
1

Computer Games

Computer games are programs that enable a player to interact with a virtual game
environment for entertainment and fun. There are many types of computer games
available, ranging from traditional card games to more advanced video games such as
role playing games and adventure games. In this chapter, we first discuss the different
types of computer games. The architecture of computer games is also described. Finally,
the programming environment that is used to build the computer games is discussed.

1.1  Types of Computer Games

Although computer games mainly provide entertainment and fun, it also improves
hand/eye coordination and problem-solving skills. Each game has its own strategy, action
and fantasy that make each game unique and interesting. Generally, we can classify
computer games into the following types: card games, board games, puzzles, maze,
fighting, action, adventure, role playing, strategy, sports and simulation games. However,
the classification is a fuzzy concept, as many games are hybrids that fall into more than
one class. For example, Doom can be classified either as a maze game or an action game,
while Monopoly can be classified as a board game or strategy game. The different types
of computer games are briefly described as follows:

Card Games
They are computerized versions of traditional card games, or games which are essentially
like card games in that they are primarily card-based (such as solitaire). Examples of card
games include Blackjack, Bridge, Casino, Solitaire and Video Poker.

Board Games
They are adaptations of classic board games. Examples of board games include Chess,
Checkers, Backgammon, Scrabble and Monopoly.

Puzzles
Puzzle games aim at figuring out of a solution, which often involves solving enigmas,
navigation, learning how to use different tools, and the manipulating or reconfiguring of
objects. Mastermind and Tetris are examples of puzzle games.

Maze
Maze games require the successful navigation of a maze. Mazes can be viewed in
different ways. For example, they may appear in an overhead view (as in Pac-Man), or
first-person perspective (as in Doom).

Fighting   
Fighting games involve characters who fight usually hand-to-hand, in one-to-one combat
situations. The fighters are usually represented as humans or animated characters.
Fighting games include Street Fighter, Avengers and Body Slam.



2

Action
Action games involve the human player shoots at a series of opponents or objects.
Traditional action games include Space Invaders, Asteroids, etc. The recent popular
action games are Doom, Quake, Descent, Half-Life and Unreal that involve the human
player to control a character in a virtual environment to save the world from the forces of
evil by using deadly force.

Adventure
Adventure games are different from action games. They emphasize more on the story,
plot and puzzle solving rather than simply catching, shooting, capturing, or escaping. The
human player must solve puzzles while adventuring. Characters are usually able to carry
objects, such as weapons, keys, tools, etc. The settings of these games often evoke a
particular historical time period and place, such as the middle ages or Arthurian England,
or are thematically related to content-based types such as Science Fiction, Fantasy, or
Espionage. Examples of adventure games include Adventure, Zork, Haunted House,
Raiders of the Lost Ark and Superman.

Role Playing
In role playing games, players can take on different types of character. The character’s
description may include specifics such as species, race, gender, and occupation, and may
also include various abilities, such as strength and dexterity. In the virtual game world,
the player goes on quests, fights monsters and improves the capability of the character on
strength and magic. Example games include Diablo, Dungeons & Dragons and Ultima.
Many role playing games are also networked games that allow more than one player to
play and interact in the same game world over the network such as the Internet or LAN
(Local Area Network). Everquest and Ultima Online are networked role playing games.

Strategy
Strategy games emphasize the use of strategy as opposed to fast action or the use of quick
reflexes. Traditional strategy games include Chess, Monopoly, and Othello. In recent
popular strategy games such as Age of Empire, Warcraft and Close Combat, the player
can control many combat units to do battle against one or more opponents. In these
games, the player needs to resolve the problem of resource allocation, and organization of
defenses and attacks.

Sports
Sports games are adaptations of existing real-world sports or variations of them. The
most popular sports games include American Football, Baseball, Boxing, Fishing,
Soccer, Tennis, Volleyball and Golf.

Simulation
There are two types of simulation games: management simulation and training
simulation. Management simulation games refer to those games in which players must
manage the use of limited resources to build or expand some kind of community,
institution or empire. Example management simulation games include Railroad Tycoon;



3

SimAnt, and SimCity. For training simulation games, it refers to games that attempt to
simulate a realistic situation, for the purpose of training. Through the game simulation, it
helps the player to develop some physical skills, such as steering as in driving and flight
simulation games. Example training simulation games include Police Trainer, Gunship
and Flight Unlimited.

1.2  Game Design

A computer game can be just a C application program. Figure 1.1 shows the architecture
of a typical computer game. It consists of the following components: Input, Game Logic,
Graphics/Sound Support, Game Output and Networking. They are briefly described as
follows:

• Input – Users interact with the game program through input devices. Common input
devices include keyboard, mouse or joystick.

• Game Logic – It implements the game logic or game code that handles most of the
basic mechanics of game. Generally, before the game logic is developed, the story
line on how the game is played and how the players should interact should be
designed. Simple physics, networking support and animations should be planned. In
some advanced games, artificial intelligence (AI) and collision detection are also
implemented in this step.

• Graphics Rendering Engine - It has complicated code to efficiently identify and
render the game objects and background from a two-dimensional (3-D) model of the
environment. It supports transformation of objects that are moved, rotated and scaled
when required.

• Graphics/Sound Drivers – The graphics drivers receive requests from the rendering
engine to the graphics library using APIs. Windows APIs and Microsoft Foundation
Classes (MFC) provide two-dimensional (2-D) graphics support for PCs. For
supporting both 2-D and 3-D graphics, OpenGL and DirectX are the two most
popular graphics libraries. DirectX also provides libraries for music and sound
support.

• Game Output – The generated 2-D or 3-D graphics is output to the display. The
generated sound effect or music is output to the sound card.

• Networking - It provides networking protocol support that allows several users in
remote locations to play and interact in the same game environment. In a networked
game environment, a server is needed to maintain information on which the virtual
game world is supporting, communicates with game clients that are used by players to
provide them with information about the shared environment. The server also needs
to synchronize the information, and maintain the consistent scenes of the virtual game
world among the networked clients.

When a game program begins execution, it should first initialize the memory, loads
images and sound files, starts the graphics and set up variables such as scores. After
initialization, the game logic then starts. When the game session ends, housekeeping is
also needed to update sound effects, update and display scores, update data structures,
etc. The user can end this session or go back to the game logic to start the game again.



4

Figure 1.1: Computer game architecture.

1.3  Story Line

To design a successful computer game, it is important to have a good story line, together
with good 2-D and 3-D graphics, and sound effects to make the computer game seem
realistic. The story line should be first developed before we start developing a game. To
develop a story line, we need to determine the following:

• The type of the game – We need to classify the nature of the game into one of the
categories that we have discussed in Section 1.1. Different types of game have
different requirements, for example, role playing games requires realism in graphics
and sound effects, whereas some strategy games emphasize on strategy rather than
realism, and simplified display would be enough for such games.

• The goal of the game – We need to tell the player what to do to succeed in the game.
In a space war game, the goal is to shoot down as many space invaders as possible. In
a fighting game, the goal is to defeat or kill the opponent.

• The player’s performance in the game – We need to decide how to rate the players for
their performance. This should indicate how close they have achieved the goal of the
game. In general, we use a total score as a player’s performance indicator. In addition,
when the player has achieved the goal, we also need to determine how to reward the
player.

• The rules of the game – We need to tell the players how to play the game. Instructions
on how to operate the keyboard or mouse in order to play the game should be
explained.

1.4  Computer Graphics and Sound Effects

Visual effects of graphics and special sound effects are important to help establish the
story line and provide the illustrations that make the player to feel part of the game. Many
simple games rely only on 2-D graphics, which draws points, lines, and filled shapes such
as rectangle and polygons in a plane. Graphics functions provided from Windows API
(application Programming Interface) or Microsoft Foundation Class (MFC) library on
Windows environment support 2-D graphics. Advanced computer games often require to
handle 3-D objects. Microsoft DirectX supports advanced 3-D graphics on Windows
platform. Instead of just supporting the Windows platform, OpenGL supports 2-D and 3-
D graphics on both Unix and Windows environment.

Apart from 2-D and 3-D graphics, image display and manipulation is another important
technique for game development. In many games, we can use a scanner to digitize
pictures into images and used them as graphical elements in the display. We can also
manipulate the images through scaling and rotation. Animation of images is another



5

popular technique employed in many games. Windows API and MFC library provides
functions for image display and manipulation.

Sound is another important element that can make a computer game look realistic.
Windows and MFC library only support the generation of only one tone at a time.
However, with an optional sound card, most computer games can generate more complex
sound effects. To support game development, Microsoft DirectX provides the DirectX
Audio subsystem that supports music and stereo sound effects. OpenGL library does not
provide any support for sound effects.

In this section, we briefly review some of the graphics libraries including Windows API,
MFC library, DirectX and OpenGL.

Windows API and MFC Library
Windows is a very important subsystem in Microsoft's operating system. It makes
Microsoft's 32 bit Windows API available to application programs. Windows API
contains functions for Graphics Device Interface (GDI) that allows users to draw and
write in a window. The GDI functions let users display graphics in Windows using a
device context object such as a display or a printer. Device context is designed to isolate
a Windows program from the physical output device, so that when you call GDI
functions for all graphics output, it accesses the specific device driver. GDI provides
vector drawing functions that can draw graphical objects such as lines, rectangles,
ellipses and polygons; text output functions to display text in a window; bitmap
manipulation functions to display and manipulate images; and palette management
functions to exploit the colors.

MFC library provides a set of functions to control text and graphics output. It is object-
oriented and the key class is the CDC class that defines a class of device context objects.
The CDC object provides member functions for working with a device context. Similar to
Windows GDI, the member functions provide operations to support drawing of lines,
simple shapes, ellipses and polygons, drawing of text and working with fonts, colors and
palettes. In addition, member functions are also provided for working with viewport,
working with regions, mapping and clipping.

DirectX
The goal of DirectX is to make Microsoft Windows a desirable platform for game
development. It aims at shifting the burden of hardware support from the game
developers to the hardware manufacturers, who are more qualified to write drivers for
their products than the game developers. However, DirectX is not a game-creation
package. It only aids in the development of applications through the use of APIs designed
to interface directly with the computer’s hardware. If the hardware is equipped with
DirectX drivers, access can be granted to the accelerated functions, which that device
provides. If no accelerated functions exist, DirectX will emulate them. Hence, the
programmer can continue to work on a consistent interface without worrying about things
such as hardware features. If a feature does not exist on the card, it is likely that the
feature will work through DirectX’s emulation functions.



6

Thus, DirectX is a set of low-level application programming interfaces for creating
games and other high-performance multimedia applications. It includes support for 2-D
and 3-D graphics, sound effects and music, input devices, and support for networked
applications such as multiplayer games. DirectX 8 has the following major components:

• DirectX Graphics - It is a complete 3-D graphics system.
• DirectX Audio - It includes sound and music systems that provides a complete system

for implementing a dynamic soundtrack.
• DirectPlay - It is a set of tools that simplify communications across the networks, the

Internet or modems. The tools allow game players to find game sessions easily to
help manage the flow between servers and players.

• DirectInput - It provides the game developer with an interface to myriad input
devices, such as keyboards, mouse and joysticks.

OpenGL
OpenGL was developed by Silicon Graphics Inc. (SGI) as a multi-purpose, platform-
independent graphics API. The development of OpenGL has been overseen by the
OpenGL Architecture Review Board (ARB), which is made up of major graphics vendors
and manuafacturers since 1992. ARB is responsible for establishing and maintaining the
OpenGL specification. The current release of OpenGL is at version 1.3. Unlike DirectX
which is now at its eighth version, the OpenGL specification is quite stable which does
not get updated often.

OpenGL is a collection of several hundred functions providing access to all the features
offered by the graphics hardware. This includes 2-D image scaling, rendering 3-D objects
including spheres, cylinders, and disks, coloring, lighting, blending, and so on. The API
is a powerful, low-level rendering and modeling software library available on all major
platforms. It is designed for use in any graphics applications, from games to modeling to
Computer Aided Design (CAD). Many computer games such as Quake 3 have used
OpenGL for their core graphics-rendering engines.

Under Windows environment, OpenGL provides an alternative to using the Graphics
Device Interface (GDI). GDI is designed to make the graphics hardware entirely invisible
to Windows programmers. However, the layers of abstraction that help programmers
avoid dealing with device-specific issues have caused applications lacking the speed
required for games. In OpenGL, GDI can be bypassed entirely. OpenGL API can access
directly with graphics hardware.

OpenGL does not directly support any form of windowing menus or input. The OpenGL
Utility Toolkit (GLUT) is a set of support libraries available to provide basic
functionality in many areas, while remaining platform independent. For instance, GLUT-
based applications can be easily ported from Windows to Unix. GLUT is easy to use and
learn. Although it does not provide all the functionality that the operating system offers, it
works well for simple applications.



7

1.5  Programming Environment

Her, we intend to use computer games as programming examples to illustrate the
different concepts in C such as branching, looping, functions, arrays, strings, structures
and file I/O. Advanced computer games such as role playing games, adventure games and
simulation games require complex 3-D graphics to make the virtual game world realistic.
As such, only traditional, simple games that only require simple 2-D graphics such as
drawing lines, rectangles and polygons are discussed.

Windows API, MFC library and DirectX are only available in Windows platform, while
OpenGL is an open source that can be available in both Windows and Unix platforms.
Here, we have chosen OpenGL and GLUT as the graphics driver for supporting different
2-D and 3-D graphics API for the developed game programs.

Microsoft’s Visual C/C++ is used for the development of the game programs in the
Windows environment. OpenGL and GLUT are required to be installed within the
Microsoft’s Visual C/C++ environment. We will also discuss the installation of OpenGL
and GLUT for Microsoft's Visual C/C++.


