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The unabated growth and increasing significance of the World Wide Web has resulted in a flurry
of research activity to improve its capacity for serving information more effectively. But at the
heart of these efforts lie implicit assumptions about “quality” and “usefulness” of Web resources
and services. This observation points towards measurements and models that quantify various
attributes of web sites. The science of measuring all aspects of information, especially its storage
and retrieval or informetrics has interested information scientists for decades before the existence
of the Web. Is Web informetrics any different, or is it just an application of classical informetrics to
a new medium? In this paper, we examine this issue by classifying and discussing a wide ranging
set of Web metrics. We present the origins, measurement functions, formulations and comparisons
of well known Web metrics for quantifying Web graph properties, web page significance, web page
similarity, search and retrieval , usage characterization and information theoretic properties. We
also discuss how these metrics can be applied for improving Web information access and use.

Categories and Subject Descriptors: H.1.0 [Models and Principles]: General; H.3.3 [Infor-
mation Storage and Retrieval]: Information Search and Retrieval; I.7.0 [Text Processing]:
General

General Terms: Measurement
Additional Key Words and Phrases: Information Theoretic, PageRank, Quality Metrics, Web
Graph, Web Metrics, Web Page Access, Web Page Similarity

1. INTRODUCTION

The importance of measuring attributes of known objects in precise quantitative
terms has for long been recognized as crucial for enhancing our understanding of
our environment. This notion has been aptly summarized by Lord Kelvin:

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express
it in numbers, your knowledge is of a meager and unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of science.”
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Fig. 1. A Taxonomy of Web Metrics.

One of the earliest attempts to make global measurements about the Web was
undertaken by Bray [1996]. The study attempts to answer simple questions on
attributes such as the size of the Web, its connectivity, visibility of sites and the
distribution of formats. Since then, several directly observable metrics such as hit
counts, click through rates, access distributions and so on have become popular
for quantifying the usage of web sites. However many of these metrics tend to be
simplistic about the phenomena that influence the attributes they observe. For
instance, Pitkow [1997] points out the problems with hit metering as a reliable
usage metric caused by proxy and client caches. Given the organic growth of the
Web, we require new metrics that provide deeper insight on the Web as a whole and
also on individual sites from different perspectives. Arguably, the most important
motivation for deriving such metrics is the role they can play in improving the
quality of information available on the Web.

To clarify the exact meaning of frequently used terms, we supply the following
definition [Boyce et al. 1994]:

Measurement, in most general terms, can be regarded as the assignment
of numbers to objects (or events or situations) in accord with some rule
[measurement function]. The property of the objects which determines
the assignment according to that rule is called magnitude, the measur-
able attribute; the number assigned to a particular object is called its
measure, the amount or degree of its magnitude. It is to be noted that
the rule defines both the magnitude and the measure.

In this paper we provide a survey of well-known metrics for the Web with regard
to their magnitudes and measurement functions. Based on the attributes they
measure, these are classified into the following categories:

—Web graph properties: The World Wide Web can be represented as a graph
structure where web pages comprise nodes and hyperlinks denote directed edges.
Graph-based metrics quantify structural properties of the Web on both macro-
scopic and microscopic scales.

—Web page significance: Significance metrics formalize the notions of “quality” and
“relevance” of web pages with respect to information needs of users. Significance
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Fig. 2. Hyperlink graph example.

metrics are employed to rate candidate pages in response to a search query and
have an impact on the quality of search and retrieval on the Web.

—Usage characterization: Patterns and regularities in the way users browse Web
resources can provide invaluable clues for improving the content, organization and
presentation of web sites. Usage characterization metrics measure user behavior
for this purpose.

—Web page similarity : Similarity metrics quantify the extent of relatedness be-
tween web pages. There has been considerable investigation into what ought to
be regarded as indicators of a relationship between pages. We survey metrics
based on different concepts as well as those that aggregate various indicators.

—Web page search and retrieval : These are metrics for evaluating and comparing
the performance of Web search and retrieval services.

—Information theoretic: Information theoretic metrics capture properties related
to information needs, production and consumption. We consider the relationships
between a number of regularities observed in information generation on the Web.

We find that some of these metrics originate from diverse areas such as classical
informetrics, library science, information retrieval, sociology, hypertext and econo-
metrics. Others, such as web page quality metrics, are entirely specific to the Web.
Figure 1 shows a taxonomy of the metrics we discuss here.

Metrics, especially those measuring phenomena, are invariably proposed in the
context of techniques for improving the quality and usefulness of measurable ob-
jects, in this case, information on the Web. As such, we also provide some insight on
the applicability of Web metrics. However one must understand that their useful-
ness is limited by the models that explain the underlying phenomena and establish
causal relationships. A study of these metrics is a starting point for developing
these models which can eventually aid Web content providers in enhancing web
sites and predicting the consequences of changes in certain attributes.

2. WEB GRAPH PROPERTIES

Web graph properties are measured by considering the Web or a portion of it, such
as a web site, as a directed hypertext graph where nodes represent pages and edges
hyperlinks referred to as the Web graph. Web graph properties reflect the struc-
tural organization of the hypertext and hence determine the readability and ease
of navigation. Poorly organized web sites often cause user disorientation leading to
the “lost in cyberspace” problem. These metrics can aid web site authoring and

ACM Journal Name, Vol. 2, No. 3, 09 2002.
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Nodes a b c d e od roc

a 0 1 1 1 1 4 17
b 1 0 2 2 3 8 8.5
c 5 5 0 5 1 16 4.25
d 5 5 5 0 5 20 3.4
e 5 5 5 5 0 20 3.4

id 16 16 13 13 10 68

ric 4.25 4.25 5.23 5.23 6.8

Table I. Distance matrix and associated centrality metrics; K = 5.

create sites that are easier to traverse. Variations of this model may label the edges
with weights denoting, for example, connection quality, number of hyperlinks. To
perform analysis at a higher granular level, nodes may be employed to model entire
web sites and edges the total strength of connectivities amongst web sites. In the
classification below, we will first consider the simplest hypertext graph model to
discuss three types of graph properties introduced by Botafogo, Rivlin and Schneir-
derman [1992] namely, centrality , global measures and local measures. Then, we
discuss random graph model based on random networks.

Before discussing metrics for hypertext graph properties, we introduce some of the
preliminary terms. The hypertext graph of N nodes (web pages) can be represented
as an N × N distance matrix 1 C where element Cij is the number of links that
have to be followed to reach node j starting from node i or simply the distance of j
from i. If there nodes i and j are unconnected in the graph, Cij is set to a suitable
pre-defined constant K. Figure 2 shows an example hyperlink graph. The distance
matrix for this graph is shown in Table I.

2.1 Centrality

Centrality measures reflect the extent of connectedness of a node with respect to
other nodes in the graph. They can be used to define hierarchies in the hypertext
with the most central node as the root. The out distance OD of a node i is defined
as the sum of distances to all other nodes; that is, the sum of all entries in row i of
the distance matrix C. Similarly the in distance ID is the sum of all in distances.
Formally,

ODi =
∑

j

Cij

IDi =
∑

j

Cji

In order to make the above metrics independent of the size of the hypertext graph
they are normalized by the converted distance or the sum of all pair-wise distances
(or converted distance) between nodes thereby yielding the relative out centrality

1We differ slightly from [Botafogo et al. 1992] where this matrix is referred to as the converted
distance matrix .
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ROC and the relative in centrality RIC measures respectively. Therefore,

ROCi =

∑
i

∑
j Cij∑

j Cij

RICi =

∑
i

∑
j Cij∑

j Cij

The calculation of centrality metrics for the graph in Figure 2 is shown in Table I.
A central node is one with high values of relative in- or out-centrality suggesting
that the node is close to other nodes in hyperspace. Identification of a root node (a
central node with high relative out centrality) is the first step towards constructing
easily navigable hypertext hierarchies. The hypertext graph may then be converted
to a crosslinked tree structure using a breadth-first spanning tree algorithm to
distinguish between hierarchical and cross-reference links.

2.2 Global Metrics

Global metrics are concerned with the hypertext as a whole and not individual
nodes. They are defined in a hierarchically organized hypertext where the hierar-
chical and cross-referencing links are distinguished. Two global metrics discussed
here are the compactness and stratum. The compactness metric indicates the ex-
tent of cross referencing; a high compactness means that each node can easily reach
other nodes in the hypertext. Compactness varies between 0 and 1; a completely
disconnected graph has compactness 0 while a fully connected graph has compact-
ness 1. For high readability and navigation both extremes of compactness values
should be avoided. More formally,

Cp =
Max−∑

i

∑
j Cij

Max−Min

where Max and Min are respectively the maximum and minimum values of the
centrality normalization factor—converted distance. It can be shown that Max
and Min correspond to (N2 − N)K (for disconnected graph) and (N2 − N) (for
fully connected graph) respectively. We note that the compactness Cp = 0 for a
disconnected graph as the converted distance becomes Max and Cp = 1 when the
converted distance equals Min for a fully connected graph.

The stratum metric captures the linear ordering of the Web graph. The concept
of stratum characterizes the linearity in the structure of a Web graph. Highly
linear web sites, despite their simplicity in structure are often tedious to browse.
The higher the stratum the more linear the Web graph in question. Stratum is
defined in terms of a sociometric measure called prestige. The prestige of a node
i is the difference between its status, the sum of distances to all other nodes (or
the sum of row i of the distance matrix) and its contrastatus, the sum of finite
distances from all other nodes (or the sum of column i of the distance matrix).
The absolute prestige is the sum of absolute values of prestige for all nodes in the
graph. The stratum of the hypertext is defined as the ratio of its absolute prestige
to linear absolute prestige (the prestige of a linear hypertext with equal number of
nodes). This normalization by linear absolute prestige renders the prestige value
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Nodes a b c d e Status Absolute prestige

a 0 1 1 1 1 4 3
b 1 0 2 2 3 8 7
c ∞ ∞ 0 ∞ 1 1 2
d ∞ ∞ ∞ 0 ∞ 0 3
e ∞ ∞ ∞ ∞ 0 0 5

Contrastatus 1 1 3 3 5 13 20

Table II. Distance matrix and stratum related metrics.

insensitive to the hypertext size. Formally,

S =

∑
i(|

∑
j Cij −

∑
j Cji |)

LAP

where the linear absolute prestige LAP is the following function of the number of
nodes N .

LAP =





N3

4
, if n is even

N3 −N

4
, otherwise

Stratum metrics for the graph of Figure 2 are shown in Table II. The computation
of stratum only considers finite distances, hence we invalidate unconnected entries
in the distance matrix (denoted ∞). The linear absolute prestige for a graph of 5
nodes from the above formula is 30. The stratum of the graph can be calculated
by normalizing the sum of absolute prestige (Table II) of all nodes by the lap. For
the graph of Figure 2, this equals 0.67.

We conclude the survey of global metrics by citing some measurements of de-
gree distributions that are reported in [Kleinberg et al. 1999; Kumar et al. 1999]
and confirmed in [Broder et al. 2000]. In experiments conducted on a subgraph
of the Web, the in-degree distribution (in-degree versus frequency) has been found
to follow Lotka’s law . That is, the probability that a node has in-degree i is pro-
portional to 1/iα, where α is approximately 2. A similar observation holds for
the out-degree distribution. In [Dhyani 2001], we describe our own experiments to
confirm these findings and use the observation as the premise for ascertaining dis-
tributions of some well known hyperlink based metrics and subsequently, we derive
other important informetric laws related to Lotka’s law.

Attempts have also been made to study the macroscopic structure of the WWW.
In their experiments on a crawl of over 200 million pages, Broder et al. [2000] found
that over 90% percent of the Web comprises a single connected component2 if the
links are treated as undirected edges. Of these a core of approximately 56 million
forms a strongly connected component. The maximum distance between any two
pages or the diameter of this core is only 28 as compared to a diameter of over 500
for the entire Web graph. The probability that a path exists between two randomly
chosen pages was measured to be 24%. The average directed path length is 16.

2A portion of the Web graph such that there exists a path between any pair of pages.
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The significance of the above observations are two-fold. Firstly, they become
the starting point for modelling the graph structure of the Web. For example,
Kleinberg et al. [1999] have explained the degree distributions by modeling the
process of copying links while creating web pages. These models can be of use in
predicting the behavior of algorithms on the Web and discovering other structural
properties not evident from direct observation. Secondly, knowledge of the structure
of the Web and its graph properties can lead to improved quality of Web search
as demonstrated by hyperlink metrics such as PageRank [Brin and Page 1998],
Authorities/Hubs [Kleinberg 1998] and Hyperinformation [Marchiori 1997].

2.3 Local Metrics

Local metrics measure characteristics of individual nodes in the hypertext graph.
We discuss two local metrics; namely, depth and imbalance [Botafogo et al. 1992].
The depth of a node is just its distance from the root. It indicates the ease with
which the node in question can be reached and consequently its importance to the
reader. That is, the bigger the distance of a node from the root, harder it is for
the reader to reach this node and consequently the less important this node will be
in the hypertext. Nodes that are very deep inside the hypertext are unlikely to be
read by the majority of the readers [Botafogo et al. 1992]. Note that an author may
intentionally store a low relevance piece of information deep inside the hypertext.
Consequently, the readers whose interest is not so strong can browse the hypertext
without seeing the low relevance information, while more interested readers will
be able to have to deeper understanding of the subject by probing deeper into the
hypertext. Having access to a depth metric, web site designers can locate deep
nodes and verify that they were intentional.

The imbalance metric is based on the assumption that each node in the hypertext
contains only one idea and the link emanating from a node are a further develop-
ment on that idea (except cross-reference links). Consequently, we might want the
hypertext to be a balanced tree. The imbalance metric identifies nodes that are at
the root of imbalanced trees and enables the web site designer to identify imbal-
ance nodes. Observe that imbalance in a hypertext does not necessarily indicate
poor design of hypertext [Botafogo et al. 1992]. The crux of the matter is that
each topic should be fully developed. Thus, in a university department hypertext,
there may be many more levels of information on academic staffs and their research
areas than on locations of copying machines. However, we should expect that each
of the major areas in the hypertext is treated with equal importance. Although,
balance is not mandatory, but too much imbalance might indicate bias of the de-
signer or a poorly designed web site [Botafogo et al. 1992]. Note that similar to
depth, imbalance metric can be used as a feedback to the authors. If they decide
that imbalances are desired then they can overlook the information.

In order to quantify imbalance, Botafogo et al. proposed two imbalance metrics,
i.e., absolute depth imbalance and absolute child imbalance. Let T be a general
rooted tree. Let a1, a2, . . ., an be children of node a. Then, the depth vector D(a)
[Botafogo et al. 1992] is defined as follows:

D(a) =
ACM Journal Name, Vol. 2, No. 3, 09 2002.
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



[1 + Max(D(a1)), 1 + Max(D(a2)), . . . , 1 + Max(D(an))],

[0] if a has no child (n = 0)

where Max(D(ai)) indicates the value of the biggest element in the vector D(ai).
The depth vector is represented inside square brackets. Intuitively, this vector
indicates the maximum distance one can go by following each of the children of node
a. The absolute depth imbalance of a node a is defined as the standard deviation of
the elements in vector D(a). That is, the standard deviation of distances one can
go by successively following each of the children of a.

Similarly, the child vector C(a) [Botafogo et al. 1992] is defined as follows:

C(a) =


{1 +

∑
C(a1), 1 +

∑
C(a2), . . . , 1 +

∑
C(an)},

{0} if a has no child (n = 0)

where
∑

C(ai) is the sum of all elements in vector C(ai). The child vector is
represented inside braces { }, and indicates the size (number of elements) of the
subtrees rooted at a1, a2, . . ., an. The absolute child imbalance for node a is the
standard deviation of the elements in vector C(a). That is, it is the standard
deviation of the number of nodes in the subtrees rooted at the children of a.

2.4 Random Graph Models

The theory of random networks is concerned with the structure and evolution of
large, intricate networks depicting the elements of complex systems and the inter-
actions between them. For example, living systems form huge genetic networks
whose vertices are proteins and edges represent the chemical interactions between
them. Similarly, a large network is formed by the nervous system whose vertices are
nerve cells or neurons connected by axons. In social science, similar networks can
be perceived between individuals and organizations. We describe random networks
here in the context of another obvious instance of a large and complex network—the
WWW.

The earliest model of the topology of these networks, known as the random graph
model , due to Erdos and Renyi, is described in [Barabasi et al. 1999]. Suppose we
have a fixed sized graph of N vertices and each pair of vertices is connected with a
probability p. The probability P (k) that a vertex has k edges is assumed to follow
the Poisson distribution such that P (k) = e−λλk/k! where the mean λ is defined
as

λ = N

(
N − 1

k

)
pk(1− p)N−k−1

Several random networks such as the WWW exhibit what is known as the small-
world phenomenon whereby the average distance between any pair of nodes is
usually a small number. Measurements by Albert, Jeong and Barabasi [Albert
et al. 1999] show that on average, two randomly chosen documents on the Web
are a mere 19 clicks away. The small-world model accounts for this observation by
viewing the N vertices as a one-dimensional lattice where each vertex is connected
ACM Journal Name, Vol. 2, No. 3, 09 2002.
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to its two nearest and next-nearest neighbors. Each edge is reconnected to a vertex
chosen at random with probability p. The long range connections generated by
this process decrease the distances between vertices, leading to the small-world
phenomenon. Both the models predict that the probability distribution of vertex
connectivity has an exponential cutoff.

Barabasi and Albert [1999] reported from their study of the topology of several
large networks that irrespective of the type of network, the connectivity distribu-
tion, or the probability P (k) that a vertex in the network interacts with k other
vertices decays as a power law, i.e., P (k) ∼ k−γ where γ is a small constant usually
between 2.1 and 4 depending on the network in question. This observation has been
confirmed for the WWW by measurements of web page degree distributions [Klein-
berg et al. 1999; Kumar et al. 1999]. The power law distribution suggests that the
connectivity of large random networks is free of scale, an implication inconsistent
with the traditional random network models outlined above.

The random network models outlined earlier do not incorporate two generic as-
pects of real networks. Firstly, they assume that the number of vertices N remains
fixed over time. In contrast, most real networks are constantly changing due to
additions and deletions of nodes. Typically, the number of vertices N increases
throughout the lifetime of the network. The number of pages in the WWW in
particular is reportedly growing exponentially over time. Secondly, the random
network models assume that the probability of an edge existing between two ver-
tices is uniformally distributed. However, most real networks exhibit what is known
as preferential connectivity , that is, newly added vertices are more likely to establish
links with vertices having higher connectivity. In the WWW context, this manifests
in the propensity of Web authors to include links to highly connected documents in
their web pages. These ingredients form the basis of the scale-free model proposed
by Barabasi and Albert [Barabasi et al. 1999; 2000; Albert and Barabasi 2000]:

—To incorporate the growth of the network, starting with a small number m0 of
vertices, we add at each time step a new vertex with m(< m0) edges that link to
m vertices already present in the network.

—To incorporate preferential attachment, we assume that the probability Π that a
new vertex will be connected to vertex i is proportional to the relative connec-
tivity of that vertex, that is, Π(ki) = ki/

∑
j kj .

After t time steps, the above assumptions lead to a network with t + m0 vertices
and mt new edges. It can be shown that the network evolves to a scale-invariant
state with the probability that a vertex has k edges following a power law with
an exponent γ ≈ 3, thereby reproducing the observed behavior of the WWW and
other random networks. Note that the value of γ is dependent on the exact form of
the growth and preferential attachment functions defined above and different values
would be obtained if for instance the linear preferential attachment function were
to be replaced by an exponential function.

3. WEB PAGE SIGNIFICANCE

Perhaps the most well-known Web metrics are significance metrics. The signifi-
cance of a web page can be viewed from two perspectives—its relevance to a spe-
cific information need such as a user query, and its absolute quality irrespective

ACM Journal Name, Vol. 2, No. 3, 09 2002.
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of particular user requirements. Relevance metrics relate to the similarity of web
pages with driving queries using a variety of models for performing the comparison.
Quality metrics typically use link information to distinguish frequently referred
pages from less visible ones. However, as we shall see, the quality metrics discussed
here are more sophisticated than simple in-degree counts. The most obvious use
of significance metrics is in Web search and retrieval where the most relevant and
high quality set of pages must be selected from a vast index in response to a user
query. The introduction of quality metrics has been a recent development for pub-
lic search engines, most of which relied earlier on purely textual comparisons of
keyword queries with indexed pages for assigning relevance scores. Engines such as
Google [Brin and Page 1998] use a combination of relevance and quality metrics in
ranking the responses to user queries.

3.1 Relevance

Information retrieval techniques have been adapted to the Web for determining
relevance of web pages to keyword queries. We present four algorithms for relevance
ranking as discussed by Yuwono and Lee [1996]; namely, boolean spread activation,
most-cited , TFxIDF and vector spread activation. The first two rely on hyperlink
structure without considering term frequencies (to be explained later.) The latter
two are based on the vector space model which represents documents and queries as
vectors for calculating their similarity. Strictly speaking, relevance is a subjective
notion as described in [Yuwono and Lee 1996]:

“. . . a WWW page is considered relevant to a query if, by accessing
the page, the user can find a resource (URL) containing information
pertinent to the query, or the page itself is such a resource.”

As such, the relevance score metrics detailed below are means to identify web pages
that are potentially useful in locating the information sought by the user. We first
introduce the notation to be used in defining the relevance metrics.

M Number of query words
Qj The jth query term, for 1≤j≤M
N Number of WWW pages in index
Pi The ith page or its ID
Ri,q Relevance score of Pi with respect to query q
Lii,k Occurrence of an incoming link from Pk to Pi

Loi,k Occurrence of an outgoing link from Pi to Pk

Xi,j Occurrence of Qj in Pi

3.1.1 Boolean Spread Activation. In the boolean model , the relevance score is
simply the number of query terms that appear in the document. Since only con-
junctive queries can be ranked using this model, disjunctions and negations have
to be transformed into conjunctions. The boolean spread activation extends this
model by propagating the occurrence of a query word in a document to its neigh-
ACM Journal Name, Vol. 2, No. 3, 09 2002.
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boring documents3. Thus,

Ri,q =
M∑

j=1

Ii,j

where

Ii,j =





c1 if Xi,j = 1
c2 if there exists k such that Xk,j = 1 and Lii,k + Loi,k > 0
0 otherwise

The constant c2 (c2 < c1) determines the (indirect) contribution from neighboring
documents containing a query term. We may further enhance the boolean spread
activation model of Yuwono and Lee [1996] through two (alternative) recursive
definitions of the contribution of each query term Ii,j as follows:

(1) Ii,j =
{

1 if Xi,j = 1
cIk,j if there exists k such that 0 < c < 1, Xk,j = 1 and Lik,j + Lok,j > 0

(2) Ii,j = Xi,j + cIk,j ; 0 < c < 1 and Lik,j + Lok,j > 0

Note that the above definition is recursive as the rank of a page is a function of
whether the search term appears in it (term Xi,j) or in a page that it is connected to
(cIk,j) through in- or outlinks. The further the page that contains the search term to
the given page, the lower its contribution to the score (due to the positive coefficient
c < 1). Although the definition recursively states the rank based on contribution
of neighbouring pages (which in turn use their neighbours), the computation can
indeed be done iteratively (Because it is a case of tail recursion). The choice of
implementation is not a subject of discussion here.

3.1.2 Most-cited. Each page is assigned a score which is the sum of the number
of query words contained in other pages having a hyperlink referring to the page
(citing). This algorithm assigns higher scores to referenced documents rather than
referencing documents.

Ri,q =
N∑

k=1,k 6=i


Lii,k

M∑

j=1

Xk,j




The most-cited relevance metric may be combined with the recursive definition of
boolean spread activation to overcome the above problem as follows:

Ii,j = Xi,j + c(Lik,j + Lok,j)Ik,j ; 0 < c < 1

We note two benefits of the (Lik,j + Lok,j) coefficient. First, the new metric is
unbiased with regard to citing and cited pages. Second, the contribution from
neighboring pages is scaled by the degree of connectivity.

3.1.3 TFxIDF. Based on the vector space model, the relevance score of a doc-
ument is the sum of weights of the query terms that appear in the document,
normalized by the Euclidean vector length of the document. The weight of a term

3Assuming that documents linked to one another have some semantic relationships.

ACM Journal Name, Vol. 2, No. 3, 09 2002.
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Boolean spread most− cited TFxIDF vector spread
activation activation

Average precision 0.63 0.58 0.75 0.76

Table III. The average precision for each search algorithm.

is a function of the word’s occurrence frequency (also called the term frequency, TF )
in the document and the number of documents containing the word in collection
(the inverse document frequency, IDF ).

Ri,q =

∑
Qj

(
0.5 + 0.5

TFi,j

TFi,max

)
IDFj

√
∑

j∈Pi

(
0.5 + 0.5

TFi,j

TFi,max

)2

(IDFj)2

where

TFi,j Term frequency of Qj in Pi

TFi,max Maximum term frequency of a keyword in Pi

IDFj log
(

N∑N

i=1
Xi,j

)

The weighing function (product of TF and IDF as in [Lee et al. 1997]) gives higher
weights to terms which occur frequently in a small set of documents. A less ex-
pensive evaluation of the relevance score leaves out the denominator in the above
(i.e., the normalization factor). Performance of several approximations of relevance
score by the vector-space model is considered in [Lee et al. 1997].

3.1.4 Vector Spread Activation. The vector space model is often criticized for
not taking into account hyperlink information as done in web page quality models
[Brin and Page 1998; Kleinberg 1998; Marchiori 1997]. The vector spread activation
method incorporates score propagation as done in boolean spread activation. Each
web page is assigned a relevance score (according to the TFxIDF model) and the
score of a page is propagated to those it references. That is, given the score of Pi

as Si,q and the link weight 0 < α < 1,

Ri,q = Si,q +
N∑

j=1,j 6=i

αLii,jSj,q

However, experiments [Yuwono and Lee 1996] show that the vector spread acti-
vation model performs only marginally better than TFxIDF in terms of retrieval
effectiveness measured by precision and recall (to be introduced later). Table III
summarizes the average precision for each search algorithm for 56 test queries as
highlighted in [Yuwono and Lee 1996].

Application of the above query relevance models in search services can be en-
hanced through relevance feedback [Lee et al. 1997; Yuwono et al. 1995]. If the user
is able to identify some of the references as relevant, then certain terms from these
documents can be used to reformulate the original query into a new one which may
ACM Journal Name, Vol. 2, No. 3, 09 2002.
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capture some concepts not explicitly specified earlier.

3.2 Quality

Recent work in Web search has demonstrated that the quality of a web page is
dependent on the hyperlink structure in which it is embedded. Link structure
analysis is based on the notion that a link from a page p to page q can be viewed as
an endorsement of q by p, and as some form of positive judgement by p of q’s content.
Two important types of techniques in link-structure analysis are co-citation based
schemes and random-walk based schemes. The main idea behind co-citation based
schemes is the notion that when two pages p1 and p2 both point to some page q, it
is reasonable to assume that p1 and p2 share a mutual topic of interest. Likewise,
when p links to both q1 and q2, it is probable that q1 and q2 share some mutual
topic. On the other hand, random-walk based schemes model the Web (or part of
it) as a graph where pages are nodes and links are edges, and apply some random
walk model to the graph. Pages are then ranked by the probability of visiting them
in the modeled random walk.

In this section, we discuss some of the metrics for link structure analysis. Each
of these metrics is recursively defined for a web page in terms of the measures of its
neighboring pages and the degree of its hyperlink association with them. Quality
metrics can be used in conjunction with relevance metrics to rank results of keyword
searches. In addition, due to their independence from specific query contexts, they
may be used generically for a number of purposes. We mention these applications
in the context of individual quality metrics. Also, page quality measures do not rely
on page contents which make them convenient to ascertain and at the same time
sinister “spamdexing” schemes4 becomes relatively more difficult to implement.

3.2.1 Hyper-information content. According to Marchiori [1997], the overall in-
formation of a web object is not composed only by its static textual information,
but also hyper information which is the measure of the potential information of
a web object with respect to the web space. Roughly, it measures how much in-
formation one can obtain using that page with a browser, and navigating starting
from it. Suppose the functions I(p), T (p) and H(p) denote the overall information,
textual information and hyper information respectively of p which map web pages
to non-negative real numbers with an upper bound of 1. Then,

I(p) = T (p) + H(p)

Then it can be shown that given a page p that points to q, and a suitable fading
factor f(0 < f < 1), we have

I(p) = T (p) + fT (q)

It can be shown that the contribution of a page qn at a distance of n clicks from
p to p’s information I(p) is fnT (qn). To model the case when p contains several
hyperlinks without violating the bounded property of I(p), the sequential selection

4The judicious use of strategic keywords that makes pages highly visible to search engine users
irrespective of the relevance of their contents.
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Excite HotBot Lycos WebCrawler OpenText Average

Evaluation increment +5.1 +15.1 +16.4 +14.3 +13.7 +12.9

Std Deviation 2.2 4.1 3.6 1.6 3 2.9

Table IV. Evaluation of Search Engines vs. their Hyper Versions.

of links b1, b2, . . . , bn embedded in p is interpreted as follows:

I(p) = T (p) + fT (b1) + · · ·+ fnT (bn)

Therefore, the sequential selection of links contained in p is interpreted in the same
way as following consecutive links starting at p.

In order to validate the above notion of hyper information, Marchiori imple-
mented the hyper information as post-processor of the search engines available
during the time of his work (Excite, HotBot, Lycos, WebCrawler and OpenText).
The post-processor remotely query the search engines, extract the corresponding
scores (T (p) function), and calculate the hyper information and therefore the overall
information by fixing the depth and fading factors in advance. Table IV [Marchiori
1997] shows the evaluation increment for each search engine with respect to its
hyper version and the corresponding standard deviation. As it can be seen, the
small standard deviations are empirical evidence of the improvement of the quality
of information provided by the hyper search engines over their non-hyper versions.

3.2.2 Impact Factor. The impact factor, which originated from the field of bib-
liometrics, produces a quantitative estimate of the significance of a scientific jour-
nal. Given the inherent similarity of web sites to journals arising from the analogy
between page hyperlinks and paper citations, the impact factor can also be used
to measure the significance of web sites. The impact factor [Egghe and Rousseau
1990] of a journal is the ratio of all citations to a journal to the total number of
source items (that contain the references) published over a given period of time.
The number of citations to a journal or its in-degree is limited in depicting its
standing. As pointed out in [Egghe and Rousseau 1990], it does not contain any
correction for the average length of individual papers. Secondly, citations from all
journals are regarded as equally important. A more sophisticated citation-based
impact factor than normalized in-degree count as proposed by Pinski and Narin
is discussed in [Egghe and Rousseau 1990; Kleinberg 1998]. We follow the more
intuitive description in [Kleinberg 1998].

The impact of a journal j is measured by its influence weight wj . Modeling the
collection of journals as a graph, where the nodes denoting journals are labeled by
their influence weights and directed edges by the connection strength between two
nodes, the connection strength Sij on the edge 〈i, j〉 is defined as the fraction of
citations from journal i to journal j. Following the definitions above, the influence
weight of journal j is the sum of influence weights of its citing journals scaled by
their respective connection strengths with j. That is,

wj =
∑

i

wiSij

The non-zero, non-negative solution w to the above system of equations (w = ST w)
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is given by the principal eigenvector5 of ST .

3.2.3 PageRank. The PageRank measure [Brin and Page 1998] extends other
citation based ranking measures which merely count the citations to a page. In-
tuitively a page has a high PageRank if there are many pages that point to it or
if there are some pages with high PageRank that point to it. Let N be the set of
pages that point to a page p and C(p) be the number of links going out of a page p.
Then, given a damping factor d, 0≤d≤1, the PageRank of p is defined as follows:

R(p) = (1− d) + d
∑

q∈N

R(q)
C(q)

The PageRank may also be considered as the probability that a random surfer
[Brin and Page 1998] visits the page. A random surfer who is given a web page at
random, keeps clicking on links, without hitting the “back” button but eventually
gets bored and starts from another random page. The probability that the random
surfer visits a page is its PageRank. The damping factor d in R(p) is the probability
at each page the random surfer will get bored and request for another random page.
This ranking is used as one component of the Google search engine [Brin and Page
1998], to help determine how to order the pages returned by a web search query.
The score of a page with respect to a query in Google, is obtained by combining
the position, font and capitalization information stored in hitlists (the IR score)
with the PageRank measure. User feedback is used to evaluate search results and
adjust the ranking functions. Cho, Garcia-Molina and Page [1998] describe the use
of PageRank for ordering pages during a crawl so that the more important pages
are visited first. It has also been used for evaluating the quality of search engine
indexes using random walks [Henzinger et al. 1999].

3.2.4 Mutual Reinforcement Approach. A method that treats hyperlinks as con-
ferrals of authority on pages for locating relevant, authoritative WWW pages for
a broad topic query is introduced by Kleinberg in [1998]. He suggested that web
page importance should depend on the search query being performed. This model
is based on a mutually reinforcing relationship between authorities—pages that
contain a lot of information about a topic, and hubs—pages that link to many re-
lated authorities. That is, each page should have a separate authority rating based
on the links going to the page and hub rating based on the links going from the
page. Kleinberg proposed first using a text-based web search engine to get a Root
Set consisting of a short list of web pages relevant to a given query. Second, the
Root Set is augmented by pages which link to pages in the Root Set, and also
pages which are linked from pages in the Root Set, to obtain a larger Base Set of
web pages. If N is the number of pages in the final Base Set, then the data of
Kleinberg’s algorithm consists of an N ×N adjacency matrix A, where Aij = 1 if
there are one or more hypertext links from page i to page j, otherwise Aij = 0.

Formally, given a focused subgraph which contains a relatively small number of

5Let M be a n× n matrix. An eigenvalue of M is a number λ with the property that, for some
vector ω, we have Mω = λω. When the assumption that |λ1(M)| > |λ2(M)| holds, ω1(M) is
referred to as the principal eigenvector and all other ωi(M) as non-principal eigenvectors.
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pages relevant to a broad topic6, the following rule is used to iteratively update
authority and hub weights (denoted xp and yp respectively, and initialized to 1) of
a page p:

xp =
∑

q : q→p

yq and dually

yp =
∑

q : p→q

xq

The weights are normalized after each iteration to prevent them from overflowing.
At the end of an arbitrarily large number of iterations, the authority and hub
weights converge to fixed values. Pages with weights above a certain threshold can
then be declared as authorities and hubs respectively. If we represent the focused
subgraph as an adjacency matrix A where Aij = 1 if there exists a link from page
i to page j, and Aij = 0 otherwise, it has been shown that the authority and hub
vectors (x = {xp} and y = {yp}) converge to the principal eigenvectors of AT A and
AAT respectively [Kleinberg 1998].

Authority and hub weights can be used to enhance Web search by identify-
ing a small set of high quality pages on a broad topic [Chakrabarti et al. 1998;
Chakrabarti et al. 1998]. Pages related to a given page p can be found by finding
the top authorities and hubs among pages in the vicinity to p [Dean and Hen-
zinger 1999]. The same algorithm has also been used for finding densely linked
communities of hubs and authorities [Gibson et al. 1998].

One of the limitations of Kleinberg’s [1998] mutual reinforcement principle is that
it is susceptible to the Tightly Knit Communities (TKC) effect. The TKC effect
occurs when a community achieves high scores in link-analysis algorithms even as
sites in the TKC are not authoritative on the topic, or pertain to just one aspect
of the topic. A striking example of this phenomenon is provided by Cohn and
Chang [2000]. They use Kleinberg’s Algorithm with the search term “jaguar”, and
converge to a collection of sites about the city of Cincinnati! They found out that
the cause of this is a large number of on-line newspaper articles in the Cincinnati
Enquirer which discuss the Jacksonville Jaguars football team, and all link to the
same Cincinnati Enquirer service pages.

3.2.5 Rafiei and Mendelzon’s Approach. Generalizations of both PageRank and
authorities/hubs models for determining the topics on which a page has a repu-
tation are considered by Rafiei and Mendelzon [2000]. In the one-level influence
propagation model of PageRank, a surfer performing a random walk may jump
to a page chosen uniformally at random with probability d or follow an outgo-
ing link from the current page. Rafiei and Mendelzon introduce into this model,
topic specific surfing and parameterize the step of the walk at which the rank is
calculated. Given that Nt denotes the number of pages that address topic t, the
probability that a page p will be visited in a random jump during the walk is d/Nt

if p contains t and zero otherwise. The probability that the surfer visits p after n
steps, following a link from page q at step n− 1 is ((1− d)/O(q))Rn−1(q, t) where
O(q) is the number of outgoing links in q and Rn−1(q, t) denotes the probability

6The focused subgraph is constructed from a Root Set obtained from a search engine query.
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of visiting q for topic t at step n − 1. The stochastic matrix containing pairwise
transition probabilities according to the above model, can be shown to be aperiodic
and irreducible, thereby converging to stationary state probabilities when n →∞.
In the two-level influence propagation model of authorities and hubs [Kleinberg
1998], outgoing links can be followed directly from the current page p, or indirectly
through a random page q that has a link to p.

3.2.6 SALSA. Lempel and Morgan [2000] propose the Stochastic Approach for
Link Structure Analysis (SALSA). This approach is based upon the theory of
Markov Chains, and relies on the stochastic properties of random walks7 performed
on a collection of sites. Like Kleinberg’s algorithm, SALSA starts with a similarly
constructed Base Set. It then performs a random walk by alternately (a) going
uniformly to one of the pages which links to the current page, and (b) going uni-
formly to one of the pages linked to by the current page. The authority weights are
defined to be the stationary distribution of the two-step chain doing first step (a)
and then (b), while the hub weights are defined to be the stationary distribution of
the two-step chain doing first step (b) and then (a).

Formally, let B(i) = {k : k → i} denote the set of all nodes that point to i,
and let F (i) = {k : i → k} denote the set of all nodes that we can reach from i by
following a forward link. It can be shown that the Markov Chain for the authorities
has transition probabilities

Pa(i, j) =
∑

k:k∈B(i)∩B(j)

1
|B(i)|

1
|F (k)| .

Assume for the time being the Markov Chain is irreducible, that is, the underlying
graph structure consists of a single connected component. The authors prove that
the stationary distribution a = (a1, a2, . . . , aN ) of the Markov Chain satisfies ai =
|B(i)|/|B|, where B =

⋃
i B(i) is the set of all backward links. Similarly, the

Markov Chain for the hubs has transition probabilities

Ph(i, j) =
∑

k:k∈F (i)∩F (j)

1
|F (i)|

1
|B(k)| .

Lempel and Moran proved that the stationary distribution h = (h1, h2, . . . , hN ) of
the Markov Chain satisfies hi = |F (i)|/|F |, where F =

⋃
i F (i) is the set of all

forward links.
If the underlying graph of the Base Set consists of more than one component, then

the SALSA algorithm selects a starting point uniformly at random and performs a
random walk within the connected component that contains the node.

Observe that SALSA does not have the same mutually reinforcing structure that
Kleinberg’s algorithm does [Borodin et al. 2001]. Since ai = |B(i)|/|B|, the relative
authority of site i within a connected component is determined local links, not from
the structure of the component. Also, in the special case of a single component,

7According to [Rafiei and Mendelzon 2000], a random walk on a set of states S = {s1, s2, . . . , sn},
corresponds to a sequence of states, one for each step of the walk. At each step, the walk switches
to a new state or remains in the current state. A random walk is Markovian if the transition at
each step is independent of the previous steps and only depends on the current state.
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SALSA can be viewed as a one-step truncated version of Kleinberg’s algorithm
[Borodin et al. 2001]. Furthermore, Kleinberg ranks the authorities based on the
structure of the entire graph, and tends to favor the authorities of tightly knit
communities. The SALSA ranks the authorities based on the their popularity in
the immediate neighborhood, and favors various authorities from different commu-
nities. Specifically, in SALSA, the TKC effect is overcome through random walks
on a bipartite web graph for identifying authorities and hubs. It has been shown
that the resulting Markov chains are ergodic and high entries in the stationary dis-
tributions represent sites most frequently visited in the random walk. If the web
graph is weighted, the authority and hub vectors can be shown to have stationary
distributions with scores proportional to the sum of weights on incoming and outgo-
ing edges respectively. This result suggests a simpler calculation of authority/hub
weights than through the mutual reinforcement approach.

3.2.7 Approach of Borodin et al.. Borodin et al. proposed a set of algorithms
for hypertext link analysis in [2001] . We highlight some of these algorithms here.
The authors proposed a series of algorithm which are based on minor modification
of Kleinberg’s algorithm to eliminate the previously mentioned errant behavior of
Kleinberg’s algorithm. They proposed an algorithm called Hub-Averaging-Kleinberg
Algorithm which is a hybrid of the Kleinberg and SALSA algorithms as it alter-
nated between one step of each algorithm. It does the authority rating updates just
like Kleinberg (giving each authority a rating equal to the sum of the hub ratings
of all the pages that link to it). However, it does the hub rating updates by giving
each hub a rating equal to the average of the authority ratings of all the pages
that it links to. Consequently, a hub is better if it links to only good authorities,
rather than linking to both good and bad authorities. Note that it shares the fol-
lowing behavior characteristics with the Kleinberg algorithm: if we consider a full
bipartite graph, then the weights of the authorities increase exponentially fast for
Hub-Averaging (the rate of increase is the square root of that of the Kleinberg’s
algorithm). However, if one of the hubs point to a node outside the component,
then the weights of the component drop. This prevents the Hub-Averaging algo-
rithm from completely following the drifting behavior of the Kleinberg’s algorithm
[Borodin et al. 2001]. Hub-Averaging and SALSA also share a common charac-
teristic as the Hub-Averaging algorithm tends to favor nodes with high in-degree.
Namely, if we consider an isolated component of one authority with high in-degree,
the authority weight of this node will increase exponentially faster [Borodin et al.
2001].

The authors also proposed two different algorithms called Hub-Threshold and
Authority-Threshold that modifies the “threshold” of Kleinberg’s algorithm. The
Hub-Threshold algorithm is based on the notion that a site should not be considered
a good authority simply because many hubs with very poor hub weights point to it.
When computing the authority weight of ith page, the Hub-Threshold algorithm
does not take into consideration all hubs that point to page i. It only considers
those hubs whose hub weight is at least the average hub weight over all the hubs
that point to page i, computed using the current hub weights for the nodes.

The Authority-Threshold algorithm, on the other hand, is based on the notion
that a site should not be considered a good hub simply because it points to a number
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of “acceptable” authorities; rather, to be considered a good hub it must point to
some of the best authorities. When computing the hub weight of the ith page, the
algorithm counts those authorities which are among the top K authorities, based
on the current authority values. The value of K is passed as a parameter to the
algorithm.

Finally, the authors also proposed two algorithms based on Bayesian statisti-
cal approach, namely, Bayesian Algorithm and Simplified Bayesian Algorithm, as
opposed to the more common algebraic/graph theoretic approach. The Simpli-
fied Bayesian Algorithm is basically simplification of the Bayesian model in the
Bayesian algorithm. They experimentally verified that the Simplified Bayesian Al-
gorithm is almost identical to the SALSA algorithm and have at least 80% overlap
on all queries. This may be due to the fact that both the algorithms place great
importance on the in-degree of a node while determining the authority weight of
a node. On the other hand, the Bayesian algorithm appears to resemble both the
Kleinberg and the SALSA behavior, leaning more towards the first. It has a higher
intersection numbers with Kleinberg than with SALSA [Borodin et al. 2001].

3.2.8 PicASHOW. PicASHOW [Lempel and Soffer 2001] is a pictorial retrieval
system that searches for images on the Web using hyperlink-structure analysis. Pi-
cASHOW applies co-citation based approaches and PageRank influenced methods.
It does not require any image analysis whatsoever and no creation of taxonomies for
pre-classification of the images on the Web. The justification for using co-citation
based measures to images just as it does to Web pages is as follows: (1) Images
which are co-contained in pages are likely to be related to the same topic. (2)
Images which are contained in pages that are co-cited by a certain page are likely
related to the same topic. Furthermore, in the spirit of PageRank, the authors as-
sumed that images which are contained in authoritative pages on topic t are good
candidates to be quality images on that topic.

The topical collection of images from the Web is formally defined as a quadruple
IC = (P, I, L, E) where P is a set of Web pages (many of which deal with a certain
topic t), I is the set of images contained in P , L ⊆ P × P is the set of directed
links which exist on the Web between the pages P , and E ⊆ P × I is the relation
page p contains image i. A page p contain an image i if (a) when p is loaded in
a Web browser, i is displayed, or (b) p points to i’s image file (in some image file
format such as .gif or .jpeg). Based on this definition of image collection, the steps
for finding authoritative images given in a query are as follows:

(1) The first step is to assemble a large topical collection of images for a given
query on topic t. This is based on the notion that by examining a large enough
set of t-relevant pages, it is possible to identify high quality t-images. This
is achieved by using Kleinberg’s algorithm. That is, for a query q on topic t,
Kleinberg’s algorithm is used to assemble a q-induced collection of Web pages
by submitting q first to traditional search engines, and adding pages that point
to or pointed by pages in the resultant set. This is the page set P and the
page-to-page link set L. The set of images I can be then defined by collecting
the images which are contained in P .

(2) Next step is focused on identifying replicated images in the collection. This is
based on the assumption that when a web site creator encounters an image of
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his liking on a remote server, the usual course of action is to copy the image
file to the local server, thus replicating the image. Note that this behavior is
different from the corresponding behavior with respect to HTML pages. Most
of the time, authors will not copy a remote page to the local servers, but
rather provide links from their site to the remote page. In PicASHOW, Lempel
et al. download only the first 1024 bytes of the image and apply a double
hash function to these bytes, so that each image is represented by a signature
consisting of 32 bytes. Then, two images with the same signature are considered
identical.

(3) Next, non-informative images are filtered out from the collection. The authors
use the following heuristics in order to reduce non-informative images in the
collection: (a) Banners and logos are non-informative and tend to be wide
and short. Hence, PicASHOW filter out images with an aspect ratio greater
than some threshold value. (b) Images that store small files (less than 10
kilobytes) tend to be banners and filtered out. Even if these files are not banner
they are usually not quality topical images. (c) Images stored in file names
containing “logo” or “banner” keyword. (d) Additionally, cliparts, buttons,
spinning globes are filtered out based on aspect ratio and file size heuristics.
Note that this approach does not eliminate all non-informative images.

(4) Finally, the images are ranked based on different schemes such as in-degree
approach, PageRank-influenced approach and co-citation based scheme.

Similarly, PicASHOW also finds image hubs. Just as hubs were defined as pages
which link to many authoritative pages, image hubs are pages which are linked to
many authoritative images. Specifically, pages which contain high-quality images
are called image containers, while pages which point to good image containers are
called image hubs. Thus, image hubs are removed from the authoritative images
themselves, which are contained in the image containers. The co-citation based
image retrieval schemes is used once again to find both image containers and image
hubs.

4. USAGE CHARACTERIZATION

In this section we consider the problem of modeling and predicting web page ac-
cesses. We begin by relating web page access modeling to prediction for efficient
information retrieval on the WWW and consider a preliminary statistical approach
that relies on the distribution of interaccess times. Two other approaches from dif-
ferent domains namely, Markov processes and human memory are also examined.

4.1 Access Prediction Problem

In the case of the WWW, access prediction has several advantages. It becomes a
basis for improved quality of information access by prefetching documents that have
a high likelihood of access. In the Web environment, prefetching can materialize as
a client-side or sever-side function depending on whether prediction is performed
using the access patterns of a particular user or those of the whole population. If
access prediction is addressed within the framework of a more general modeling
problem, there are added benefits from using the model in other contexts. Web-
masters can apply such a model for studying trends in page accesses recorded in
ACM Journal Name, Vol. 2, No. 3, 09 2002.



A Survey of Web Metrics · 21

server logs to identify navigation patterns, improve site organization and analyze
the effects of changes to their web sites.

While the issue is important for improving information quality on the Web, it
poses several challenges. The scale, extent, heterogeneity and dynamism of the
Web even within a site make several approaches to predicting accesses possible.
However, as we shall see, each has its own set of limitations and assumptions which
must be kept in mind while applying it to a particular domain.

Let us first elucidate the general access prediction problem. Our basic premise is
that page accesses should be predicted based on universally available information on
past accesses such as server access logs. Given a document repository and history of
past accesses, we would like to know which documents are more likely to be accessed
within a certain interval and how frequently they are expected to be accessed. The
information used for prediction, typically found in server logs comprises the time
and url of an http request. The identity of the client is necessary only if access
prediction is personalized for the client. From this information about past accesses,
several predictor variables can be determined, for example, the frequency of accesses
within a time interval and inter-access times.

4.2 Statistical Prediction

An obvious prediction is the time until the next expected access to a document,
say A. The duration can be derived from a distribution of time intervals between
successive accesses. This kind of statistical prediction relates a predictor variable
or a set of predictor variables to access probability for a large sample assumed to
be representative of the entire population. Future accesses to a document can then
be predicted from the probability distribution using current measurements of its
predictor variable(s). A variant of this approach is to use separate distributions for
individual documents measured from past accesses.

Let us illustrate the above approach for temporal prediction using interaccess
time. Suppose f(t) is the access density function denoting the probability that a
document is accessed at time t after its last access or its interaccess time probability
density . Intuitively, the probability that a document is accessed depends on the
time since its last access and duration into the future we are predicting. At any
arbitrary point in time, the probability that a document A is accessed at a time T
from now is given by

Pr{A is accessed at T} = f(δ + T )

where δ is the age or the time since the last access to the document. The function
f(t) has a cumulative distribution F (t) =

∑∞
t′=0 f(t′) which denotes the probability

that a document will be accessed within time t from now. Since f(t) is a probability
density, F (∞) = 1, meaning that the document will certainly be accessed sometime
in the future. If f(t) is represented as a continuous distribution, the instantaneous
probability when δ, T → 0 is zero, which makes short term or immediate prediction
difficult. To find the discrete density f(t) from the access logs, we calculate the
proportion of document accesses that occur t time units after the preceding access
for t ranging from zero to infinity. This approach assumes that all documents
have identical interaccess time distributions, that is, all accesses are treated the
same, irrespective of the documents they involve and that the distributions are
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free from periodic changes in access patterns (such as weekends when interaccess
times are longer.) The implication of the first assumption is that the prediction is
not conditioned on frequency of past accesses since all documents in the observed
repository are assumed equally likely to be accessed giving rise to identical frequency
distributions.

Since frequency distributions are more likely to vary between documents than
not, it is clear that the above assumptions make this analysis suitable only on
a per-document basis. However, the approach still holds, notwithstanding that
the distribution F (t) is now specific to a particular document. To predict the
probability of access within time T from now, for a particular document A, we
may use A’s distribution function FA(t) to obtain FA(δ + T ) where δ is the age at
the current time. If the interaccess time distributions are similar but not identical,
we could condition these distributions on the parameters and find distributions of
these parameters across the documents.

Our use of a single predictor, the interaccess time, obtained from the age δ and
prediction interval T does not imply that the technique is univariate. The use of
multiple predictors, such as the frequency of accesses in a given previous interval
can easily be accommodated into a multidimensional plot of access probability. The
method becomes complicated when several dimensions are involved. To alleviate
this, we may derive a combined metric from the predictor variables, transform-
ing the problem back to univariate prediction. However, this requires empirical
determination of correlation between predictors and subsequently a combination
function.

Given the statistical principle, one might naturally be led to ask how the distri-
bution F (t) (or its variant FA(t)) can be used for actionable prediction. Recall that
F (t) is a cumulative probability distribution. For a given document age, it tells us
the probability that a document is accessed within a certain interval of time. If
a single probability distribution is used, this probability is an indicator of overall
document usage with respect to time interval. If we use individual distributions
FA(t), it can be used to compare the relative usage of documents. The expected
time to next access, T is given by the mean of the distribution:

E[T ] =
∞∑

t=0

t · f(t)

The expected time T before the next access to a document, if it is known for all
documents, can be used as a criteria for populating server side caches.

The temporal approach discussed above bases prediction on interaccess times.
Equally, we may use a frequency based alternative for predicting access. A frequency
distribution denotes the probability of a certain number of accesses to a document
or a sample of documents over a fixed time interval. Using an analogous method
to that discussed earlier, we can answer the following for prediction over the next
time interval:

—What is the probability that exactly N documents will be accessed?

—What is the probability that N or more documents will be accessed?

—How many documents are expected to be accessed?
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This approach has the same drawbacks as discussed previously—it does not account
for periodic changes in access rates, rather it aggregates them into a single distri-
bution and accesses to all documents are treated the same. Finally, both temporal
and frequency prediction may be combined to ascertain probabilities of a certain
number of accesses during a given time period in the future.

4.3 Markov Models

Markov models assume web page accesses to be “memoryless”, that is, access statis-
tics are independent of events more than one interval ago. We discuss two Markov
models for predicting web page accesses, one of our own making and another due to
Sarukkai [2000]. Prior to explaining these models per se, we introduce the concept
of Markov processes.

4.3.1 Markov Processes. A stochastic process can be thought of as a sequence of
states {St; t = 1, 2, . . .} where St represents the state of the process at discrete time
t, with a certain transition probability pij between any two states i and j. A Markov
process is a simple form of stochastic process where the probability of an outcome
depends only on the immediately preceding outcome. Specifically, the probability
of being in a certain state at time t depends entirely on the state of the process at
time t − 1. To find the state probabilities at a time t, it is therefore sufficient to
know the state probabilities at t − 1 and the one-step transition probabilities, pij

defined as

pij = Pr{St = j|St−1 = i}
The one-step transition probabilities represent a transition matrix P = (pij). In

a Markov process where the transition probabilities do not change with time, i.e.,
a stationary Markov process, the probability of a transition in n steps from state
i to state j or Pr{St = j|St−n = i} denoted by p

(n)
ij is given by Pn

ij . Intuitively,
this probability may be calculated as the summation of the transition probabilities
over all possible n-step paths between i and j in a graph that is equivalent to
the transition matrix P , with the transition probability along any path being the
product of all successive one-step transition probabilities. This is stated precisely
by the well-known Chapman-Kolmogorov identity [Ross 1983]:

p
(m+n)
ij =

∑

h

p
(m)
ih p

(n)
hj , (m,n) = 1, 2, . . . (1)

= P
(m+n)
ij (2)

Hence, the matrix of n-step transition probabilities is simply the nth power of the
one-step transition matrix P . If the initial state probabilities π0

i = Pr{S0 = i} are
known, we can use the n-step transition probabilities to find the state probabilities
at time n as follows:

πn
j =

∑

i

Pr{Sn = j|S0 = i} · Pr{S0 = i}

πn
j =

∑

i

p
(n)
ij π0

i
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Representing the state probabilities at time n as a state distribution vector Πn =
(πn

i ), the above equation can be written in vector notation as

Πn = Pn ·Π0 (3)

The vector of initial state probabilities Π0 is known as the initial state distribution.
Typically, as n → ∞, the initial state distribution becomes less relevant to the
n-step transition probabilities. In fact, for large n the rows of Pn become identical
to each other and to the steady state distribution Πn. The steady state probability
πn

i as n → ∞ can be interpreted as the fraction of time spent by the process in
state i in the long run.

4.3.2 Markov Chain Prediction. Markov processes can be used to model indi-
vidual browsing behavior. We propose a method [Dhyani 2001] for determining
access probabilities of web pages within a site by modeling the browsing process
as an ergodic Markov chain [Ross 1983]. A Markov chain is simply a sequence
of state distribution vectors at successive time intervals, i.e., 〈Π0, Π1, . . . , Πn〉. A
Markov chain is ergodic if it is possible to go from every state to every other state
in one or more transitions. The approach relies on a-posteriori transition probabil-
ities that can readily be ascertained from logs of user accesses maintained by Web
servers. Note that our method can be considered as a variant of the PageRank.
The difference between PagerRank and our approach is that PageRank assumes a
uniform distribution for following outlinks while we use observed frequencies. Also,
our model does not perform random jumps to arbitrary Web pages.

Let us represent a web site as a collection of K states, each representing a page.
The evolution of a user’s browsing process may then be described by a stochastic
process with a random variable Xn (at time n = 1, 2, . . .) acquiring a value xn

from the state space. The process may be characterized as a Markov chain if the
conditional probability of Xn+1 depends only on the value of Xn and is independent
of all previous values. Let us denote the non-negative, normalized probability of
transition from page i to page j as pij , so that, in terms of the random variable
Xn,

pij = P (Xn+1 = j | Xn = i)

The transition probabilities can be represented in a K × K transition matrix P .
We can then derive the following:

—The `-step transition probability p
(`)
ij is the probability that a user navigates

from page i to page j in ` steps8. This probability is defined generally by the
Chapman-Kolmogorov identity of Equation 1.

—In ergodic Markov chains, the amount of time spent in a state i is proportional
to the steady state probability πi. If user browsing patterns can be shown to
be ergodic, then pages that occupy the largest share of browsing time can be
identified. Let Π0 denote initial state distribution vector of a Markov chain; the
jth element of Π0 is the probability that user is initially at page j9. The state

8A more Web savvy term would be click distance.
9In the Markov chain model for Web browsing, each new access can be seen as an advancement
in the discrete time variable.

ACM Journal Name, Vol. 2, No. 3, 09 2002.



A Survey of Web Metrics · 25

distribution vector Πn at time n can then be obtained from Equation 3.

It can be shown that, for large n, each element of Pn approaches the steady-state
value for its corresponding transition. We can thus say that irrespective of the
initial state distribution, the transition probabilities of an ergodic Markov chain
will converge to a stationary distribution, provided such a distribution exists. The
mean recurrence time of a state j is simply the inverse of the state probability, i.e.,
1/πj .

We now briefly address the issue of obtaining transition probabilities pij . It
can be shown that the transition probability can be expressed in terms of the a-
posteriori probability τij which can be observed from browsing phenomena at the
site as follows:

τij =
Number of accesses from i to j

Total number of accesses from i to all its neighbors

Accesses originating from outside the web site can be modeled by adding another
node (say ∗) collectively representing outside pages outside. The transition proba-
bilities p∗i denote the proportion of times users enter the web site at page i.

Observe that in relation to actual browsing, our model implies that the transition
to the next page is dependent only on the current page. This assumption correctly
captures the situation whereby a user selects a link on the current page to go the
next in the browsing sequence. However, the model does not account for external
random jumps by entering a fresh url into the browser window or browser based
navigation through the “Forward” and “Back” buttons. Note that pushing “Back”
and “Forward” buttons imply that the next state in the surf process depends not
only on the current page but also on the browsing history. Browser based buttons
can be factored into the model by treating them as additional links. However,
we use a simplistic assumption because the a-priori probability of using browser
buttons depends on the navigability of the web site and is difficult to determine by
tracking sample user sessions (due to caching etc). Our model can be useful in the
following applications:

—Relative web page popularity: Since the transition probability matrix is known
a-priori, the long term probabilities of the visiting a page can be determined.
This can be compared with other pages to find out which pages are more likely
to be accessed than others.

—Local search engine ranking: The relative popularity measure discussed above
will make localized search engines more effective because it uses observed surfing
behaviour to rank pages rather than generalized in-out degrees. General purpose
measures do not have this characteristic. For example, Pagerank assumes that out
links are selected according to a uniform distribution. However hyperlinks often
follow the 80/20 rule whereby a small number of links dominate the outgoing
paths from a page. Long term page probabilities that account for browsing
behaviour within the domain will give more accurate rankings of useful pages.

—Smart browsing: since `-step transition probabilities are known we can predict
which pages are likely to be requested over the next ` steps. The browser can
then initiate advanced access for them to improve performance. It can also
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serve suggestions to the user on which pages might be of interest based on their
browsing history.

A variation of Markov chains applied by Sarukkai [2000] predicts user accesses
based on the sequence of previously followed links. Consider a stochastic matrix P
whose elements represent page transition probabilities and a sequence of vectors,
one for each step in the link history of a user, denoted I1, I2, . . . It−1. The `th

element in vector Ik is set to 1 if the user visits page ` at time k, otherwise it is set
to 0. For appropriate values of constants a1, a2, . . . , ak, the state probability vector
St for predicting the next link is determined as follows:

St
j =

t−1∑

k=1

akIt−kP k

The next page to be accessed is predicted as the one with the highest state prob-
ability in the vector St. The same approach can be used to generate tours by
successively predicting links of a path.

4.4 Human Memory Model

Psychology research has shown that the accuracy of recalling a particular item
in memory depends on the number of times the item was seen or frequency , the
time since last access or recency and the gap between previous accesses or spacing .
In some ways the human memory model is closer to web page access modeling.
Recker and Pitkow [1996] have used the human memory model to predict document
accesses in a multimedia repository based on the frequency and recency of past
document accesses. We discuss their approach below.

4.4.1 Frequency Analysis. Frequency analysis examines the relationship between
the frequency of document access during a particular time window and the probabil-
ity of access during a subsequent marginal period called the pane. This relationship
can be derived by observing access log data showing the times of individual access to
Web documents. Let us consider the number of documents accessed x times during
a fixed interval, say one week. If we know the proportion of these documents that
are also accessed during the marginal period, then we can calculate the probability
of future access to a document given it is accessed x times as follows. Suppose
wx denotes the number of documents accessed x times during the window period
and px (px < wx), the number, out of these accessed during the pane. Then the
probability that a document A is accessed during the pane given that it is accessed
x times during the window is given by:

Pr{A is accessed in pane | A is accessed x times during window}
=

Pr{A is accessed in pane and A is accessed x times during window}
Pr{A is accessed x times during window}

=
px

wx

The above probability can be aggregated over successive windows for the given
observation interval to obtain the conditional distribution of need probability , or the
probability that an item will be required right now, versus the frequency of access
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in the previous window. Recker and Pitkow found that the distribution of need
probability p shows a familiar Power Law distribution to the human memory model,
that is, as the frequency of document accesses x increases, the need probability
increases according to the function:

p = axb

where a and b are constants.

4.4.2 Recency Analysis. Recency analysis proceeds in a similar manner except
that the probability of access during the pane is conditioned upon how recently the
document was last accessed. Instead of creating bins of similar frequency values
observed over successive windows, the documents are aggregated into bins of similar
recency values. That is, if x documents were accessed an interval t ago (recency
time) in the previous window, out which x′ are accessed during the next pane then
the need probability is calculated as follows:

Pr{A is accessed in pane | A was accessed t units ago) =
x′

x

The need probability versus recency time distribution shows an inverse power law
relationship in agreement with retention memory literature. In addition, recency
analysis shows a much better fit on available access data than frequency.

Recker and Pitkow also study the relationship between the access distributions
and hyperlink structure. They found that a high correlation exists between the
recency of access, number of links and document centrality10 in the graph structure.
Specifically, documents that are less recently accessed, have fewer mean number of
links per document, and lower measures of relative in- and out-degrees. Thus,
recently accessed documents have higher overall interconnectivity. This analysis
can be applied to optimal ordering for efficient retrieval. Documents with high
need probability can be positioned for faster access (caching strategies based on
need probability) or more convenient (addition of appropriate hyperlinks).

There are several issues in Recker and Pitkow’s approach that require careful
consideration before such a model can be adopted for practical access prediction.
Firstly, the window and pane sizes are known to have a strong impact on the quality
of prediction. No rule for an ideal setting of these parameters exists and significant
trial and error may be needed to identify the right values. Secondly, the model does
not account for continuous changes in Web repositories such as ageing effects and the
addition and deletion of documents. Finally, although the model considers multiple
predictors, frequency and recency, the method of combining these parameters is not
scalable. We must note that there is a difference between predictors and affecter
variables. While frequency and recency of access are strong predictors, they cannot
be established as factors affecting need probability due to the absence of a causal
relationship. More fundamental document properties such visibility (connectivity)
and relevance to popular topics are more likely to be factors that determine need
probability. However for prediction purpose, we believe that all the three factors
considered above can be used.

10See Section 2 for the definition of centrality and other hypertext graph measures.
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4.5 Adaptive Web Sites

Usage characterization metrics attempt to model and measure user behavior from
browsing patterns gathered typically from server log files. These metrics have facil-
itated adaptive Web sites—sites that can automatically improve their organization
and presentation by learning from visitor access patterns [Perkowitz and Etzioni
1997; 1998; 1999].

A metric that helps find collections of pages that are visited together in sessions
is the co-occurrence frequency [Perkowitz and Etzioni 1999]. For a sequence of page
accesses (obtainable from the server access log), the conditional probability P (p|q)
is the probability that a visitor will visit page p given that she has already visited
q. The co-occurrence frequency between the pair 〈p, q〉 is then Min(P (p|q), P (q|p)).
Connected components in a graph whose edges are labeled with the co-occurrence
frequencies represent clusters of pages that are likely to be visited together. The
quality of such clusters is defined as the probability that a user who has visited one
page in a cluster also visits another page in the same cluster. In a related work,
Yan et al. [1996] represent user sessions as vectors where the weight of the ith page
is the degree of interest in it measured through actions such as the number of times
the page is accessed or the time the user spends on it. Users can then be clustered
on the basis of the similarity between their session vectors (measured as Euclidean
distance or angle measure). As the user navigates a site, he is assigned to one or
more categories based on the pages accessed so far. Pages in matching categories
are included as suggestions on top of the HTML document returned to the user if
they have not been accessed so far and are unlinked to the document. The same
study finds that the distribution of time spent by a user on a page is roughly Zipfian.
An analysis of user navigation patterns by Catledge and Pitkow [1995] reveals that
the distribution of path lengths within a site is roughly negative linear with the
relationship between path length p and its frequency f being f = 0.24p.

4.6 Activation Spread Technique

Pirolli, Pitkow and Rao [1996] have recently used an activation spread technique
to identify pages related to a set of “source” pages on the basis of link topology,
textual similarity and usage paths. Conceptually, an activation is introduced at a
starting set of web pages in the Web graph whose edges are weighted by the criteria
mentioned above. To elaborate further, the degree of relevance of Web pages to one
another is conceived as similarities, or strength of associations, among Web pages.
These strength-of-association relations are represented using a composite of three
graphs. Each graph structure contains nodes representing Web pages, and directed
arcs among nodes are labeled with values representing strength of association among
pages. These graphs represent the following:

—The hypertext link topology of a Web locality: This graph structure represents
the hypertext link topology of a Web locality by using arcs labeled with unit
strengths to connect one graph node to another when there exists a hypertext
link between the corresponding pages.

—Inter-page text similarity: This type of graph structure represents the inter-page
text content similarity by labeling arcs connecting nodes with the computed text
similarities between corresponding Web pages.
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—Usage paths: The last type of graph structure represents the flow of users through
the locality by labeling the arcs between two nodes with the number of users that
go from one page to another.

Each of these graphs is represented by matrices in the spreading activation algo-
rithm. That is, each row corresponds to a node representing a page, and similarly
each column corresponds to a node representing a page. Conceptually, this activa-
tion flows through the graph, modulated by the arc strengths, the topmost active
nodes represent the most relevant pages to the source pages. Effectively for a source
page p, the asymptotic activity of page q in the network is proportional to P (q|p),
the probability that q will be accessed by a user given that she has visited p.

5. WEB PAGE SIMILARITY

Web page similarity metrics measure the extent of relatedness between two or more
web pages. Similarity functions have mainly been described in the context of web
page clustering schemes. Clustering is a natural way of semantically organizing in-
formation and abstracting important attributes of a collection of entities. Cluster-
ing has certain obvious advantages in improving information quality on the WWW.
Clusters of web pages can provide more complete information on a topic than indi-
vidual pages, especially in an exploratory environment where users are not aware
of several pages of interest. Clusters partition the information space such that it
becomes possible to treat them as singular units without regarding the details of
their contents. We must note however that the extent to which these advantages
accrue depends on the quality and relevance of clusters. While this is contingent
on user needs, intrinsic evaluations can often be made to judge cluster quality.
In our presentation of clustering methods we discuss these quality metrics where
applicable.

We classify similarity metrics into content-based , link-based and usage-based met-
rics. Content-based similarity is measured by comparing the text of documents.
Pages with similar content may be considered topically related and designated the
same cluster. Link-based measures rely exclusively on the hyperlink structure of
a Web graph to obtain related pages. Usage-based similarity is based on patterns
of document access. The intent is to group pages or even users into meaningful
clusters that can aid in better organization and accessibility of web sites.

5.1 Content-based Similarity

Document resemblance measures in the Web context can use subsequences matching
or word occurrence statistics. The first set of metrics using subsequence matching
represents the document D as a set of fixed-size subsequences (or shingles) S(D).
The resemblance and containment [Broder et al. 1997] of documents are then de-
fined in terms of the overlap between their shingle sets. That is, given a pair of
documents A and B, the resemblance denoted (r(A,B)) and containment of A in
B (denoted c(A,B)) are defined respectively as follows:

r(A,B) =
| S(A) ∩ S(B) |
| S(A) ∪ S(B) |

c(A,B) =
| S(A) ∩ S(B) |

| S(A) |
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Clearly, both the measures vary between 0 and 1; if A = B, then a scalable technique
to cluster documents on the Web using their resemblance is described in [Broder
et al. 1997]. The algorithm locates clusters by finding connected components in a
graph where edges denote the resemblance between document pairs.

Content-based similarity between web pages can also be approached using the
vector space model as in [Weiss et al. 1996]. Each document is represented as a
term vector where the weight of term ti in document dk is calculated as follows:

wki =
(0.5 + 0.5

TFk,i

TFk,max
)wat

k,i

√
∑

ti∈dk
(0.5 + 0.5

TFk,i

TFk,max
)2(wat

k,i)
2

where

TFk,i Term frequency of ti in dk

TFk,max Maximum term frequency of a keyword in dk

wat
k,i Contribution to weight from term attribute

Note that this definition of term weights departs from Section 3.1 by excluding
the inverse document frequency (IDF ) and introducing a new factor wat which
is configurable for categories of terms. The term-based similarity, denoted St

xy

between two documents dx and dy is the normalized dot product of their term
vectors wx and wy respectively:

St
xy =

∑

i

wxi · wyi

5.2 Link-based Similarity

Link-based similarity metrics are derived from citation analysis. The notion of hy-
perlinks provides a mechanism for connection and traversal of information space as
do citations in scholarly enterprise. Co-citation analysis has already been applied
in information science to identify the core sets of articles, authors or journals in
a particular field of study as well as for clustering works by topical relatedness.
Although the meaning and significance of citations differs considerably in the two
environments due to the unmediated nature of publishing on the Web, it is instruc-
tive to review metrics from citation analysis for possible adaptation. Application
of co-citation analysis for topical clustering of WWW pages is described in [Lar-
son 1996; Pitkow and Pirolli 1997]. We discuss here two types of citation based
similarity measures namely co-citation strength and bibliometric coupling strength
together with their refinements and applications to web page clustering.

To formalize the definition of citation based metrics we first develop a matrix no-
tation for representing a network of scientific publications. A bibliography may be
represented as a citation graph where papers are denoted by nodes and references
by links from citing document to the cited document. An equivalent matrix rep-
resentation is called the citation matrix (C) where rows denote citing documents
and columns cited documents. An element Cij of the matrix has value one (or
the number of references) if there exists a reference to paper j in paper i, zero
otherwise.
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Two papers are said to be bibliographically coupled [Egghe and Rousseau 1990]
if they have one or more items of references in common. The bibliographic coupling
strength of documents i and j is the number of references they have in common. In
terms of the citation matrix the coupling strength of i and j denoted SB′

ij is equal
to the scalar product of their citation vectors Ci and Cj . That is,

SB′
ij = Ci · CT

j

= (C · CT )ij

In order to compare the coupling strength of different pairs of documents, the
above metric may be unsensitized to the number of references through the following
normalization (U is the unit vector of the same dimension as C):

SB
ij =

Ci · CT
j

Ci · UT + Cj · UT

An alternate notion is that of co-citation. Two papers are co-cited if there exists
a third paper that refers to both of them. The co-citation strength is the frequency
with which they are cited together. The relative co-citation strength is defined as
follows:

SC
ij =

CT
i · (CT

j )T

CT
i · UT + CT

j · UT

Bibliographic coupling (and co-citation) has been applied for clustering docu-
ments. Two criteria discussed by Egghe and Rousseau [1990] that can be applied
to web pages are as follows:

A A set of papers constitute a related group GA(P0) if each member of the group
has at least one coupling unit in common with a fixed paper P0. That is, the
coupling strength between any paper P and P0 is greater than zero. Then,
GA(P0; n) denotes that subset of GA(P0) whose members are coupled to P0 with
strength n.

B A number of papers constitute a related group GB if each member of the group
has at least one coupling unit to every other member of the group.

A measure of co-citation based cluster similarity function is the Jaccard index ,
defined as:

Sj(i, j) =
coc(i, j)

cit(i) + cit(j)− coc(i, j)

where coc(i, j) denotes the co-citation strength between documents i and j given
by CT

i · (CT
j )T and cit(i) = CT

i · UT and cit(j) = CT
j · UT are the total number

of citations received by i and j respectively. Note that Jaccard’s index is very
similar to the relative co-citation strength defined by us earlier. Another similarity
function is given by Salton’s cosine equation as follows:

Ss(i, j) =
coc(i, j)√

cit(i) · cit(j)
In most practical cases, it has been found that Salton’s similarity strength value is
twice as calculated by the Jaccard index.
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Amongst other approaches to co-citation based clustering, Larson [1996] em-
ploys the multidimensional scaling technique to discover clusters from the raw
co-citation matrix. Similarly Pitkow and Pirolli [1997] apply a transitive clus-
ter growing method once the pairwise co-citation strengths have been determined.
In another application, Dean and Henzinger [1999] locate pages related to a given
page by looking for siblings with the highest co-citation strength. Finally, a method
described by Egghe and Rousseau [1990] finds connected components in co-citation
networks whose edges are labeled by co-citation strengths of document pairs. The
size and number of clusters (or cluster cohesiveness) can be controlled by removing
edges with weights below a certain threshold co-citation frequency.

A generalization of citation-based similarity measures considers arbitrarily long
citation paths rather than immediate neighbors. Weiss et al. [1996] introduce
a weighted linear combination of three components as their hyperlink similarity
function for clustering. For suitable values of weights Wd, Wa and Ws, the hyperlink
similarity between two pages i and j is defined as:

Sl
ij = WdS

d
ij + WaSa

ij + WsS
s
ij

We now discuss each of the similarity components Sd
ij , Sa

ij and Ss
ij . Let `ij denote

the length of the shortest path from page i to j and lkij that of the shortest path
not traversing k.

—Direct Paths A link between documents i and j establishes a semantic relation
between the two documents. If these semantic relations are transitive, then a path
between two nodes also implies a semantic relation. As the length of the shortest
path between the two documents increases, the semantic relationship between
the two documents tend to weaken. Hence, the direct path component relates
the similarity between two pages i and j denoted Ss

ij as inversely proportional to
the shortest path lengths between them. That is,

Ss
ij =

1
2lij + 2lji

Observe that the denominator ensures that as shortest paths increase in length,
the similarity between the documents decreases.

—Common Ancestors This component generalizes co-citation by including succes-
sively weakening contributions from distant ancestors that are common to i and
j. That is, the similarity between two documents is proportional to the number
of ancestors that the two documents have in common. Let A denote the set of
all common ancestors of i and j,

Sa
ij =

∑

x∈A

1

2lj
xi + 2li

xj

Because direct paths have already been considered in similarity component Ss,
only exclusive paths from the common ancestor to the nodes in question are
involved in the Sa component. Observe that as the shortest paths increase in
length, the similarity decreases. Also, the more common ancestors, the higher
the similarity.
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—Common Descendents This component generalizes bibliographic coupling in the
same way as Sa. That is, the similarity between two documents is also propor-
tional to the number of descendants that the two documents have in common.
Let D denote the set of all common descendants of i and j,

Sd
ij =

∑

x∈D

1

2lj
ix + 2li

jx

The computation normalizes Sd
ij to lie between 0 and 1 before it is included in

Sl
ij in the same way as the normalization for Sa

ij .

5.3 Usage-based Similarity

Information obtained from the interaction of users with material on the Web can be
of immense use in improving the quality of online content. We now discuss some of
the approaches proposed for relating Web documents based on user accesses. Web
sites that automatically improve their organization and presentation by learning
from access patterns are addressed by Perkowitz and Etzioni [1997; 1998; 1999].
Sites may be adaptive through customization (modifying pages in real time to suit
individual users, for example goal recognition) or optimization (altering the site
itself to make navigation easier for all, for example link promotion).

5.3.1 Clustering using Server Logs. The optimization approach is introduced
by Perkowitz and Etzioni [1998; 1999] as an algorithm that generates a candidate
index page containing clusters of web pages on the same topic. Their method
assumes that a user visits conceptually related pages during an interaction with
the site. The index page synthesis problem can be stated as follows: Given a Web
site and a visitor access log, create new index pages containing collections of links
to related but currently unlinked pages. The PageGather cluster mining algorithm
for generating the contents of the index page creates a small number of cohesive
but possibly overlapping clusters through five steps:

(1) Process access logs into visits.

(2) Compute the co-occurrence frequencies between pages and create a similarity
matrix. The matrix entry for a pair of pages pi and pj is defined as the co-
occurrence frequency given by min(P (p1|p2), P (p2|p1)). If two pages are already
linked, the corresponding matrix cell is set to zero.

(3) Create a graph corresponding to the matrix and find the maximal cliques11 or
connected components12 in the graph. Each clique or connected component
then represents a set of pages that are likely to be visited together (and hence
related, by the above assumption).

(4) Rank the clusters found and choose which to output. The clusters are sorted
using the average co-occurrence frequency between all pairs of documents in a
cluster.

11A clique is a subgraph in which every pair of nodes has an edge between them; a maximum
clique is one that is not a subset of a larger clique.
12A connected component is a subgraph in which every pair of nodes has a path between them.
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(5) For each cluster create a Web page consisting of links to the documents and
present it to the Webmaster for evaluation.

Experiments [Perkowitz and Etzioni 1998; 1999] show that PageGather outper-
forms other clustering algorithms such as K-means, HAC, and apriori frequency
set calculation in efficiency as well as quality. Quality of clusters is measured by
approximating the following: If the user visits a page in a cluster, what is the likeli-
hood that he will visit more pages from the same cluster? Suppose n(i) represents
the number of pages in cluster i visited during a session, then the quality of cluster
i is given by the probability P{n(i)≥2 | n(i)≥1}.

As we have seen, Perkowitz and Etzioni’s approach relies on co-occurrence fre-
quency to related pages. However, does frequent co-occurrence necessarily indicate
semantic relationship? Certainly this assumption disregards a certain amount of
arbitrariness that prevails in the often serendipitous browsing behavior of users. In
exploratory browsing, pages accessed in the same session may not be related. For
instance, high co-occurrence could also be due to site structure, such as coercive
hyperlinks, rather than a persistent interest on the users behalf. The method dis-
counts the nature of relationship between pages grouped together which might be
a useful clue in obtaining more refined clusters.

Server logs can also help cluster users based on the similarity between the sets of
pages they visit as described by Yan et al. [1996]. Clustering users is a natural way
customization, whereby pages in a user’s cluster that have not been explored yet
can be suggested as navigational hints in the form of dynamically generated links.
This type of dynamic hypertext configuration is performed as follows:

(1) Preprocessing : Suppose a web site has n html pages. Each user session13

is represented using an n-dimensional session vector whose ith element is the
weight or degree of interest assigned to the ith page. The weight can be mea-
sured through actions such as the number of times the page is accessed or the
time the user spends on it.

(2) Clustering : User session vectors that are close to each other in the n-dimensional
vector space, as determined by Euclidean or angular distance, are clustered to-
gether.

(3) Dynamic Link Generation: As the user navigates a site, she is assigned to one
or more categories based on the pages accessed so far if their number exceeds a
predefined threshold. Pages in matching categories are included as suggestions
on top of the html document returned to the user if they have not been accessed
so far and are unlinked to the document.

However, this approach towards customization assumes that

—Pages visited in each session are semantically related.
—Users will be interested in all pages accessed by other users in the same cluster

(during dynamic hyperlink generation).

As for the optimization technique discussed earlier, these assumptions are not en-
tirely valid. Similarity between session vectors does not necessarily imply a rela-
tionship between user interests. Both the techniques described above ignore the

13A session is approximated as requests originating from the same host within 24 hours.
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effect of proxies and browser caches on the accuracy of individual session tracking.
Requests for cached pages are not logged by the server. Users behind a proxy or
firewall cannot be distinguished and are assigned the same ip address, affecting the
granularity of clusters. Finally, estimates such as the number of accesses and time
spent are not truly representative of a user’s interest in a page.

6. WEB SEARCH AND RETRIEVAL

In Section 3 we introduced significance metrics for ranking responses of search
engines to user queries. Here, we review metrics for evaluating and comparing
the performance of Web search and retrieval services. We discuss them under two
categories: effectiveness and search engine comparison.

6.1 Effectiveness

A large proportion of Web search engines employ information retrieval techniques
such as the vector space model similarity for keyword based queries. Their retrieval
effectiveness, or the quality of results returned in response to a query is measured
through two metrics, namely, precision and recall . Let N denote the number of
responses of a search to a keyword query Q, of which N ′ are relevant to Q. If R
relevant web pages exist in all, then the effectiveness metrics are defined as follows
[Hawking et al. 1999; Lee et al. 1997; Yuwono and Lee 1996]:

—Precision The proportion of pages returned that are relevant. That is, Precision =
N ′

N

—Recall The proportion of relevant pages returned. That is, Recall =
N ′

R

We assume here the definition of relevant pages stated in Section 3.1. Precision and
recall usually exhibit a trade-off relationship which is depicted through Precision-
Recall curves. Metrics that combine precision and recall are discussed in [Boyce
et al. 1994]. One problem with measuring recall is that the total number of pages
relevant to a query is difficult to ascertain given the size of the Web.

Recently, Brewington and Cybenko proposed a metric for the currency of a search
engine in [2000]. This metric can be used to answer questions about how fast a
search engine must re-index the Web to remain “current”. They introduce the
concept of (α, β)-currency of a search engine with respect to a changing collection
of Web pages. Informally, the search engine data for a given web page is said to be
β-current if the pages has not changed between the last time it was indexed and
β time units ago. Formally, expected probability of a single page being β-current
over all values of the observation time tn is given as follows:

Pr(β − current|λ, T, β) =
β

T
+

1− e−λ(T−β)

λT

where λ is the change rate of each web page [Brewington and Cybenko 2000] and
T is an associated distribution of re-indexing times (a periodic re-indexing system
will have a single constant To). Observe that β is the grace period for allowing
unobserved changes to a web page and relaxes the temporal aspect of what it
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means to be current. The smaller β means more current our information about the
page is.

A search engine for a collection of pages is then said to be (α, β)-current if a
randomly chose page in the collection has a search engine entry that is β-current
with probability at least α. It can be shown that the expected probability α is as
follows:

α =
∫ ∞

0

[
σ

δ

(
t

δ

)σ−1

e−(t/δ)σ

] [
β

To
+

1− e−(1/t)(To−β)

(1/t)To

]
dt

where δ and σ are scale and shape parameters respectively in Weibull distributions
[Montgomery and Runger 1994]. Note that the above integral can only be evaluated
in closed form when the Weibull shape parameter σ is 1. Otherwise, numerical
evaluation is required. Also, the integral gives an α for every pair of (To, β).

6.2 Search Engine Comparison

The comparison of public domain search services has been the subject of several
studies. One approach for comparing multiple search services describes the follow-
ing metrics using a meta-search service such as MetaCrawler [Selberg and Etzioni
1995]:

—Coverage Coverage measures the number of hits returned by each service on
an average measured as the percentage of a pre-set maximum allowed hits per
search engine. The uniqueness of coverage can be measured as the percentage of
references not returned by any other engine. The absolute coverage of a public
search engine or the fraction of the Web it indexes has been reported to be a
maximum of one-third of the Web [Lawrence and Giles 2000; ]. The same study
analyzes the overlap between pairs of engines to estimate a lower bound on the
size of the indexable Web as 320 million pages. Note that the estimation of the
size of the indexable Web is only valid till April 1998 [Lawrence and Giles 2000].
More recently, it has been estimated that the number of unique pages on the
Internet is 2.1 billion and number of unique pages added per day is 7.3 million
[Murray and Moore 2000]. This statistics is valid as of July 10, 2000.

—Relevance Two relevance metrics are used. One metric is the proportion of hits
from each engine that is followed by the user, or its precision. The other metric is
the proportion of overall hits followed by the user per search engine (i.e., market
share).

—Performance Performance is measured by each service’s average response time a
query.

Other metrics to evaluate search engines indexes are size, overlap and quality . A
standardized, statistical way of measuring relative search engine size and overlap
using random queries (without privileged access) is described by Bharat and Broder
in [1998]. Suppose we have two procedures, one for sampling pages uniformly at
random from the index of a particular search engine and another for checking
whether a particular page is indexed by a particular search engine.

Based on approximations of these procedures through queries using public inter-
faces, the overlap and relative size of two search engines indexes E1 and E2 can be
estimated as follows:
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—Overlap Fraction of URLs sampled from E1 found in E2. This approximates the
following fraction: |E1∩E2|

|E1|
—Size Comparison The size ratio of E1 and E2 is given by:

size(E1)
size(E2)

=

|E1 ∩ E2|
|E2|

|E1 ∩ E2|
|E1|

=
Fraction of URLs sampled from E2 found in E1
Fraction of URLs sampled from E1 found in E2

Sampling is performed by randomly selecting a URL from the pages returned for
a query composed using keywords from a pre-constructed lexicon. To test whether
the URL is indexed by a particular search engine (i.e., checking), a strong query14

(which uniquely identifies the page) is constructed. The presence of the URL is
then tested in the set of pages returned. Note that the response to a strong query
may contain multiple URLs due to mirroring, multiple aliases, and so on.

A simple methodology for approximating index quality using random walks is
proposed by Henzinger et al. [1999]. The definition of quality is based on the
PageRank measure defined in Google search engine [Brin and Page 1998]. Suppose
each page on the Web is assigned a weight w scaled by the sum of all page weights.
Then, the quality w(S) and average page quality a(S) of a search engine index S is
defined as

w(S) =
∑

p∈S

R(p)

a(S) =
w(S)
|S|

where R(p) is the PageRank15 of a page p as defined in [Brin and Page 1998]. This
approach approximates the quality of a search engine index S by independently
selecting pages p1, p2 . . . , pn and testing whether each page is in S. Let I[pi ∈ S]
be 1 if pi is in S and 0 otherwise, then the estimate of w(S) is given by the fraction
of pages in the sample sequence that are in the index. That is,

w̄(S) =
1
n

n∑

i=1

I[pi ∈ S]

Consequently, one need to measure the fraction of pages in the sample sequence
that are in the index S in order to approximate the quality of S. To achieve this,
the authors pointed out that there is a requirement of two components. First, a
mechanism is required for selecting pages according to w. Second, a method for
testing whether a page is indexed by a search engine.

14A conjunctive query of k most significant keywords in the Web page. Significance is taken to
be inversely proportional to frequency in the lexicon.
15In [Henzinger et al. 1999] the (1 − d) term in the definition of PageRank is normalized by the
total number of pages on the web T .
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The authors adopted the approach used by Bharat and Broder [1998] in order
to test whether a URL is indexed by a search engine. However, selecting pages
according to a weight distribution w is significantly harder. It is also difficult to
select Web pages according to the PageRank distribution. To solve this problem,
Henzinger et al proposed a sampling algorithm that provides a quality measure close
to that which would be obtained using the PageRank distribution. This approach
is based on the assumption that one has the mean to choose a page uniformly
at random. In that case, one could perform a random walk with an equilibrium
distribution corresponding to the PageRank measure. At each step, the walk would
either jump to a random page with probability d or follow a random link with
probability 1 − d. By executing this walk for a long period of time, one could
generate a sample sequence and the pages in the sample sequence would have a
distribution close to the PageRank distribution.

As pointed out by the authors, there are two problems with the implementation of
such a random walk. First, no method is known for choosing a Web page uniformly
at random. Second, it is not clear how many steps one would have to perform in
order to remove the bias of the initial state and thereby approximate the equilibrium
distribution. To solve the first problem, the authors adopted the following approach:
the walk occasionally chooses a host uniformly at random from the set of hosts
encountered on the walk thus far, and jumps to a page chosen uniformly at random
from the set of pages discovered on that host thus far. Obviously, the equilibrium
distribution of this approach does not match the PageRank distribution, since pages
that have not been visited yet cannot be chosen, and pages on hosts with a small
number of pages are more likely to be chosen than pages on hosts with a large
number of pages. However, the authors experimentally showed [Henzinger et al.
1999] that this bias does not prevent the walk from approximately a good quality
metric that show similar behavior as PageRank.

For the second problem it is obvious that one has to start the random walk
from some initial page. Hence, this introduces a bias towards pages close to the
initial page. The authors experimentally justified that as a substantial portion of
the Web is highly connected, with reasonably short paths between pair of pages,
randomly walking over a small subgraph of the Web suffices to handle the initial
bias [Henzinger et al. 1999].

Henzinger et al provided some experimental results based on their random walks
in [1999]. First, the results demonstrate that the random walk approach does
capture the intuitive notion of quality and the weight distribution appears heavily
skewed towards pages user would consider useful. Second, the results compared
the measured quality of several search engine indexes. For instance, comparing the
quality scores of the search engine indexes according to their size, Alta Vista scored
the highest under the quality metric; Excite does extremely well for a search engine
of intermediate size. Similarly, comparing the average page quality of the search
engine indexes, the authors found out that larger search engines sometimes have
higher average page quality.
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7. INFORMATION THEORETIC

The final category of Web metrics comprises metrics that measure properties related
to information needs, production and consumption. Here we consider two properties
discussed by Pitkow and Pirolli [1997], namely, desirability and survivability of
Web documents and rate of change of Web pages as discussed by Brewington and
Cybenko [2000].

The desirability of a page is the probability that its information will be needed
in a given time interval. Given that the frequency of page access on the WWW is
approximately a negative binomial distribution, the information desirability seems
to follow the Burrell Gamma-Poisson (BGP) model which assumes that accesses
to information are Poisson events and their desirability is modeled by a Poisson
parameter. The logarithm of need probability satisfies a negative linear relationship
with the logarithm of time since last access.

Survival analysis models the probability that a particular item will be deleted at
a particular time. The survival function defined over time t is the probability that
a page survives at least upto time t. That is, for a survival time T , distribution
function F (t), and the corresponding density function f(t), the survival function
is:

S(t) = 1− F (t)
= P{T > t}

The hazard rate is defined as the probability that a page will be deleted in the next
unit of time, given that it has survived to time t:

∆(t) =
f(t)
S(t)

Brewington and Cybenko [2000] developed an exponential probabilistic model
for the times between individual web page changes based on observational data on
the rates of change for a large sample of web pages. They observed pages at a rate
of about 100,000 pages per day for period of over seven months, recording how and
when these pages have changed. About one page in a five is younger than eleven
days and half of the web’s content is younger than three months. In this context,
the age of a web page is defined as the difference between a downloaded page’s last-
modified timestamp and the time at downloading and lifetime is the time between
changes. About one page in four is older than one year and sometimes much older
than that. Inspired by this findings, the author model the changes in a single web
page as a renewal process. If g(t) is the age probability density and λ is the change
rate then it can be shown that

g(t) = λeλt

Note that the lifetime probability density is related to the age probability density
as the act of observing “the age is t units” is the same as knowing “the lifetime
is no smaller than t units”. Consequently, we can estimate a page’s lifetime PDF,
assuming an exponential distribution, using only page age observations which can
be easily obtained from the data.

The authors also modeled the age distribution for the entire web using the joint
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distribution of the exponential growth rate of web pages and the change rate λ.
Using a distribution over the inverse rate λ = 1/x and exponential growth rate
parameter ε, it can be shown that the age probability density for the entire web is
as follows:

g(t) =
∫ ∞

0

(
ε +

1
x

)
e(ε+ 1

x )tw(x)dx

Note that the authors observed that the shape of the distribution w(x) in the above
equation roughly follows Weibull distribution [Montgomery and Runger 1994], which
is given by

w(t) =
σ

δ

(
t

δ

)σ−1

e−(t/δ)σ

where δ is the scale parameter and δ is a shape parameter. The shape parameter can
be varied to change the shape peaked distribution to an exponential to a unimodal
distribution. The scale parameter adjust the mean of the distribution. Numerically,
the authors found out that the optimal values are ε = 0.00176, σ = 0.78 and
δ = 651.1.

8. CONCLUSION

In this paper we have reviewed and classified some well known Web metrics. Our
approach has been to consider these metrics in the context of improving Web con-
tent while intuitively explaining their origins and formulations. This analysis is
fundamental to modeling the phenomena that give rise to the measurements. To
our knowledge this is the first survey that incorporates an extensive treatment of
wide range of metrics and measurement functions. Nevertheless, we do not claim
this survey is complete and acknowledge any omissions. We hope that this initiative
would serve as a reference point for further evolution of new metrics for characteriz-
ing and quantifying information on the Web and developing the explanatory models
associated with them.
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