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Abstract—Combination therapy, where several drugs interact
with multiple targets, holds tremendous promise for effective
clinical outcomes in the management of chronic, complex diseases
such as cancer. In this paper, we take a step towards this
grand goal by laying out the vision of a novel in silico, data-
driven combination therapy framework called ingot for complex
network diseases. Given the genomic and proteomic profiles of
a patient population, it automatically predicts “optimal” set of
synergistic drug combinations and corresponding dosages, which
can potentially achieve the therapeutic goal while minimizing any
off-target effects. Towards this goal, we present the architecture
of ingot and discuss various non-traditional design challenges
and innovative features. Specifically, in ingot, a disease-related
probabilistic signaling network (psn) is constructed by integrat-
ing publicly-available disease-specific signaling networks with
expression data. Next, topology and dynamics of the psn, which
can be noisy and incomplete, are analyzed as a whole using
probabilistic network analytics techniques to identify promising
target combinations with desirable properties (e.g., synergistic in
nature, good efficacy and minimum off-target effect) to regulate
the activities of key disease-related molecular players. Finally,
optimal candidate drug combinations to modulate these targets
are predicted by integrating and analyzing drug information
(e.g., DrugBank) with the target nodes. Successful realization of
this framework can result in an effective platform for in silico
screening of drug combinations in a rational way, by aiding early
discovery of suitable combination therapy and guiding the design
of further in vitro and in vivo experiments.

I. Introduction

Cells use sophisticated communication between proteins
in order to perform a variety of functions such as growth,
survival, proliferation and development. As signaling pro-
teins rarely operate in isolation through linear pathways, cell
signaling can be viewed as a large and complex network.
Specifically, the network view emerges due to ‘cross-talks’
between different signaling pathways. Such a network contains
numerous features such as feedback and feedforward loops [2],
which render it virtually impossible to manually comprehend
how signals are integrated in these pathways. Understanding
signal flow in the network is paramount as alterations of
cellular signaling events, such as those that arise by gene
mutations or epigenetic changes, can result in various diseases.
For example, alterations to the genes that encode key signaling
proteins, such as RAS and PI3K, are commonly observed in
many types of cancers. In fact, although we have medically
prevailed over numerous diseases that have plagued humanity
throughout the ages, we are still not able to provide effective
cures for diseases of greater complexity such as diabetes,
cancer, heart disease, and Alzheimer’s disease.

Therapeutic drug discovery that can target these altered

signaling pathways to restore the physiological state of a
disease network to normalcy has long been dominated by the
“one-target one-drug” paradigm (identify a single chemical
entity that binds to a single target) in the past decades.
However, most complex diseased states are polygenic and are
characterized by a combination of interacting genes and their
products instead of a single gene. Although some degree of
efficacy is possible using such a paradigm, it is well-known
that such a paradigm did not yield an increasing number
of successful drugs as expected [1] because multiple targets
have to be involved in disease control due to redundancy
and multi-functionality of biological processes. For example,
cell proliferation leverages the combined control of multiple
growth factor receptor pathways, and genetic experiments
reveal that inhibition of any single receptor is only partially
effective in blocking growth. Furthermore, clinical treatment
of this paradigm may give rise to unexpected off-target effects
due to cross-talks between pathways in the disease network.

To address the limitations of single-target-based drugs,
increasing attention has been diverted to combination ther-
apy by targeting multiple molecules simultaneously in a
disease-related signaling network [24]. Specifically, in this
therapy, instead of a single compound interacting with a
single target, a concerted pharmacological intervention of
several compounds interacting with multiple targets is made.
Such a strategy has the potential to yield better benefits
compared to a single molecule (mono-therapy) for com-
plex diseases due to its ability to use lesser dosage to
achieve efficacy, reduction of the frequency at which ac-
quired drug resistance arises by combining drugs with minimal
cross-resistance, and enhancing potency (amount required to
produce an effect of given intensity) by leveraging additivity
or synergism in the biochemical activities of multiple drugs.
Examples of such a strategy can be found in the combination
therapy of aids, cancer, and hypercholesterolaemia [24]. Even
for diseases that are caused entirely by disruption of a single
pathway, combination therapy might still offer benefits over
monotherapy by virtue of spreading out the side effects to
sub-toxic levels, while concentrating the desired effects on
the target pathway. However, not all combination therapies
produce better effects than monotherapies. For instance, in a
study of combinations of analgesic drugs, some combinations
(e.g., aspirin and pentazocine) were beneficial, while
others (e.g., acetaminophen and pentazocine) were detri-
mental [22]. Hence, it is important to formulate strategies to
develop good drug combinations which maximize the overall
therapeutic effect while minimizing the off-target effects.

The traditional approach for combination therapy is gener-
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Fig. 1. System architecture of of ingot.

ally based on designing combinations based on the clinical ex-
perience of doctors, knowledge of biological mechanisms, and
practical constraints in the design of clinical trials [32]. Most
therapies were initially developed as effective single agents
and only later combined clinically. A common assumption
in this case is that only drugs that are effective individually
should be used as part of a drug combination. Because the
effect of drugs depends on the dose, several doses need to
be studied for the drug combinations, and the number of
possible combinations can grow exponentially. For instance,
a cancer chemotherapy regimen typically consists of six or
more drugs from more than 100 anticancer drugs. However,
investigating all six combinations out of 100 (including partial
combinations) at three different doses to determine which
combination is effective generates 8.9 × 1011 possibilities.
As clinical trials are very expensive, exhaustive study of all
possible combinations clearly becomes intractable. Although
high-throughput screening technology allows the testing of
pairs of drugs over a range of doses, combinatorial explosion
still prevents exhaustive measurement of combinations of more
than two drugs [37]. Hence, alternative procedures are needed
to enable the rapid search for superior drug combinations
targeting disease-related networks.

With the fast accumulation of experimental data from high-
throughput screening and omic data measurements along with
growing availability of disease networks, data-driven tools that
can facilitate early detection of efficacious and nontoxic drug
combinations in silico can serve as a powerful discovery and
pre-screening platform when coupled with other complemen-
tary technologies such as high-throughput screening. Several
groups have recently undertaken a data-driven model-based
approach [3], [5], [35] where biological measurements (either
obtained by the authors or derived from the literature) are
used to build explicit models of the target biological network
for the optimization of drug combinations using simulations.
For example, Yang et al. [35] modeled the arachidonic acid
metabolic network, related to inflammation, with a 2-step
simulated annealing approach to optimize (1) drug candidates
and (2) levels of intervention for multiple targets. On the other
hand, advocates of model-free approach [6], [17], [34] have
described biological search algorithms, where the search is not
conducted in silico but directly using biological measurements
from in vitro or in vivo systems. These methods can be
stochastic, for example using Monte Carlo or evolutionary
algorithms, or non-stochastic. For instance, Calzolari et al. [6]
used non-stochastic algorithms derived from one used in digital
decoding to perform biological searches for drug combinations,

both in vivo (using fruit flies) and in vitro (using cell lines).

The model-based and model-free approaches, however,
suffer from two key limitations. First, they ignore the off-target
effects of the combinations. Consequently, these approaches
may yield combinations satisfying the user-desired therapeutic
effect, but with excessive off-target effects, rendering the
combinations useless due to their toxicity. Note that in [35]
a user needs to specify apriori specific side effects (as input
to the algorithm) in terms of the ratio of concentration of two
relevant nodes. Due to the complexity of biological networks,
such a strategy is often impractical as it is highly unlikely
for a user to know all system-wide side effects ahead of time.
Second, although the target activity affects the combination
effects, it is chosen randomly without considering synergistic1

combinations. A judicious selection process that is “synergism-
aware” can provide us an opportunity not only to select
superior drug combinations but also improve efficiency of the
overall process by ignoring non-synergistic combinations.

In this paper, we take a step towards addressing the afore-
mentioned limitations by presenting a vision of a novel generic
framework called ingot (In Silico Network-enabled DruG
COmbination Therapy) for in silico combination therapy. Fig-
ure 1 shows the system architecture of ingot. Given publicly
available expression profiles data of patients for a specific dis-
ease (e.g., MGH-Sanger Database (http://www.cancerrxgene.
org/), Broad Institute Database (http://www.broadinstitute.org/
ccle/home), dbDEPC), first, the Probabilistic Signaling Net-
work Constructor Module constructs a probabilistic signaling
network (psn) by integrating publicly-available global human
disease signaling network with these expression profile data.
Specifically, since diseases like cancer implicate many sig-
naling pathways, this module integrates these pathways into
a large network. The Differential Signaling Network Ana-
lytics Module identifies important differential interactions in
the psn under the disease condition in comparison to the
interactions under normal condition. Next, the topology and
dynamics of the psn, which can be noisy and uncertain, are
analyzed by the Target Set Identifier Module in its entirety
using novel network analytics techniques to identify “optimal”
collection of potential molecules that can be targeted together
(target combinations) by drugs. In the final step, the Drug
Combination Discovery Module leverages publicly-available
drug databases (e.g., DrugBank [33]) to automatically identify
effective drug combinations for these target. We elaborate on
these components in the subsequent sections.

II. PSN Construction

In this section, we discuss how a disease-related prob-
abilistic signaling network (psn) can be constructed from
genomic and proteomic expression data of patients. For ease
of exposition, we use cancer patients as a running example to
illustrate the psn.

Genes that, when mutated or silenced, result in tumorigen-
esis often lead to the aberrant activation of certain downstream
signaling nodes resulting in dysregulated growth, survival

1A joint action of two drugs in such a manner that one supplements or enhances the
action of the other to produce an effect greater than that which may be obtained with
either one of the drugs in equivalent quantity or produce effects that could not be obtained
with any safe quantity of either drug, or both.



and/or differentiation. Hence, the architecture of cancer sig-
naling network2 is important for understanding the regions at
which a genetic defect is involved in cancer and determining
biological targets for diagnostic and therapeutics. Specifically,
it presents a global picture of the mechanisms affecting cancer
cell signaling and tumor progression. In ingot we take the
following two-step approach to create such a probabilistic
signaling network.

Mapping Expression Profiles to Disease-related Signal-
ing Network. First, we identify key molecular players (e.g.,
mutated and methylated genes) and their expression levels
from the publicly available expression data of patients with
a specific type of cancer. Second, given the set of molecular
players and their expression values, we superpose them in
a publicly-available global cancer-related signaling network
(e.g., [11]) to generate subnetworks containing nodes that are
implicated in cancer as well as their neighborhood connections.
Specifically, the expression data can be used to enrich the sub-
networks by encoding the activity of relevant genes (proteins).
For example, these expression data may enrich the p53 region
of the network containing tumor suppressor proteins such as
p53, Rb, BRCA1, BRCA2, etc. Note that due to the complexity
of the cancer causing mechanism, the psn tends to be large in
size consisting of several subnetworks (e.g., p53, MAPK-PI3K,
RAS, TGF-β subnetworks) implicated in cancer.

It is worth noting that there are several recent efforts to
identify relevant subnetworks in protein-protein interaction
(ppi) networks that are differentially expressed in different
types of cancer by leveraging high-throughput genomic and
proteomic data [10], [27]. However, we construct a signaling
network instead of a ppi network as the latter is insufficient
to support development of superior data-driven techniques for
drug combination discovery for the following reasons. First,
edges in ppi networks are undirected; there is neither flow of
information nor mass between nodes - an edge simply indicates
that two proteins bind. Hence, they cannot be used to provide
insights into the dynamics of the interacting molecular players
as well as models of signal transduction, key prerequisites for
inferring potential drug targets [3] (see Section IV). Second,
ppis have high false-positive rate, in the sense that although
these proteins can truly physically bind they may never do so
inside cells, because of different localization, or because they
are never simultaneously expressed.

Enrichment of Edges with Reaction Dynamics. Signaling
networks can be modeled at different levels of details ranging
from detailed mathematical models to graphical representa-
tions. The psn constructed in the preceding step only details
topological structure of the network and roles of various
molecular players in a disease state. It does not contain any
mathematical models that can provide insights into the dy-
namics and functions of various signal transduction pathways
in the psn. It is increasingly acknowledged that existence
of such models can greatly facilitate predictive analysis of
combination therapy [3]. Hence, in this step we enrich the
edges (reactions) of the psn with mathematical models for
quantitatively describing the types of reactions.

2A signaling network is represented as a hypergraph, in which nodes represent proteins.
The edges are directed and represent activation (positive edge) or inhibition action
(negative edge). Note that for some edges the types may be unknown.

Several mathematical models based on ordinary differential
equations (ode) have been formulated and their parameters
optimized to fit experimental observations [3], [20]. However,
formulating such detailed models is a difficult problem re-
quiring a huge amount of experimental data, which are not
commonly available, certainly not at a psn-wide scale. Hence
in ingot, we need to devise automated techniques for extract-
ing the mathematical models from heterogeneous information
sources such as curated signaling network databases (e.g.,
BioModel [26]) and biomedical literature.

It is worth mentioning that the enriched psn resulting from
the aforementioned steps is inherently probabilistic in nature
due to the following key reasons. First, the psn is incomplete
and some edges may not be correct. Therefore, connectivity
patterns in the psn cannot be always interpreted as well-defined
wiring schemes. Second, it is overly optimistic to assume the
availability of mathematical models of all reactions in the psn
from heterogeneous information sources or experimental stud-
ies. Realistically, the odes of several reactions are unavailable
due to lack of experimental data. Hence only a subset of
subnetworks in the psn will be enriched with mathematical
models. Even for those edges which are enriched with odes,
they may be impaired because of incomplete knowledge about
the concentrations and kinetics of signaling intermediates.
Additionally, while some subnetworks enriched with mathe-
matical models may not be noticeably affected by the specific
choice of initial conditions (e.g., EGFR network [3]), it may be
critical for subnetworks with complicated topologies as they
may exhibit very complex responses such as ultrasensitivity,
bistability and oscillations. Hence, any subsequent psn process-
ing techniques need to be probabilistic in nature to tackle these
aforementioned challenges.

III. Differential Signaling Network Analytics

In this section, we present the functionality of the Dif-
ferential Signaling Network Analytics Module. Notice that the
above construction of a disease-related psn by high-throughput
mapping of expression profiles on a global disease-related
signaling network can only represent a static “snapshot” of
the network under a disease condition. It cannot distinguish
between changes in network state and changes in network
wiring in the disease psn compared to the healthy psn (e.g.,
cancer vs normal). That is, it does not provide an answer to
the following question: What interactions are most affected
by the disease-state? Note that answers to this question shall
pave way for identifying important differential interactions in
the psn which are a reflection of cellular processes that are dif-
ferentially important under the disease condition. Specifically,
some interactions may appear or disappear in the disease state,
intensity of some interactions may alleviate or aggravate when
in disease state compared to healthy condition, and others may
remain strong irrespective of the state. Consequently, system-
wide changes in signaling networks in different conditions will
guide the subsequent targets identification as it shed light on
which components need to be regulated in order to restore
normalcy to the disease-related psn.

Recently, there is a growing interest in studying the system-
wide responses of interaction networks following environment
or condition change [18]. One representative method for map-
ping the genetic interaction responses following environmental



changes is the dE-MAP approach [4]. In this method, two static
gene interaction networks for each condition are first obtained
using the epistatic miniarray profile (E-MAP) approach [29]
which constructs a quantitative genetic interaction landscape
of S. cerevisiae. Using these two static E-MAP networks, a
differential network is then constructed that maps the inter-
action differences between the two static networks. However,
analysis of such differential networks is largely done manually
(i.e., functional roles of different components of the network
is done manually). Consequently, it does not scale to large
networks such as cancer-related interaction networks.

We construct a differential psn from the genetic interaction
differences between cancer cells and normal cells. Note that
the psn of a normal cell can be constructed by following
the similar technique as described in Section II. Then, large-
scale novel analytics techniques need to be built on top of
it to identify differentially important components under the
disease condition. Results of this analysis will be fed to the
Target Combination Identification Module to determine which
molecular players/components need to be regulated.

IV. Target Combination Identification

Given a psn and a therapeutic goal (e.g., 50% inhibition
of phosphorylated ERK), the goal of this component is to find
suitable (top-k) sets of drug targets and the required target
activities (type and extent of perturbations) for these targets.
The intuition behind this step is to find target sets which can be
modulated according to the required target activities by drugs3

to restore normalcy to the biological network. Intuitively, the
molecular targets can be identified by comparing the result of
their perturbation in the disease-psn with the psn modeling the
normal physiological state (Sections II and III).

The aforementioned problem is not only biologically chal-
lenging but also computationally. Complexity of the psn (nu-
merous potential drug targets) and potentially a wide range of
target activities for each target make brute-force search to test
all sets of potential target combinations infeasible since the
number of testable combinations increases exponentially with
the number of variables associated with the psn. Furthermore,
any target combination identification technique must generate
target sets that are synergistic in nature and minimizes any
off-target effects on the network. The off-target effects refer
to systems level implications of targeting particular sets of
nodes (e.g., effect of activations of Akt and MEK on the psn).
Importantly, such off-target effects may have a deleterious
impact on the physiological state of a patient. Synergistic target
combinations require smaller target activities (drug dosage) to
achieve the same therapeutic effect. This in turn, minimizes
the potential off-target effects. Last but not the least, these
challenges are further exacerbated by the noisiness and in-
completeness of the psn. Specifically, the therapeutic effect of
a set of targets can be measured as the normalized change
in area under the concentration-time series curves (temporal
evolution of the odes) of relevant nodes before and after the
target combination is perturbed. However, in order to quantify
this accurately, the associated mathematical models need to be
available, which may not be the case for several regions in

3Target activity, quantified as the ratio of concentration of a drug to its dissociation
constant, models the phenomenon of a drug at particular dosage hitting its target resulting
in a particular response of the network.

the psn as discussed earlier. Consequently, probabilistic target
combinations identification approach that can operate in noisy
and incomplete environment needs to be developed.

The target combination identification problem (tcip) es-
sentially consists of two subgoals: (a) determine the targets
in the combination and (b) determine the type of action
(i.e., activation or inhibition) and the extent of the action on
the targets. Both these subgoals must ensure that it achieves
desired therapeutic effect while minimizing off-target effects.
Hence, the problem can be modeled as optimization of a
constraint satisfaction problem (csp) which is NP-hard [13].
Due to the complexity of this problem, it is desirable to seek
for an approximate solution.

Notably, there are early efforts in the systems biology
community to address this problem in the context of well-
studied signaling networks [9], [35]. However, these techniques
cannot be easily adopted in the context of psn as they assume
that the underlying signaling network is complete and the
mathematical model to describe it is completely available.
Furthermore, [35] is not only “synergism-unaware” but also
does not automatically consider off-target effects. Lastly, these
techniques are computationally expensive as they are designed
for a small subset of cellular reactions. That is, they do not
scale to networks containing thousands of nodes (e.g., psn).

In order to tackle the issue of incompleteness and noisiness
of mathematical models in a psn, an intriguing possibility
is to explore whether topology of the psn themselves may
provide valuable information in assessing targets and their
combinations. That is, can we facilitate identification of tar-
get combinations by leveraging topological features without
completely relying on the availability of complete set of
mathematical models? This is more so as recent studies have
strengthen the hypothesis that network topology is an essential
feature in the emergent system function of the protein when
it is perturbed [16]. For instance, bridging nodes (nodes with
high bridging centrality) have been suggested as potential drug
targets, although modulation of the bridging targets themselves
may still be indirect [16]. An initial network analysis of
the current drug targets of approved drugs indicated that
drug targets are commonly highly connected but not essential
nodes [25], [36]. Additionally, studies have shown that drug
resistance is typically a result of the existence of redundant
pathways in the network [31]. Hence, topological knowledge
of whether a node is located in a redundant pathway in the
psn may increase the efficacy of designing target combination.

Approach. Broadly speaking, the tcip can be tackled in
two key steps. In the preprocessing step, we first compute the
individual target activities required to achieve the therapeutic
goal for each node by leveraging on the odes whenever
available. The purpose of performing this step is to facilitate
selection of only synergistic target activities for the next step
to identify candidate target combinations. Techniques such as
Monte Carlo Simulated Annealing (mcsa) can be leveraged
here where the target activity is allowed to vary over a specific
range during annealing. Observe that the target activities for
some nodes need to be computed probabilistically as some of
the edges may not be associated with any odes. Next, a prioriti-
zation rank for each node is computed by taking into account
its topological properties in the psn as well as its dynamic
behavior. Specifically, properties such as bridging centrality,



location in redundant pathways, target downstream effect4 [8],
and profile shape similarity5 [8] can be exploited to rank them
based on their sensitivity to the therapeutic goal (nodes with
high probabilities as drug targets are ranked higher). In the
optimization step, the candidate target combinations can be
first generated by applying a set of heuristics to reduce the
exponential search space. For instance, targets that have higher
prioritization ranks are preferentially selected as candidates
(the ranks can be converted to selection probabilities by using
a rank-based fitness function). Additionally, target activities of
a combination are selected within a synergistic range. Loewe
additivity theory [12] can be used to determine synergism
by replacing drug dosages in its combination index with
target activities. Next, the therapeutic effect and the off-target
effects are computed for each candidate combination generated
from the previous step by perturbing the psn network. The
perturbation needs to be probabilistically simulated leveraging
on the odes whenever available. Specifically, a combination
is accepted if it achieves the desired therapeutic goal and
results in potentially fewer off-target effects. The selection is
terminated once k “good” target combinations are identified.

V. Drug Combination Discovery

Given the target combination set, the objective of this step
is to develop in silico techniques for discovering and character-
izing “good” drug combinations for these targets. This problem
is challenging in at least two fronts. First, drug promiscuity
and drug-drug interaction effects make predicting efficacy and
safety of drug combination difficult since off-targets of the
drugs may be implicated in toxicity and interaction amongst
drugs may result in changes in drug metabolism or uptake.
Hence, relevant drug-related information needs to be carefully
garnered and leveraged along with characteristics of the targets
in the psn to discover effective drug combinations. Second, as
remarked earlier, there is an exponential number of possible
combinations of drugs available for a disease treatment, mak-
ing any brute-force approach prohibitively expensive. Hence,
any in silico solution must not only be able to use drug-
related information and incorporate semantic reasoning to
map appropriate drug combinations (synergistic, potentiative,
additive, antagonistic, reductive) to the target combinations by
analyzing their effects, but also must be efficient and scalable
in pruning exponential search space.

Approach. Pharmacodynamics (mechanism of action of
a drug) and pharmacokinetics (fate of a drug in the body)
properties of a drug play important roles in determining not
only suitability of a drug for a target but also in deter-
mining appropriate drug combinations. However, recent in
silico approaches [30], [35] for identifying drug combinations
focus on analysis of the signalling networks via perturbation
of the network parameters, ignoring drug-related information
such as drug-drug interaction or drug-target information (e.g.,
inhibitor potency of drugs, which molecules cause metabolism
of the drugs, etc). In contrast, in ingot we propose a framework
that leverages such drug-related information for superior drug

4It assesses the effect of perturbing a target on the entire signalling network and can
be computed as the sum of the product of the probability of perturbing a downstream
node and the likelihood that the downstream node would cause an off-target effect.

5Identifies most relevant upstream regulators by assessing the similarity of the
concentration-time series profiles of a target and its upstream regulators. Activators tend
to have similar profiles to the target while inhibitors have inversely-similar profiles to the
target.

combinations prediction. Specifically, the drug combination
discovery problem comprises of two key subgoals: (a) iden-
tification of drugs relevant to targets by analyzing character-
istics of drugs and targets and (b) selection of “good” drug
combinations for the target combinations.

Identification of drug-target relationship involves finding
mapping between targets and known or new drugs. Specif-
ically, for finding known drugs for targets, we may lever-
age on publicly-available drug-related databases (e.g., Drug-
Bank [33]). Intuitively, targets that do not have any matching
drugs in the databases are first pruned and then various
pharmacodynamics and pharmacokinetics properties (such as
effect on targets, mechanism of action, absorption rate, kinetic
constants, etc.) of selected drugs from these databases can be
exploited to find suitable drugs. The latter case of identifying
new drug-target relationship can be tackled by leveraging on
approaches based on sequence similarity, 2D and 3D structural
similarity [15], [19], [21], [23], side-effect similarity [7], text
mining-based [14], or hybrid strategies that combine different
drug-drug and target-target similarity measures [28].

The second subgoal to select “good” drug combinations
for the target combinations from the selected drugs needs
to address the following two important questions. First, if
multiple drugs are mapped to a target, then which one do we
choose? Second, how do we assess in silico if a particular
drug combination is a good choice? We create a combination
rules database that semi-automatically extracts various drug
combination characteristics and rules from the literature by
leveraging text mining techniques. For instance, since we
would like to form drug combinations that have high efficacy
and low toxicity, a possible strategy would be to choose drugs
having higher potency. As drug information such as Ki and IC50
(inhibitor potency) are typically used to infer potency, rules
such as smaller Ki and IC50 imply higher potency can be stored
in the rule database. Next, this rulebase can be exploited by a
reasoner to identify potential drug combinations. Specifically,
the reasoner can use the rules to produce a list of logical
statements which can be used to automatically determine drug
combinations. Observe that such reasoning framework reduces
the solution space considerably. Then the required dosages of
these drugs (i.e., dosage of drug required to produce the drug
effect) can be estimated using global optimization techniques
such as simulated annealing (similar to the tcip). In the final
step, we can evaluate the effect of the drug combinations in
silico by incorporating kinetic parameters of the drugs (e.g.,
dissociation rate, degradation rate) into the odes involving the
targets and simulating the model at the system level for various
drug inhibitory concentrations.

VI. Conclusions

The value of combination therapy, in general, has been
suggested by numerous experimental studies, and its practical-
ity has been demonstrated by the ubiquity of multicomponent
drugs in the treatment of diseases like cancer, aids, etc. In
this paper, we laid out the vision of an in silico combination
therapy framework called ingot, to improve the design and
development of multicomponent drugs for patients suffering
from complex diseases that implicate multiple molecular path-
ways, by aiding early discovery of optimal drug combinations
and guiding the design of further in vitro and in vivo com-
bination therapy experiments. Although increasing efforts are



under way to develop experimentally verified models of cell
signaling, ingot rejects the view that network-enabled in silico
combination therapy is useful only when ‘complete’ mathe-
matical models of cells or tissues are available. Specifically, a
salient feature of ingot is that it does not await the availability
of complete models of signaling networks relevant to human
disease that realistically capture, in mathematical form, actual
cellular signaling events. Typically these mathematical models
encompass only a small subset of cellular reactions in relatively
simple biological settings. Hence, ingot assumes that merging
of these small models in a disease-related signaling network
is inherently noisy and many regions of the network are
starved of such mathematical models. Consequently, the pro-
posed framework aims to leverage on probabilistic techniques
towards predicting optimal drug combinations by accepting
the noisiness and incompleteness of the psn. We believe that
whatever the limitations of current signaling networks, they
will almost certainly be better guides for combination therapy
than the prevailing practice based on clinical experiences.
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