing XML
change detection techniques.

2.1 XML Change Detection

Recently, a number of techniques for detecting the changes to XML data
have been proposed. XyDiff [7] is a main-memory algorithm for detecting the
changes in ordered XML documents. In an ordered XML, both the parent-child

4

1 <xs:schema xs="http://www.w3.org/2001/XMLSchema">
2
3 <xs:element name="school">
4 <xs:complexType>
5 <xs:sequence>

7 <xs:element ref="dean"><?DELETE element?></xs:element>
8 <xs:element ref="department" minOccurs="0"
 maxOccurs="unbounded"></xs:element>
9 </xs:sequence>
10 </xs:complexType>
11 </xs:element>
12 <xs:element name="information">
13 <xs:complexType>
14 <xs:sequence>
15 <xs:choice>
16 <xs:element ref="telp"></xs:element>

18 </xs:element>
19 <xs:element ref="website"></xs:element>
20 </xs:choice>
21 <xs:element ref="address"></xs:element>
22 </xs:equence>
23 </xs:complexType>
24 </xs:element>
25

1 <unit_delta>
2 <t from="..." fromXidMap="..."
 to="..." toXidMap="...">
3 <ai a="use" v="required" xid="12"/>

6

8

12
13 <d par="97" pos="6" xm="(95)">
14 <xs:element maxOccurs="unbounded"
 minOccurs="0" ref="department"/>
15 </d>
16

20 <i par="128" pos="26" xm="(151-162)">
21 <xs:element name="university">
22
23 </xs:element>
24 </i>
25

(a) X-Diff (b) XyDiff

7 <au a="ref" nv="sinfo" ov="name" xid="91"/>

4 <ad a="maxOccurs" v="unbounded" xid="68"/>
5 <ai a="minOccurs" v="0" xid="70"/>6 <xs:element ref="sinfo">

 <?UPDATE ref FROM "name"?></xs:element>

17 <xs:element ref="fax" maxOccurs="unbounded" minOccurs="0">
 <?DELETE maxOccurs?><?INSERT minOccurs?>

17 <i move="yes" par="128" pos="12" xm="(33)"/>
18 <i move="yes" par="128" pos="13" xm="(55)"/>
19 <i move="yes" par="128" pos="18" xm="(60)"/>

9 <d move="yes" par="128" pos="25" xm="(121)"/>
10 <d move="yes" par="128" pos="24" xm="(120)"/>
11 <d move="yes" par="128" pos="23" xm="(108)"/>

Fig. 2. X-Diff and XyDiff results.

relationship and the left-to-right order among siblings are important. Wang
et al. proposed X-Diff [22] for computing the changes to unordered XML doc-
uments. In unordered XML, the parent-child relationship is significant, while
the left-to-right order among siblings is not important. All these algorithms
suffer from scalability problem as they fail to detect changes to large XML
documents due to lack of memory. Consequently, a number of approaches
[13–15] have been proposed to address the scalability problem of XML change
detection by using relational databases. In contrast to our approach, the above
approaches are not designed to detect changes to DTDs. Consequently, even
if we employ these algorithms to XSD representations of DTDs, they suffer
from the following limitations.

• Granularity of types of changes. The above approaches support the follow-
ing types of edit operations: insert, delete, update, and move operations of
nodes in the tree representations of two versions of an XML document. A
node in the XML tree represents an element, text or an attribute node. As
the data format of a DTD is different from that of an XML document, the
types of changes in old and new versions of a DTD are different from the
ones that occur in XML documents. In fact, a DTD has richer variety of edit
operations compared to XML documents. For instance, in an XML docu-
ment an element does not have any cardinality associated with it. However,
an element type in a DTD may have a cardinality which may be updated as
the DTD evolves. We shall elaborate on different types of change operations
in DTDs in Section 3.

• Inability to detect changes to both unordered and ordered nodes. Often DTDs
contain sequence (denoted by “,”) and choice (denoted by “|”) groups. The
order of elements in a sequence group is important, while the order of ele-
ments in a choice group is not significant. The current approaches for de-

5

tecting the changes to XML documents focus on either ordered XML [7,13]
or unordered XML [14,15,22]. Hence, if we use existing techniques then
it is indeed possible that certain types of changes are not accurately de-
tected. For example, consider the element type declaration information

in D1 and D2 in Figures 1(a) and 1(b), respectively. We observe that
elements telp, fax, and website belongs to the choice group. Further-
more, (telp|fax+|website) and address are in the sequence group. The
deltas generated by X-Diff and XyDiff, when the documents in Figures 1(c)
and 1(d) are passed as input, are depicted in Figures 2(a) and 2(b), respec-
tively. Interestingly, the output of XyDiff specifies that the element fax has
undergone a move operation (Lines 9–11 and 17–19 in Figure 2(b)). How-
ever, this is incorrect as fax belongs to the choice group. On the other hand,
X-Diff fails to detect the movement of address element (Figure 2(a)).

• Detection of semantically incorrect changes. Consider the element type dec-
laration school in D1 and D2 in Figures 1(a) and 1(b). X-Diff and XyDiff
both detect that element name in school is updated to sinfo (lines 6 and
7 in Figures 2(a) and 2(b), respectively). However, sinfo consists of name,
head, website, telp, and fax. Hence, the change detected by these al-
gorithms is semantically incorrect. The correct edit operations should be
deletion of name element and insertion of sinfo element.

• Generation of non-optimal edit scripts. We notice that the changes to the
cardinality of an element in the DTD can result in generation of non-optimal
edit scripts [22] by X-Diff or XyDiff. For instance, consider the cardinality
of element fax in the element type declaration information in D1 and D2.
The cardinality of element fax is updated from + to ?. X-Diff detects it as
a result of two edit operations: a deletion followed by an insertion (line 17,
Figure 2(a)). Similarly, XyDiff also detects it as two edit operations (lines
4–5, Figure 2(b)). However, the correct number of edit operations should
be one (update of cardinality).

• Performance bottleneck. Lastly, existing XML change detection algorithms
such as X-Diff are not efficient when they are used to detect changes to
DTDs. This is because they do not exploit the structure and semantics
of the DTDs to improve response time. As we shall see in Section 5, by
exploiting such features of DTDs, our DTD change detection algorithm
outperforms X-Diff by 5–325 times!

2.2 DTD and XML Schema Evolution

XEM [20] is an approach which provides XML-centric data and DTD evolu-
tion facilities. The authors proposed a set of evolution operators to achieve
this. When DTDs are changed, XEM ensures that the existing XML docu-
ments still conform to the new DTD. Similarly, when the XML documents are

6

E1

||

E2 E3 E4 E5

E6 E7

,

*

?+ ?*

E1

,

(c) Content Tree (TE1)

school

,

name dean department *

school

,

sinfo department *

courses

,

course *

(a) Tschool and Tcourses of D1

courses

,

course +

(b) Tschool and Tcourses of D2

E1

||

E3 E2

E4

E5

E7 E6

,

*
?

+ ?*

E1

,

(d) Content Tree (TE2)

Fig. 3. Content Trees and Examples.

changed, XEM ensures that the changed XML documents still correspond to
the specified DTD. In [8], the authors proposed an approach to manage DTD
evolution. The authors also presented 25 DTD changes and defined their se-
mantics by preconditions and post actions such that the new DTD is valid,
existing documents conform to the new DTD, and data is not lost if possible.
DTD evolution has also been investigated in [4] where the focus was on dynam-
ically adapting the schema to the structure of most documents stored in an
XML data source. Required modifications are deduced by means of structure
mining techniques.

The above approaches are different from DTD-Diff as DTD-Diff focuses
on detecting the changes to DTDs. XEM and the approach in [8] are used to
manage DTD evolution and to ensure that when DTD is changed, the XML
documents that conform to this DTD still conform to the new DTD. That is,
XEM and the approach in [8] do not detect the changes.

Guerrini et al. addressed the problem of XML schema evolution in [9]. They
proposed a set of atomic evolution primitives to be applied to the basic com-
ponents of a schema. The authors showed that all required transformation
in an XML schema can be expressed through a sequence of primitives in the
set. Furthermore, a set of high level evolution primitives that allows complex
changes to be expressed in a compact way is proposed. Finally, they analyze
the impact of such primitives on the validity of XML documents known to be
valid for the original schema. Our work differs from the above effort as fol-
lows. First, we focus on DTDs instead of XML schemas. Second, we address
the problem of detecting the changes automatically whereas Guerrini et al.
attempts to identify the parts of documents that need to be revalidated after
a certain number of changes have occurred on the schema.

7

3 DTD Data Model

The DTD Data Model is a simple, flexible model for representing DTDs. In
this section, we begin by briefly describing the DTD Data Model. Next, we
present the basic change operations used to modify a DTD.

A DTD consists of entity declaration (<!ENTITY ...>), element type decla-
ration (<!ELEMENT ...>), and attribute declaration (<!ATTLIST ...>) that
describe entities, elements, and attributes, respectively. For example, consider
the DTD D2 in Figure 1(b). Lines 1–3, 4–17, and 18 are examples of entity dec-
larations, element type declarations, and attribute declaration, respectively.

Element Type Declaration (ETD). In a DTD, XML elements are declared
using element type declaration. Each element type declaration has a name
and element content. For example, consider the DTD D1 in Figure 1(a). The
name and the content of the element type school in line 5 are school and
(name,dean,department*), respectively. Formally, ETD is defined as follows:

Definition 1 [Element Type Declaration (ETD)] An element type dec-
laration is a 2-tuple E = (NE, CE), where NE is the name of the element type
E, and CE = (Υ1, Υ2, . . . , Υn) is a sequence called element content of E where
Υi is a regular expression over the element types.

Observe that an element content can be very complex with multiple levels of
nesting. For example, <!ELEMENT E1 (E1,(E2+|E3),(E4?|E5*|(E6,E7)?)*)>

where Υ1 = E1, Υ2 =(E2+|E3), and Υ3 = (E4?|E5*|(E6,E7)?)*. We repre-
sent the element content CE as a content tree TE. For example, the content
trees of element types school and courses in D1 and D2 are depicted in Fig-
ures 3(a) and 3(b), respectively. Also, consider the element type declaration
<!ELEMENT E1 (E1,(E2+|E3), (E4?| E5*|(E6,E7)?)*)>. The content tree
TE1 is depicted in Figure 3(c). Formally, we define the content tree as follows:

Definition 2 [Content Tree] Let E = (NE, CE) be an ETD. Then, the
content tree of CE is a 3-tuple TE = (root, K,W), where

• root is the root node of TE and label(root) = NE

• K is a set of nodes in TE. A node k ∈ K is a 2-tuple k = (Vk, λk), where
if k is a leaf node, then Vk is the name of element in CE. Otherwise, Vk ∈
{“,”, “|”}. If Vk = “,” then child nodes of k must be ordered. Otherwise,
child nodes of k are unordered.

• λk is the cardinality of node k (optional) where λk ∈ {“?”, “+”, “*”}.
• W is a set of edges in TE.

Attribute Declaration (AD). The attribute declaration in a DTD is used
to define the attributes of an element. Each AD has a name of element type
to which a set of attributes belongs. Each attribute in the attribute set has

8

a name, type, and an optional default value. For example, reconsider D1 in
Figure 1(a). The attribute declaration of element type course is in line 16. The
type of data and default value of the attribute code are CDATA and #REQUIRED,
respectively.

Definition 3 [Attribute Declaration (AD)] An attribute declaration A
is a 2-tuple A = (NA, SA), where NA is the name of element type and SA

is a set of attributes associated with NA. An attribute a ∈ SA is a 3-tuple
a = (Na, Ya, Da), where Na is the name of the attribute a, Ya ∈ {“CDATA”,
“(en1|en2|..)”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”, “NMTOKENS”, “ENTITY”,
“ENTITIES”, “NOTATION”, “xml:”} is the type of data of the attribute a, Da ∈
{“value”, “#REQUIRED”, “#IMPLIED”, “#FIXED value”} is the default value of
the attribute a.

Entity Declaration (ED). Entities are variables used to define shortcuts to
common text. Entity references are references to entities. We have two kinds
of entities: general entity and parameter entity. Consider DTD D2 as depicted
in Figure 1(b). Line 1 is an example of parameter entity. An example of gen-
eral entity is in line 2. Note that we only consider the general entities. This is
because the parameter entities automatically replace the entity references. En-
tities can be declared as internal or external. An internal ED has a name and
a replacement text. On the other hand, an external ED has a name, universal
resource indicator (URI), and a content notation. For example, in D2 line 2
is an example of an internal ED. The name and replacement text of this en-
tity are univName and "Open University", respectively. Line 3 (Figure 1(b))
is an example of an external ED. The name, URI, and content notation are
MyScript, "Script1.pl", and "pl", respectively. Formally, the ED is defined
as follows:

Definition 4 [Entity Declaration (ED)] An internal entity declaration
is a 2-tuple I = (NI , RI), where NI is the name of the entity, and RI is the
replacement text of the entity that replaces the entity reference. An external
entity declaration is a 3-tuple J = (NJ , UJ , PJ), where NJ is the name of the
entity, UJ is a universal resource indicator (URI) of the entity, and PJ is the
content notation.

We are now ready to define how a DTD is represented in our DTD data model.
Intuitively, one can think of a DTD as a set of ETDs, a set of ADs, and a set
of EDs. We define the DTD formally as follows:

Definition 5 [DTD] A DTD is a 3-tuple D = (E ,A,G) where E is a set of
Element Type Declarations (ETD) in D, A is a set of Attribute Declarations
(AD) in D, G is a set of internal and external Entity Declarations (ED). Also,
if the numbers of ETDs, ADs, and EDs in a DTD are α, β, and γ, respectively,
then |E| = α, |A| = β, and |G| = γ.

9

3.1 Types of Changes

We now describe how a DTD is modified. We discuss the types of changes
supported by element type declaration, attribute declaration, and entity decla-
ration. We assume that D1 = (E1,A1,G1) and D2 = (E2,A2,G2) are the old
and new versions of a DTD, respectively. Also, let Ei = {Ei1, Ei2, . . . , Ein} be
a set of ETDs and Ni = {Ni1, Ni2, . . . , Nin} be a set of element names in the
ETDs for i ∈ {1, 2}.

Types of Changes to Element Type Declaration (ETD). The types of
changes to the ETDs are defined as following.

(1) Insertion of a new ETD. Ex = (Nx, Cx) is a new ETD iff Nx /∈ N1

but Nx ∈ N2. For example, sinfo (line 7, Figure 1(b)) is inserted into
D2.

(2) Deletion of an ETD. Ex = (Nx, Cx) is a deleted ETD iff Nx ∈ N1 but
Nx /∈ N2. For example, dean (line 10, Figure 1(a)) is deleted from D1.

We now describe the types of changes to the element content. As in our DTD
model element contents are represented as content trees, we can define the
types of changes to element contents in the context of such content trees.
Suppose we have two ETDs E1 = (NE1,CE1) and E2 = (NE2,CE2), where
E1 ∈ E1, E2 ∈ E2, and NE1 = NE2. Let TE1 = (root1, K1,W1) and TE2 =
(root2, K2,W2) be two content trees of CE1 and CE2, respectively. The types
of changes in the content trees are as follows.

(1) Insertion of a leaf node. Let parent(k) be the parent node of node
k. Let w(p, c) be an edge connecting node p to node c. Node k = (Vk, λk)
is a new leaf node iff k /∈ K1, k ∈ K2, w(parent(k), k) /∈ W1, and
w(parent(k), k) ∈ W2. For example, consider Tschool as depicted in Fig-
ures 3(a) and 3(b). Node sinfo is a new node with Vk = “sinfo” and λk

is empty.

(2) Deletion of a leaf node. Node k = (Vk, λk) is a deleted leaf node
iff k ∈ K1, k /∈ K2, w(parent(k), k) ∈ W1, and w(parent(k), k) /∈ W2.
Consider Tschool as depicted in Figures 3(a) and 3(b). Nodes “name” and
“dean” are deleted leaf nodes.

(3) Insertion of a subtree. Let Sr be a subtree rooted at node r. Let
K and W be two sets of nodes and edges in subtree Sr, respectively.
Subtree Sr is a new subtree iff r /∈ K1, r ∈ K2, w(parent(r), r) /∈ W1,
w(parent(r), r) ∈ W2, ∀k∈K (ki /∈ K1), ∀w∈W (wj /∈ W1), ∀k∈K (ki ∈ K2),
and ∀w∈W (wj ∈ W2).

(4) Deletion of a subtree. Subtree Sr is a deleted subtree iff r ∈ K1,
r /∈ K2, w(parent(r), r) ∈ W1, w(parent(r), r) /∈ W2, ∀k∈K (ki ∈ K1),

10

∀w∈W (wj ∈ W1), ∀k∈K (ki /∈ K2), and ∀w∈W (wj /∈ W2).

(5) Move a leaf node. Node k1 = (Vk1, λk1) is moved to be node k2 =
(Vk2, λk2) iff k1 ∈ K1, k2 ∈ K2, w(parent(k1), k1) ∈ W1, w(parent(k1), k1) /∈
W2, w(parent(k2), k2) /∈ W1, w(parent(k2), k2) ∈ W2, Vk1 = Vk2, and
parent(k1) 6= parent(k2). Consider TE1 and TE2 as depicted in Figures 3(c)
and 3(d), respectively. The node with Vk = “E4” and λk = “?” is a moved
leaf node.

(6) Move a subtree. Let Kx and Wx be two sets of nodes and edges in
subtree Srx, respectively. Subtree Sr1 is moved to be subtree Sr2 iff
r1 ∈ K1, r2 ∈ K2, w(parent(r1), r1) ∈ W1, w(parent(r1), r1) /∈ W2,
w(parent(r2), r2) /∈ W1, w(parent(r2), r2) ∈ W2, ∀k1∈K1 (k1i ∈ K1),
∀w1∈W1 (w1j ∈ W1), ∀k2∈K2 (k2i ∈ K2), ∀w2∈W2 (w2j ∈ W2), Vr1 = Vr2,
and parent(r1) 6= parent(r2).

(7) Update of order. Let kx be a leaf/internal node in Kx. Let order(k)
be the left-to-right position of node k among its siblings. The order of
node k1 is updated to be the order of node k2 iff order(k1) 6= order(k2),
parent(k1) = parent(k2), Vparent(k1) = “,”, and Vparent(k2) = “,”. Consider
TE1 and TE2 as depicted in Figures 3(c) and 3(d), respectively. The order
of node with V = “E7” is updated from “2” to “1”. Similarly, the order
of node with V = “E6” is updated from “1” to “2”. Note that this type
of changes is different from the move a leaf node/subtree. In this type of
changes, the parent nodes before and after the changes occur are the same.
In the move a leaf node/subtree types of changes, the leaf nodes/subtrees
have different parent nodes before and after the changes occur.

(8) Insertion of Cardinality. Let k1 = (Vk1, λ1) and k2 = (Vk2, λ2) be two
nodes where k1 ∈ K1, k2 ∈ K2, Vk1 = Vk2, λ1 = ∅, and λ2 6= ∅. Then λ is
an inserted cardinality iff λ2 = λ.

(9) Deletion of Cardinality. Let k1 = (Vk1, λ1) and k2 = (Vk2, λ2) be
two nodes where k1 ∈ K1, k2 ∈ K2, Vk1 = Vk2, and λ1 6= ∅. Then, the
cardinality of k1 is deleted iff λ2 = ∅.

(10) Update of Cardinality. Let k1 = (Vk1, λ1) and k2 = (Vk2, λ2) be two
nodes where k1 ∈ K1, k2 ∈ K2, Vk1 = Vk2, λ1 6= ∅, and λ2 6= ∅. Then,
the cardinality of k1 is updated in k2 if λ1 6= λ2. Consider two Tcourses

as depicted in Figures 3(a) and 3(b). The cardinality of node course is
updated from “*” to “+”.

Note that we do not consider optimal delta for representing update of a node
name. That is, instead of representing the above change as a single “update”
operation, we detect it as a sequence of “delete” and “insert” operations. This
is primarily due to the following reason. Consider the ETDs school in D1 and
D2. We cannot consider that the name of element name is updated to sinfo

and element dean is deleted as it will lead us to have a delta that is seman-
tically incorrect. On the other hand, suppose we have a “lastname” element

11

whose name is updated to “surname”. In this case, the update operation is se-
mantically correct. However, it is extremely difficult to automatically extract
such semantic relationship between element names. Consequently, DTD-Diff
detects this change as a deletion of element “lastname” and an insertion of
element “surname” as we do not have information of semantic relationships
between “lastname” and “surname”. In other words, for this case we choose
to detect sub-optimal deltas over optimal but semantically incorrect deltas.
Note that our delta is still correct even though it is not optimal.

Types of Changes of Attribute Declaration (AD). Let N1 and N2 be
the sets of entity names in A1 and A2, respectively. The types of changes in
ADs are defined as follows.

(1) Insertion of a new AD. A = (NA, SA) is a new AD iff NA /∈ N1 and
NA ∈ N2.

(2) Deletion of an ED. A = (NA, SA) is a deleted AD iff NA /∈ N2 and
NA ∈ N1.

Suppose we have two ADs A1 = (NA1, SA1) and A2 = (NA2, SA2) where A1 ∈
A1, A2 ∈ A2, and NA1 = NA2. Let Ns1 and Ns2 be the sets of attribute
names in SA1 and SA2, respectively. The types of changes in ADs are defined
as follows.

(1) Insertion of a new attribute. Attribute a = (Na, Ya, Da) is a new
attribute iff Na /∈ Ns1 and Na ∈ Ns2.

(2) Deletion of an attribute. Attribute a = (Na, Ya, Da) is a deleted at-
tribute iff Na ∈ Ns1 and Na /∈ Ns2.

(3) Update of attribute type. The attribute type of attribute a = (Na, Ya, Da)
is updated in the new version iff Na ∈ Ns1, Na ∈ Ns2, and Ya 6= Ya

′, where
Ya
′ is attribute type of a in SA2.

(4) Update of default value. The default value of attribute a = (Na, Ya, Da)
is updated in the new version iff Na ∈ Ns1, Na ∈ Ns2, and Da 6= Da

′,
where Da

′ are default values of a in SA2.

For example, consider D1 and D2 in Figures 1(a) and 1(b), respectively.
The default value of the attribute year of element course is updated from
#IMPLIED to #REQUIRED. Note that we do not consider the update of attribute
name for the same reason as in the above discussion.

Types of Changes of Entity Declaration (ED). Let N1 and N2 be the
sets of entity names in G1 and G2, respectively. The types of changes in EDs
are defined as follows.

(1) Insertion of a new ED. Entity G is a new ED iff Ng /∈ N1 and

12

Input: DTD D1=
 DTD D2=
Output: Edit Script Z

 /* Phase 1:
 Parsing and Hashing */
1 ParseHash(D1)
2 ParseHash(D2)
 /* Phase 2: Finding the changes
 to element type declaration */
3 FOR EACH t1 IN T1 DO
4 FOR EACH t2 IN T2 DO
5 IF t1 and t2 has the same name

 THEN
6 Mmin Matching(t1,t2)

7 BREAK
8 END IF
9 END FOR
10 END FOR
 /* Phase 3: Detect Move Operation */
11 Mmin DetectMove(, ,Mmin)
 /* Phase 4: Finding the changes to
 attribute declaration */
12 Mmin DetectAttributeChanges(,)
 /* Phase 5: Finding the changes to
 entity declaration */
13 Mmin DetectEntityChanges(,)
 /* Phase 6: Generating Edit scripts */
14 Z GenerateEditScripts(Mmin)
15 RETURN Z

Fig. 4. The DTD-Diff Algorithm.

Ng ∈ N2 where Ng is the name of the entity in G.

(2) Deletion of an ED. Entity G is a deleted ED iff Ng /∈ N2 and Ng ∈ N1.

(3) Update of replacement text of internal ED. The replacement text
of internal entity I1 = (NI1 , RI1) is updated to the replacement text of
entity I2 = (NI2 , RI2) iff I1 ∈ G1, I2 ∈ G2, NI1 = NI2 and RI1 6= RI2 .

(4) Update of location of external ED. The URI of external entity
J1 = (NJ1 , UJ1 , PJ1) is updated to the URI of the external entity J2 =
(NJ2 , UJ2 , PJ2) iff J1 ∈ G1, J2 ∈ G2, NJ1 = NJ2 , and UJ1 6= UJ2 .

(5) Update of content notation of external ED. The content notation
of external entity J1 = (NJ1 , UJ1 , PJ1) is updated to the content notation
of the external entity J2 = (NJ2 , UJ2 , PJ2) iff J1 ∈ G1, J2 ∈ G2, NJ1 = NJ2 ,
and PJ1 6= PJ2 .

Note that if an entity g is changed from being an internal entity to being an
external entity, or vice versa, then we consider as a pair of a deletion of an
entity and an insertion of an entity.

4 DTD-Diff Algorithm

In this section, we present the DTD-Diff algorithm. The outline of the algo-
rithm is depicted in Figure 4(a). It takes as input two DTDs D1 = (E1,A1,G1)
and D2 = (E2,A2,G2) representing old and new versions of a DTD, respec-
tively, and returns an edit script Z containing the differences between D1 and
D2. The algorithm consists of six phases: the parsing and hashing phase, the
matching phase, the move detection phase, the attribute declaration changes
detection phase, the entity declaration changes detection phase, and the edit
script generation phase. We shall discuss each phase in turns.

13

Input: Node N
Output: The hash value of node N

1 IF N is leaf node THEN
2 RETURN MD5Value(label(N) cardinality(N))
3 ELSE IF N is non-leaf node THEN
4 conentenated_text = empty text
5 FOR EACH child IN children OF N
6 CalculateHashValue (child)
7 END FOR
8 IF N is choice group THEN
9 sort children of N by their hash values
10 END IF
11 FOR EACH child IN children OF N
12 conentenated_text = HashValue(child)
13 END FOR
14 conentenated_text = label(N) cardinality(N)
15 RETURN MD5Value(conentenated_text)
16 END IF

Fig. 5. The CalculateHashValue Algorithm.

4.1 The Parsing and Hashing Phase

Given two DTDs, D1 and D2, DTD-Diff parses D1 and D2 into (TE1,A1,G1)
and (TE2,A2,G2), respectively, and computes their hash values. Note that T1

and T2 are two sets of content trees of E1 and E2, respectively. Since a content
tree of an element type declaration has both ordered and unordered parts (the
child nodes of the sequence and choice groups, respectively), the algorithm for
computing the hash values must be able to address this issue. Given a node x
in TE ∈ TEi

where i ∈ {1, 2}, the hash value of node x is calculated as follows.

• If node x is a leaf node, then Hash(x) = MD5Value(label(x) • cardinality(x)).

• If node x is a non-leaf node and a sequence group, then Hash(x) =
MD5-Value(Hash(c1) •Hash(c2) • ... •Hash(cn) • label(x) • cardinality(x)),
where Hash(ci) is the hash value of the child node of node x.

• If node x is a non-leaf node and a choice group, then Hash(x) = MD5-
Value(Hash(c1) • Hash(c2) • ... • Hash(cn) • label(x) • cardinality(x)),
where Hash(ci) is the hash value of the child node of node x, and Hash(c1)
< Hash(c2) < ... < Hash(cn).

Note that “•” denotes concatenation of strings. Function MD5Value is a hash
function based on the MD5 Message-Digest algorithm [18]. We acknowledge
that there is a very few probability of collisions of some hash functions (in-
cluding MD5 hash algorithm) [5,10,11,21] that will influence the result quality
of our approach. The hash function in DTD-Diff can be replaced by other
hash algorithms without any significant changes to the algorithm.

14

Input: Two root node r1 and r2
Output: a set of matching pairs M

1 M = empty set
2 push pair {r1,r2} into queue Q
3 WHILE (Q is not empty)
4 pop a pair {r1,r2} from queue Q
5 M = M {r1,r2}
6 IF HashValue(r1)<>HashValue(r2) AND
 N1, N2 are non-leaf nodes THEN
 /* compute the cost of matching every
 pair of child nodes of r1 and r2 */
7 FOR EACH child1 IN children of r1
8 FOR EACH child2 IN children of r2
9 IF label(child1)=label(child2) THEN

10 ComputeCost(child1, child2)
11 ELSE
12 Cost(child1,child2) =
13 END IF
14 END FOR
15 END FOR
16 matched_pairs = set of pairs resulting from
 minimum-cost bipartite-matching among
 child nodes of r1 and r2
17 FOR EACH pair{x,y} IN matched_pairs
18 push pair{x,y} into queue Q
19 END FOR
20 END IF
21 END WHILE
22 RETURN M

∞

∪

Fig. 6. The Matching Algorithm.

The CalculateHashValue algorithm is depicted in Figure 4(b). We also calcu-
late the hash values of AD in A and ED in G. The hash value of AD A ∈ A
is calculated as follows. Hash(A) = MD5-Value(Hash(NA) • Hash(s1) •
. . . • Hash(sx), where Hash(sx) = MD5-Value(Hash(Ns) • Hash(Ys) •
Hash(Ds)), sx ∈ SA, and Hash(s1) < Hash(s2) < . . . < Hash(sx). The hash
value of ED E ∈ G is calculated as follows. Hash(E) = MD5-Value(Hash(NE)
• H), where if E is an internal entity declaration, then H = Hash(RE). Oth-
erwise, E is an external entity declaration, and H = Hash(UE) • Hash(PE).

The overall complexity of calculating the hash values is O(
∑|T1|

i=1(|TEi| × di) +∑|T2|
j=1(|TEj|×dj)+ |A1|+ |A2|+ |G1|+ |G2|) where |T1| and |T2| are the numbers

of content trees in T1 and T2, respectively, |TEi| is the number of nodes in TEi,
and di is the average out-degree of TEi.

4.2 The Matching Phase

Given two content trees of ETDs E1 and E2, denoted as TE1 and TE2, respec-
tively, DTD-Diff invokes the Matching algorithm as depicted in Figure 6.
The Matching algorithm returns a set of matching pairs Mmin. The principle
behind the Matching algorithm in DTD-Diff is based on the one in X-Diff
[22]. That is, our matching technique finds the minimum-cost bipartite match-
ings of two content trees. However, there are critical differences between the
Matching algorithm in DTD-Diff and the one in X-Diff as we exploit the
unique structural and semantic features of a DTD.

First, the Matching algorithm in X-Diff is invoked once. DTD-Diff invokes
the Matching algorithm as many as the number of ETDs. Observe that each
ETD in a DTD has a unique name and hierarchy. Each root node in the
content tree appears only once and mapping occurs only between nodes with
the same signature. So each smaller content tree will be compared with another
smaller tree from the second version having the root node with same name.
For example, the content tree rooted at node labeled school in Figure 3(a) will
be compared with the content tree in Figure 3(b) whose root has the same

15

Input: Two node r1 and r2
Output: C, Cost of matching r1 and r2

1 C = 0
2 IF HashValue(r1) = HashValue(r2) THEN RETURN 0
 /*Cost of update operation*/
3 IF cardinality(r1) <> cardinality(r2) THEN C=1
4 IF r1 and r2 are leaf node THEN RETURN C

/* recursively compute the cost of matching every
 pair of child nodes of r1 and r2 */
5 FOR EACH child1 IN children of r1
6 FOR EACH child2 IN children of r2
7 IF label(child1)=label(child2) THEN
8 ComputeCost(child1, child2)
9 ELSE
10 Cost(child1,child2) =
11 END IF
12 END FOR
13 END FOR

14 matched_pairs = set of pairs resulting from minimum-cost
 bipartite-matching among child nodes of r1 and r2
15 C = C + cost of minimum-cost bipartite-matching
 among child nodes of r1 and r2
16 FOR EACH child1 IN children of r1
17 IF child1 matched_pairs THEN
18 C = C + 1 /* cost of delete operation*/
19 END IF
20 END FOR
21 FOR EACH child2 IN children of r2
22 IF child2 matched_pairs THEN
23 C = C + size of child2 /* cost of insert operation*/
24 END IF
25 END FOR
26 IF r1 and r2 are sequence group THEN
27 C = C + number of local move operations required
28 END IF
29 RETURN C

∞

Fig. 7. The ComputeCost Algorithm.

Input: A1 and A2
Output: Attribute Matching M

1 M = empty set
2 FOR EACH a1 IN A1 DO
3 FOR EACH a2 IN A2 DO
4 IF a2 is already matched THEN
5 CONTINUE
6 ELSE IF Hash(a1) = Hash(a2) THEN
7 M = M (a1,a2)
8 Mark a1 and a2 that
 they are already matched
9 BREAK
10 ELSE IF a1.name = a2.name THEN

∪

11 IF a1.type <> a2.type THEN
12 Mark a1 and a2 that
 their attribute types are updated
13 END IF
14 IF a1.defval <> a2.defval THEN
15 Mark a1 and a2 that
 their default values are updated
16 END IF
17 M = M (a1,a2)
18 BREAK
19 END IF
20 END FOR
21 END FOR
22 RETURN M

∪

Fig. 8. The detectAttributeChanges Algorithm.

label. Note that this computation is independent from the remaining content
trees. Second, the ComputeCost algorithm in Figure 7 that is invoked by the
Matching algorithm in DTD-Diff to compute the cost matching between
r1 and r2 considers the cardinality changes (line 3, Figure 7). Note that the
Matching algorithm in X-Diff does not consider the cardinality changes as it
deals with XML documents, not DTDs. Third, unlike X-Diff which is based
on unordered trees, a content tree can have ordered and unordered subtrees.
Hence, in order to ensure our matching technique works on ordered subtrees
as well, we adopt the technique used in XyDiff [7] to find the largest order
preserving sequences among those matching pairs in sequence groups (lines
26–28, Figure 7).

We now analyze the complexity of the matching phase. Let |TE1| and |TE2| be
the numbers of nodes in the content trees TE1 and TE2, respectively. The com-
plexity of finding the minimum-cost bipartite matchings is O(|TE1| × |TE2| ×
max{deg(TE1), deg(TE2)} × log(max({deg(TE1), deg(TE2)}), where deg(TE1)
and deg(TE2) are the maximum out-degree in TE1 and TE2, respectively [22].
Suppose the numbers of ETDs in D1 and D2 are α1 and α2, respectively. Then,
the total complexity of finding the minimum-cost bipartite matching can be
estimated as O(min{α1, α2}× |TE1| × |TE2| ×max{d1, d2}× log(max{d1, d2}),
where |TE1| and |TE2| are the average numbers of nodes of the content trees

16

in TE1 and TE2, respectively, and d1 and d2 are the average out-degree of the
content trees in TE1 and TE2, respectively.

4.3 The Move Detection Phase

After we have a set of matching pairs Mmin, DTD-Diff detects move opera-
tions. Formally, the move operation is defined as follows. Let n1 and n2 be two
nodes in TE1 and TE2, respectively. Let parent(n) be the parent node of node
n. Then, node n1 is moved to be node n2 iff (parent(n1),parent(n2)) 6∈ Mmin

and Hash(n1) = Hash(n2). Note that we only consider a move operation if
the hash values of n1 and n2 are the same. This is because if the hash values of
n1 and n2 are different, then we need to check the differences in the subtrees
rooted at n1 and n2. If the hash values of n1 and n2 are different, then the
algorithm detects it as a deletion of n1 and an insertion of n2.

Now, we discuss how the move operations are detected. Let P and Q be two
lists of the subtrees from the first and second versions, respectively, that have
no matching subtrees in Mmin. Subtrees in P and Q are sorted by their size in
decreasing order. For each subtree in P , the algorithm checks whether there
is a subtree in Q that have the same hash value. If pi ∈ P and qj ∈ Q have
the same hash value, then the algorithm marks that subtree pi in the first
version is moved to be subtree qj in the second version. The complexity of the
algorithm for finding move operation is O(n× log(n)), where n is the number
of nodes in the content tree.

4.4 The Attribute Declaration Change Detection Phase

Recall that attribute list can be seen as a collection of attributes. Given two
collections of attributes of an element in the first and second versions, the
changes to the attribute list can be detected by using the algorithm in Fig-
ure 8. The complexity of the algorithm for finding the changes on the attribute
lists is O(n× log(n)), where n is the number of attributes defined in the DTD.
Note that we do not consider the update of the attribute name for the rea-
sons discussed in Section 3. We consider the update of the attribute name is
represented as a pair of deletion and insertion of an attribute.

4.5 The Entity Declaration Change Detection Phase

The change detection mechanism of EDs is quite straightforward and similar
to the approach for detecting changes to attribute declarations. Hence, we do
not elaborate on this step further. The complexity of the algorithm for finding

17

Code
Element

Types File size
(Kb)

E005-B05-D02 5 2 7

E010-B05-D02 10 3 12

E015-B05-D02 15 4 17

E025-B05-D02 25 6 30

E050-B05-D02 50 12 56

E075-B05-D02 75 18 87

E100-B05-D02 100 23 113

E150-B05-D02 150 36 170

E250-B05-D02 250 59 273

E500-B05-D02 500 122 570

DTD

E025-B05-D02 5 6 30

E025-B10-D02 10 12 82

E025-B15-D02 15 21 162

E025-B25-D02 25 45 385

E025-B40-D02 40 114 1,032

E025-B50-D02 50 167 1,500

E025-B05-D01 1 5 13

E025-B05-D02 2 6 28

E025-B05-D03 3 10 68

E025-B05-D04 4 21 194

E025-B05-D05 5 46 500

E025-B05-D06 6 86 994

E025-B05-D07 7 209 2,853

E025-B05-D08 8 557 7,231

(a) Different Number of Element Types

(b) Different Number of Out-degree

(c) Different Number of Depth

XSD

Nodes

691

1,031

390

1,847

3,460

5,360

7,044

10,564

16,903

35,076

1,731

3,896

868

10,444

25,720

49,068

122,182

328,862

5,022

10,047

1,837

24,021

64,611

94,014

Nodes

 File size
(Kb)

175

275

105

490

900

1,430

1,880

2,785

4,410

9,280

Code
Out-

degree Filesize
(Kb)

DTD XSD

Nodes

Nodes
Filesize

(Kb)

485

1,585

3,265

7,975

21,625

31,325

Code Depth Filesize
(Kb)

DTD XSD

Nodes# Nodes
Filesize

(Kb)

150

465

1,215

3,585

9,045

17,305

43,465

117,180

Code
Element

Types File size
(Kb)

DTD XSD

Nodes

Nodes

 File size
(Kb)

Fig. 9. Data Sets.

the changes on the entity declarations is O(n× log(n)), where n is the number
of entity declarations defined in the DTD.

4.6 The Edit Scripts Generation Phase

The edit script Z is generated as follows. (1) An edit script Z is initialized
as a set of move operations detected in the preceding step. (2) Then, for all
unmatching nodes in the first tree, delete operations are added into edit script
Z. (3) Next, for all unmatching nodes in the second tree, insert operations
are added into edit script Z. (4) For all pairs of matching nodes that have
different cardinality, cardinality update operations are added into edit script
Z. (5) For all pairs of matching nodes that belong to sequence groups and have
incorrect local order, local order move operations are added into edit script Z.
(6) The changes to the attributes lists are added into edit script Z. (7) Finally,
the changes to the entity declarations are added into edit script Z. The overall
complexity of this step is O(

∑|T1|
i=1(|TEi|)+∑|T2|

j=1(|TEj|)+|A1|+|A2|+|G1|+|G2|).

5 Experimental Results

We have implemented DTD-Diff entirely in Java. The experiments were
conducted on a Microsoft Windows XP Professional machine having Pentium
4 1.7 GHz processor with 512 MB of memory. We use both real world DTDs
and a set of synthetic DTDs generated by using our DTD generator. The
second versions of DTDs are generated by using our DTD changes generator.

18

We vary the numbers of element types, the percentage of changes, the out-
degree of each element types, and the depth of each element types.

Recall from Section 1, the results of state-of-the-art XML change detection
algorithms (X-Diff and XyDiff) suffer from several limitations. However, as we
are not aware of any publicly available change detection tools for DTDs, we
compare the performance of DTD-Diff with the C version of XyDiff (down-
loaded from http://pauillac.inria.fr/cdrom/www/xydiff/index-eng.htm) 2 and
the Java version of X-Diff[22] (downloaded from http://www.cs.wisc.edu/
∼yuanwang/xdiff.html). The C version of XyDiff was run in Pentium 4 1.7
GHz processor with 512 MB of memory and Red Hat 9 Linux Operating Sys-
tem. Note that as the Java version is in general slower than the C version, the
execution times of XyDiff will differ by a constant factor in comparison with
DTD-Diff and X-Diff.

Further, as X-Diff and XyDiff are not designed for detecting the changes on
DTDs, we convert the DTDs into XML Schema (XSD) [2] using Syntex dtd2xs
tool (downloaded from http://www.syntext.com/downloads/index.htm) be-
fore detecting the changes. For example, given a DTD depicted in Figure 1(a),
the equivalent XSD generated by using Syntex dtd2xs is depicted in Fig-
ure 1(c) (partial view only). Note that we have also investigated several other
DTD-to-XML Schema conversion tools that are freely available publicly. For
instance, we used LuMrix dtd2xs (http://www.lumrix.net/dtd2xs.php) to con-
vert DTDs into XSDs. To the best of our knowledge, these tools produced
almost similar XSD files and the differences did not significantly influence the
performance of X-Diff and XyDiff.

5.1 Execution Time vs Number of Element Types

We first study the performance of DTD-Diff by varying the number of ele-
ment types. We set the out-degree and depth of each element type to “5” and
“3”, respectively. Note that the average of the maximum depth of real DTDs
is “3” [6]. The number of attributes of each element is set to “3”. We set the
percentages of changes to “1%” and “9%”. The characteristic of the data sets
used in this set of experiments is depicted in Figure 9(a). Figure 10(a) shows
the execution time of converting DTD into XSD file using Syntex dtd2xs.

Figure 10(b) depicts the performance of DTD-Diff, X-Diff, and XyDiff when
the percentage of changes is set to “1%”. We observed that DTD-Diff sig-
nificantly outperforms X-Diff and XyDiff. DTD-Diff is 8.6–155 times faster
than X-Diff and 7.63–26.42 times faster than XyDiff. Figure 10(c) presents

2 Unfortunately, despite our best efforts (including contacting the authors), we could not get the Java
version of XyDiff.

19

(b) 1% Changes*

(c) 9% Changes*

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 25 50 75 100 150 250 500

Number of Elements

E
xe

cu
ti

o
n

 T
im

e
(s

) DTD2XSD

(a) Conversion Time

(d) Time vs. Percentage of Changes*

0

0.5

1

1.5

5 10 15 25 50 75 100 150 250 500

Number of Elements

E
xe

cu
ti

o
n

 T
im

e
(s

) DTD-Diff
X-Diff
XyDiff

2.75 3.16 5.96 14.18 1.85 3.73

0

0.7

1.4

2.1

5 10 15 25 50 75 100 150 250 500

Number of Elements

E
xe

cu
ti

o
n

 T
im

e
(s

) DTD-Diff
X-Diff
XyDiff

4.35 15.919.00 43.53 3.20 6.23

* Excluding the conversion time from DTD to XSD (for X-Diff)

0

0.1

0.2

0.3

0.4

0 3 6 9 12 15 18 21

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

DTD-Diff
X-Diff
XyDiff

Fig. 10. Experimental Results (1).

the performances of DTD-Diff and X-Diff when the percentage of changes
is set to “9%”. In this case, DTD-Diff is 5–272 times faster than X-Diff and
4.68–20.10 times faster than XyDiff. X-Diff failed to detect the changes when
the numbers of elements are more than or equal to 250 due to lack of main
memory. The inability of X-Diff to process large number of nodes in XML
data is also highlighted in [14,15].

We now elaborate on why our approach significantly outperforms X-Diff. First,
the tree representations of XSD files (XSD tree) contain elements with same
names. On the other hand, in DTD-Diff, each root node of the content trees
in a DTD has a unique name. As a result, there exists a one-to-one map-
ping between a content tree in the old version to another content tree in the
new version. Consequently, X-Diff does more number of bipartite matching
compared to DTD-Diff. Second, the number of nodes in the content trees
is lesser in most cases compared to an XSD tree. This further reduces the
number and cost of bipartite matching in DTD-Diff. To elaborate further,
let |T1| and |T2| be the numbers of nodes in the XSD trees of DTDs D1 and
D2, respectively. The complexity of finding the minimum-cost bipartite match-
ings between |T1| and |T2| in X-Diff is O(|T1|×|T2|×max{deg(T1), deg(T2)}×
log(max{deg(T1), deg(T2)}) [22]. The improvement of DTD-Diff over X-Diff
can be estimated as O(|T1| × |T2| × max{deg(T1), deg(T2)} ×
log(max{deg(T1), deg(T2)}))/O(min{α1, α2} × |TE1| × |TE2| ×max{d1, d2} ×

20

DTD DTD-Diff
X-Diff

SigmodRecord 0.021 0.010
PSD 0.032
Policy7 0.031
DBLP 0.032
NewsML_1.1 0.041

DTD

SigmodRecord
PSD
Policy7
DBLP
NewsML_1.1

Number of
Element Types

Number of
Attribute List

11 1
66 10
56 26
36 12
117 114

(a) Real DTD Characteristics

(b) Execution Time (seconds)

0.016
0.022
0.021
0.024
0.027

0.026
0.032
0.031
0.034
0.037

DTD2XSD Detect Total

0.010
0.010
0.010
0.010

XyDiff

0.010 0.217
0.342
0.333
0.291
0.517

0.227
0.352
0.343
0.301
0.527

DTD2XSD Detect Total

0.010
0.010
0.010
0.010

Fig. 11. Experimental Results: Real Data Sets.

log(max{d1, d2}))). Assuming that |α1| = |α2| = α, |TE1| = |TE2| = n,
|T1| = |T2| = t, and max(deg(T1), deg(T2))× log(max(deg(T1), deg(T2))) = x,
the complexity comparison becomes O(xt2/xαn2) = O(t2/αn2). Note that |T1|
and |T2| include the attribute and entity declarations of D1 and D2. However,
in the case of DTD-Diff |TE1| and |TE2| do not include these declarations
as their changes are detected separately. Based on our discussion in the pre-
ceding section, it is less expensive in DTD-Diff to compute changes to EDs
and ADs. Furthermore, numbers of nodes in the XSD files are larger than
the number of nodes in the content trees (from 2.8 up to 5.8 times larger,
Figure 9). Therefore, α × n2 ≤ t2. Hence, the performance of DTD-Diff is
always faster or in the worst case comparable to X-Diff. DTD-Diff is faster
than XyDiff due to the similar reasons as above.

We also study the performance of DTD-Diff and X-Diff for detecting the
changes to the real world DTDs [1,3]. Figure 11(a) depicts the characteristics
of the real world DTDs. We set the percentage of changes to 3%. Figure 11(b)
depicts the performances of DTD-Diff and X-Diff. We notice that X-Diff
has slightly better performance than DTD-Diff. This is primarily due to the
characteristics of the data. For instance, although NewsML 1.1 has 117 ele-
ments, the performance of DTD-Diff is comparable to X-Diff! Observe that
for synthetic data set with similar size, DTD-Diff outperforms X-Diff signif-
icantly. This is because in NewsML 1.1, only 6 out of 117 ETDs have nested
content and the maximum depth of NewsML 1.1 DTD is only 2. Hence, cost
of bipartite matching is almost the same. In summary, X-Diff performs rela-
tively better than DTD-Diff when the DTDs have simple and “flat” struc-
ture. When the DTD structure is complex, DTD-Diff outperforms X-Diff as
shown using synthetic dataset. Also, note that DTD-Diff is still better than
X-Diff because of the inaccuracies and incompleteness in the results generated
by X-Diff due to the limitations highlighted in Section 1. Compared to XyDiff;

21

(a) 1% Changes* (b) 9% Changes*

0

0.5

1

1.5

5 10 15 25 40 50

Out-degree

E
xe

cu
ti

o
n

 T
im

e
(s

)

DTD-Diff X-Diff XyDiff

22.76 4.73.6 3.02 13.486.37

0

1

2

3

4

5

5 10 15 25 40 50

Out-degree

E
xe

cu
ti

o
n

 T
im

e
(s

)

DTD-Diff X-Diff XyDiff

7.29 23.11 31.395.31 28.91 28.91

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Depth

E
xe

cu
ti

o
n

 T
im

e
(s

)

DTD-Diff
X-Diff
XyDiff

5.29

24
.4

3

94
.9

0

13.32 32.75 107

11
.5

3

(c) 1% Changes*

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Depth

E
xe

cu
ti

o
n

 T
im

e
(s

)

DTD-Diff
X-Diff
XyDiff

11
.4

3

9.08

19
.0

3

15.33

67
.3

8

32.4 76

(d) 9% Changes*

* Excluding the conversion time from DTD to XSD (for X-Diff)

Fig. 12. Experimental Results (2).

we observe that DTD-Diff is up to 12.61 times faster.

5.2 Execution Time vs Percentage of Changes

In this set of experiments, we study the effects of the percentages of changes on
the execution time of DTD-Diff, X-Diff, and XyDiff. We use the E005-B05-D02
data set, whose number of element types, out-degree, and depth are 5, 5,
and 2, respectively, as the first version of the DTD. We vary the percent-
ages of changes from “1%” to “20%”. Figure 10(d) depicts the execution time
of DTD-Diff, X-Diff, and XyDiff for different percentages of changes. We
observe that the percentage of changes slightly affect the performances of
DTD-Diff, X-Diff, and XyDiff.

5.3 Execution Time vs Out Degree

In this set of experiments, we study the effects of the number of out-degree of
each element type on the execution time of DTD-Diff, X-Diff, and XyDiff.
We set the number of element types and the depth to “25” and “2”, respec-
tively. We set the percentages of changes to “1%” and “9%”. We vary the out-

22

0.50

0.75

1.00

1.25

1.50

1 2 3 4 5 6 7 8 9 10

Percentage of Changes
R

at
io

DTD-Diff

Fig. 13. Result quality.

degree of each element type from “5” to “50”. The characteristic of the data
sets used in this set of experiments is depicted in Figure 9(b). Figures 12(a)
and 12(b) depict the performance of DTD-Diff, X-Diff, and XyDiff for dif-
ferent numbers of out-degree of each element type when the percentages of
changes are set to “1%” and “3%”, respectively. We observe that DTD-Diff
is up to 325 times faster than X-Diff. DTD-Diff is 2.52–15.48 times faster
than XyDiff. This is because of the reasons discussed above. We also notice
that X-Diff cannot detect the changes to XSD files when the out-degree is
more than or equal to 25 due to the lack of main memory.

5.4 Execution Time vs Depth

In this set of experiments, we study the effects of the depth of content tree
on the execution time of DTD-Diff, X-Diff, and XyDiff. We set the number
of element types and the out-degree to “25” and “5”, respectively. We set
the percentages of changes to “1%” and “9%”. We vary the out-degree of
each element type from “1” to “8”. The characteristic of the data sets used
in this set of experiments is depicted in Figure 9(c). Figures 12(c) and 12(d)
depict the performance of DTD-Diff, X-Diff, and XyDiff for different depth
of each content tree when the percentages of changes are set to “1%” and
“9%”, respectively. We observe that DTD-Diff is up to 89 times faster than
X-Diff and 9.5–38 times faster than XyDiff. X-Diff failed to detect the changes
when the depth is more than or equal to 8 due to the lack of main memory.

5.5 Result Quality

We also examine the quality of deltas detected by DTD-Diff. We use
E010-B05-D02 data set and the percentages of changes are varied between
“1%” to “10%”. The second versions are generated by using our DTD change

23

generator. Then, we calculate the result quality, that is, the ratio between
the number of edit operations detected by DTD-Diff and the optimal one.
Figure 13 depicts the ratios. We observe that DTD-Diff is able to detect the
optimal deltas until percentage of changes is set to “5%”. Afterwards, DTD-
Diff detects almost optimal deltas. This is because, in some cases, a move
operation is detected as a pair of deletion and insertion. Note that we do not
compare the result quality of DTD-Diff to other approaches as, to the best
of our knowledge, DTD-Diff is the first approach for detecting the changes
to DTDs. We do not compare the result quality of DTD-Diff to the one of
X-Diff (when we use XSD files) as the types of changes of DTD and XML are
different.

6 Conclusions

A DTD change detection tool can be useful in several ways such as mainte-
nance of XML documents, incremental maintenance of relational schema for
storing XML data, and XML schema integration. In this paper, we present
a novel technique for detecting the changes to DTDs. Our work is motivated
by the problem that converting DTD to XML Schema (XSD) (which is in
XML document format) and detecting the changes using existing XML change
detection algorithms (X-Diff and XyDiff) is not a feasible option. Such ef-
fort is expensive and may generate semantically incorrect and non-optimal
edit scripts. We propose an algorithm DTD-Diff that directly computes the
changes between two versions of DTDs by taking into account the structural
and semantic features of DTDs. We experimentally demonstrate that X-Diff
performs relatively better than DTD-Diff when the DTDs have simple and
“flat” structure. When the DTD structure is complex, DTD-Diff runs signif-
icantly faster (5–325 times) than X-Diff for the given data set. Further, even
though DTD-Diff is implemented using Java, it is still up to 38 times faster
than XyDiff (implemented in C). More importantly, DTD-Diff is also able
to produce optimal or at least near-optimal deltas. As parts of future work,
we will investigate on the problem of detecting the changes to XML Schema.

References

[1] UW XML Repository. Database Research Group, University of Washington.
http://www.cs.washington.edu/research/xmldatasets/.

[2] XML Schema. World Wide Web Consortium.
http://www.w3.org/XML/Schema.

[3] XML.ORG Registry and Repository for XML Schemas.
http://www.xml.org/xml/registry.jsp.

24

[4] E. Bertino et al. Evolving a Set of DTDs According to a Dynamic Set of
XML Documents. In EDBT Workshops, 2002.

[5] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby, C. Lemuet.
Collisions of SHA-0 and Reduced SHA-1. In Eurocrypt 2005, 2005.

[6] B. Choi. What are real DTDs like?. In WebDB, 2002.

[7] G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML
Documents. In ICDE, 2002.

[8] L. Al-Jadir, Fatmé El-Moukaddem. Once Upon a Time a DTD Evolved
into Another DTD.... Proc. of the 9th International Conference on Object-
Oriented Information Systems, 2003.

[9] G. Guerrini, M. Mesiti, D. Rossi. Impact of XML Schema Evolution on
Valid Documents. In ACM WIDM , 2005.

[10] Vlastimil Klima. Finding MD5 Collisions a Toy For a Notebook.
Cryptology ePrint Archive, Report 2005/075, 2005.

[11] Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a
Minute. Cryptology ePrint Archive, Report 2006/105, 2006.

[12] R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML to SQL Query
Translation Literature: The State of the Art and Open Problem.In XSym,
2003.

[13] E. Leonardi, S. S. Bhowmick, S. Madria. Detecting Content Changes
on Ordered XML Documents Using Relational Databases. In DEXA, 2004.

[14] E. Leonardi, S. S. Bhowmick, S. Madria. Xandy: Detecting Changes
on Large Unordered XML Documents Using Relational Databases. In
DASFAA, 2005.

[15] E. Leonardi, S. S. Bhowmick. Detecting Changes on XML Documents
Using Relational Databases: A Schema-Conscious Approach. In ACM CIKM,
2005.

[16] E. Leonardi, Tran T. Hoai, S. S. Bhowmick, S. Madria. DTD-Diff:
A Change Detection Algorithm for DTDs. In DASFAA, 2006.

[17] M. Raghavachari, O. Shmueli. Efficient Schema-Based Revalidation of
XML. In EDBT , 2004.

[18] Ronald L. Rivest. The MD5 Message Digest Algorithm. Internet RFC
1321, April 1992. http://www.faqs.org/rfcs/rfc1321.html.

[19] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,
and J. F. Naughton Relational Databases for Querying XML Documents:
Limitations and Opportunities. In VLDB, 1999.

[20] H. Su, D. Kramer, L. Chen, K. Claypool, E. A. Rundensteiner.
XEM: Managing the Evolution of XML Documents. In RIDE, 2001.

25

[21] X. Wang and H. Yu . How to Break MD5 and Other Hash Functions. In
Eurocrypt 2005, 2005.

[22] Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective Change Detection
Algorithm for XML Documents. In ICDE, 2003.

26

