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This paper presents a new multiple-modality method for extracting semantic information from basketball video. The visual,
motion, and audio information are extracted from video to first generate some low-level video segmentation and classification.
Domain knowledge is further exploited for detecting interesting events in the basketball video. For video, both visual and motion
prediction information are utilized for shot and scene boundary detection algorithm; this will be followed by scene classification.
For audio, audio keysounds are sets of specific audio sounds related to semantic events and a classification method based on
hidden Markov model (HMM) is used for audio keysound identification. Subsequently, by analyzing the multimodal information,
the positions of potential semantic events, such as “foul” and “shot at the basket,” are located with additional domain knowledge.
Finally, a video annotation is generated according to MPEG-7 multimedia description schemes (MDSs). Experimental results

demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

In recent years, with the remarkable increase of video data
generated and distributed through networks, there is an ev-
ident need to develop an intelligent video browsing and in-
dexing system. To build such a system and facilitate content-
based video accessing, automatic semantic extraction is a
prerequisite and a challenge to multimedia-understanding
systems. Therefore, semantic video analysis and annotation
have received much interest and attracted research efforts.
The previous research works [1-3] attempt to extract the se-
mantics from visual and motion information. However, the
investigation on extracting the semantic information from
multimodal data is still very limited. In this paper, we de-
velop tools based on visual, motion, and audio information
for analyzing and annotating basketball video using both
low-level features and domain knowledge. In particular, we
show that the multimodal-based approach can generate re-
liable annotation for basketball video which cannot be suc-
cessfully achieved using a single mode. We address the prob-
lem of semantic basketball video analysis and annotation for
MPEG compressed videos using multimodal information.
The problem has three related aspects: (1) analyze the struc-
ture of the basketball video, (2) locate the potential posi-
tions where an interesting event occurs, and (3) represent the
results in an annotation file utilizing standardized descrip-
tions. Since the semantic understanding of video content is

highly dependent on the utilization of contextual informa-
tion and domain rules, a basketball video analysis and an-
notation method is proposed based on visual, motion, and
audio information as well as domain-specific knowledge.
Generally, the processing of sports video includes the fol-
lowing areas: analysis of the structure of video, detection of
important events or activities, following a specific player’s
actions, and generating the summary. Video analysis aims
to extract such semantic information within a video au-
tomatically. With such semantics, represented in terms of
high-level descriptors, indexing, searching, and retrieving
the video content can be improved. From the point of view of
video processing using visual and motion information, sev-
eral sports video analysis and modeling methods have been
investigated. In [4], low-level soccer video processing algo-
rithms and high-level event and object detection algorithms
are utilized for automatic, real-time soccer video analysis and
summarization. In [5], color and motion features are used
for dominant scene clustering and event detection. How-
ever, the above methods do not take the motion information
which is an important cue for sports video analysis into full
consideration. In [6], the authors utilize the motion infor-
mation for describing individual video object, but object seg-
mentation for complex scenes like sports video is still a chal-
lenging problem. Thus, we propose an approach to differen-
tiate camera motion and object motion from the total mo-
tion without object segmentation. In the proposed method,
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a modified scene detection algorithm based on both visual
and motion prediction information is introduced. New mo-
tion features are proposed to capture the total motion, cam-
era motion, and object motion, respectively. The camera mo-
tion is estimated from the motion vectors in the compressed
video using an iterative algorithm with robust outlier rejec-
tion. The reasons for using motion features are twofold: (1)
motion information has strong relationship with semantic
event, that is, different events exhibit different motion pat-
terns; (2) different events can be identified by motion fea-
tures within a game and the video model generated by an-
alyzing motion features is flexible enough to be applied in
other classes of sports videos.

At the same time, audio information, which is an impor-
tant type of media and also a significant part of video, has
been realized as an important cue for semantics extraction.
Most of the existing works try to employ audio-visual com-
pensation to solve some problems which cannot be success-
fully solved only by visual analysis [7-10]. Nepal et al. [9]
employed heuristic rules to combine crowd cheer, score dis-
play, and change in motion direction for detecting “Goal”
segments in basketball videos. Han et al. [8] used a maxi-
mum entropy method to integrate image, audio, and speech
cues to detect and classify highlights from baseball video. An
event detection scheme based on the integration of visual and
auditory modalities was proposed in [7, 10]. Recently, sev-
eral frameworks [11, 12] for video indexing which support
the multimodal features have been reported. However, they
do not provide detailed descriptions about the implemen-
tation of multimodal system. To improve the reliability and
efficiency in video content analysis, visual and auditory in-
tegration methods have been widely researched. Audio con-
tent analysis is the necessary step for visual and auditory inte-
gration. Effective audio analysis techniques can provide con-
vincing results. In consideration of computational efficiency,
some research efforts have been done for pure audio con-
tent analysis [13, 14]. Rui et al. [13] presented baseball high-
light extraction methods based on excited audio segments
detection. Game-specific audio sounds, such as whistling, ex-
cited audience sounds, and commentator speech, were used
to detect soccer events in [14]. In this paper, we propose a
new classification method based on hidden Markov model
(HMM) to substitute our earlier methods [7, 10, 14] in which
we used hierarchical support vector machine (SVM) to iden-
tify audio keysounds. The audio signals were segmented into
20-millisecond frames for frame-based identification while
the audio signals are continuous time series signals rich in
context information. By using SVM, we did not take into
account the contextual information which is significant for
time series classification. HMM is a statistical model of se-
quential data that has been successfully used in many appli-
cations including artificial intelligence, pattern recognition,
speech recognition, and modeling of biological sequences
[15]. Recently, HMM were introduced to sports video analy-
sis domain [16-19]. Assfalg et al. [16] used HMM to model
different events, where states were used to represent different
camera motion patterns. In [18], Xie et al. tried to model
the stochastic structures of play and break in soccer game

with a set of HMMs in a hierarchical way. Dynamic program-
ming techniques were used to obtain the maximum likeli-
hood play/break segmentation of the soccer video sequence
at the symbol level. These works demonstrated that HMM is
an effective and efficient tool to represent continuous-time
signals and discover structures in video content. However, to
achieve detailed semantic basketball video analysis and an-
notation, we have combined the audio and motion features
with other low-level features like color and texture.

Before ending this introduction, we list our main con-
tributions: (1) motion-based scene boundary detection, (2)
basketball scene classification based on visual and motion in-
formation, (3) HMM-based audio keysound detection, (4)
high-level semantic inference and multimodal event detec-
tion, and (5) MPEG-7 standard compliant output for bas-
ketball video annotation. The paper is organized as follows.
Section 2 describes video and audio processing for basket-
ball video analysis and annotation, respectively. Section 3
presents the experimental results that quantify the perfor-
mance of the proposed approach. Finally, conclusions are
drawn in Section 4.

2. MULTIMODAL BASKETBALL VIDEO
ANALYSIS AND ANNOTATION

The proposed multimodal video analysis consists of four
components: (A) video segmentation and classification us-
ing visual and motion features, (B) audio keysound extrac-
tion based on HMM, (C) high-level semantic extraction and
event detection utilizing multimodal information, and (D)
annotation file generation. We explain the above compo-
nents in the following subsections.

2.1. Video analysis utilizing visual
and motion features

The proposed video analysis algorithm utilizing visual and
motion features includes two stages: (1) shot and scene
boundary detection and (2) scene classification. We will dis-
cuss these two stages in this subsection.

2.1.1. Shot and scene boundary detections

The shot and scene boundary detection is the initial step in
our video analysis algorithm. Shot is the physical boundary
of video, while scene is the semantic boundary of it [20, 21].
Although there is a rich literature of algorithms for detect-
ing video shot and scene boundaries, it is still a challenging
problem for basketball video. As mentioned above, scene can
be viewed as a semantic unit. Unlike other types of videos,
for example, movie, in which a scene is a group of shots
which constitute the semantic unit, the scene in basketball
video might be a segment of a shot. In basketball video, a sin-
gle video shot could be a court-view camera that tracks the
players or basketball for a significant amount of time with-
out cuts or transitions but with plenty of panning and some
zooming. Generally, one or many meaningful semantics, like
actions or events, for example, shot at the basket or foul, are
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contained in such kinds of shots. Since it is hard to extract
the detailed information for these actions or events from a
single long camera shot, it is necessary to further partition
the shot into scenes. Therefore, in current implementation,
we segment a basketball video into shots first, and then fur-
ther segment a shot into several scenes. After analyzing the
structure of the long camera shot, we found that the seman-
tics in the shot have strong relationship with the global mo-
tion associated with the movement of the camera. For ex-
ample, actions such as shot and foul will occur most likely
when the camera motion is slow, while the fast camera mo-
tion often indicates offensive and defensive exchange. Thus,
we propose a video temporal segmentation algorithm based
on color and motion prediction information to detect shot
and scene boundaries simultaneously.

Use of motion prediction information in MPEG video to
detect the shot boundary has been proposed in [22]. Motion
vectors are divided into four types and the number of each
type of macroblocks (MBs) in a frame is used to indicate
the similarity/dissimilarity of that frame with its neighbor-
ing frames. In our current algorithm, we extend the method
in [22] to combine a color-based shot boundary detection
method to detect the shot/scene boundaries in basketball
videos simultaneously.

In the first step, we use the difference between the color
histograms of the neighboring frames, Dy, as the feature to
detect shot boundaries, which is defined as

SN [ Ha(i) = Haoa ()]
D= = idth - height =

where N is the number of bins in the color histogram, H,
and H,_; are the color histograms of frames n and n — 1,
respectively, width - height denotes the pixel numbers in each
frame, and Ty is the threshold for detecting an isolated sharp
peak in a series of discontinuity values of Dj,.

Subsequently, to detect the scene boundary accurately, we
modified the original algorithm defined in [22]. Firstly, we
modified the definition of frame dissimilarity ratio (FDR) to
provide a precise scene boundary detection. The new FDR is
defined as

Fw,_

L for I-frame,

Bln—l

I

FDR,, = ﬁ for P-frame, (2)
n
Fw, — Bk
M for B-frame,
Bi,

where In, Fw, Bk, and Bi represent the number of the MBs
for intracoded, forward predicted, backward predicted, and
bidirectionally predicted frames, respectively, and n denotes
the frame number. We modified the FDR by (1) creating an
expression of FDR for P-frame to provide more accurate fea-
ture description when the boundary is located at P-frames,
and (2) modifying the expression of FDR for B-frame to
eliminate false detection if Fw, = Bk, and they are all much
larger than Bi,. Consider the following frame structure in an

MPEG bit stream: .. .11 B2 B3 B4 P5 B6 B7 Bg P9. ... If the
shot change takes place at B3, FDRs for B, B3, and B4 will be
very high. In order to determine the exact location of the shot
boundary, we observe that B, is mostly forward predicted
while B3 and B4 are mostly backward predicted. Thus, at the
shot boundary there is a change in the dominant MB type of
the B-frame. So, we define a parameter called dominant MB
change (DMBC,) for frame n as

-

0 if (Bky_1 — Fw,_1) >0,
(Bkyt1 — Fwyi1) <0 for I-frame,
1 otherwise for I-frame,
DMBC, — - 1 for P-frame,
"o if(Bk, - Fw,)
% (Bk,_1 — Fw,_1) >0  for B-frame,
1 if (Bk, — Fw,)
% (Bky—, — Fw,_1) <0  for B-frame.

(3)
Thus, the DMBC acts a filter to locate the scene boundary
precisely.

2.1.2.  Scene classification

We classify basketball scenes into six classes: (1) fast-motion
court-view scenes, (2) slow-motion court-view scenes, (3)
penalty scenes, (4) in-court medium scenes, (5) out-of-court
or close-up scenes, and (6) bird-view scenes. The definitions
and characteristics of each class are given below.

(i) Fast-motion court-view scene. This scene displays a
global view of the court and has obvious global mo-
tion; hence, this type of scene can serve to differenti-
ate the offensive and defensive exchange between the
teams.

(ii) Slow-motion court-view scene. A scene that displays the
global view of the court and has insignificant global
motion; hence, this type of scene can be used to locate
the interesting events.

(iii) Penalty scene. A scene that shows the taking of a
penalty under the rim.

(iv) In-court medium scene. A scene that focuses on a whole
player or players in a cluster. Generally, it is a zoomed-
in court-view scene. In most cases, a replay is shown as
in-court medium scene.

(vi) Out-of-court or close-up scene. Such scenes display the
audience, coach, and close-ups. These types of scenes
usually indicate a break in the match or highlight the
player who has just executed an exciting event.

(vii) Bird-view scene. A scene that shows a global view of the
whole gymnasium and is usually taken from a station-
ary camera.

Figure 1 shows an example each of the six typical scenes. A
series of texture and motion features are extracted for classi-
tying a scene into one of the above six classes. In our initial
experiment, the texture features were extracted from the key
frame of a scene, which is an I-frame located at the centre of
the scene. Two texture features, run-length feature [23] and
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FiGure 1: Example of typical scenes. (a) Fast-motion court-view scene. (b) Slow-motion court-view scene. (c) Penalty scene. (d) In-court

medium scene. (e) Out-of-court or close-up scene. (f) Bird-view scene.

co-occurrence feature [24], are generated from the key frame.
The run-length feature vector has four dimensions, namely,
long-run emphasis, shot-run emphasis, run-length entropy,
and run-length energy. The co-occurrence feature vector has
three dimensions—contrast, energy, and entropy.

The second kind of features are motion features. In or-
der to differentiate the camera motion and object motion
from the total motion, we need to estimate the global mo-
tion. Model-based motion estimation has been reported ex-
tensively in literature [25]. In [26], the affine parameter es-
timation problem is formulated as a nonlinear minimization
problem which is solved using an iterative algorithm. The ob-
jective function to be minimized is the sum of square differ-
ence between the original image and the warped image by the
affine transform parameters. This method is semiautomatic
because the user needs to identify at least three correspond-
ing feature points in two frames.

Our global motion estimation algorithm is an iterative al-
gorithm with robust outlier rejection. The affine parameters
are chosen so as to fit the block-based motion vector between
two frames which are available from the MPEG compressed
video stream. We model the global motion as

mvx; = p1xi + p2yi + ps3,

(4)
mvy; = paXi+ psyi+ pe,

where mvx; and mvy; are the components of the motion vec-

tor for a particular macroblock (MB), x; and y; are the co-

ordinates of the center of the MB, and p;’s are the affine pa-

rameters that we call motion vector affine parameters.

We define a coordinate row vector ¢; for block i as ¢; =
(xi, yi» 1). Next, the coordinate matrix C is formed by verti-
cally concatenating the row vectors ¢; for all blocks which are
not marked as outliers. C is, then, an N X 3 matrix, where N
is the number of macroblocks not marked as outliers. The
vectors Vy and Vy are formed by collecting all the mvx; and
mvy;, respectively, for the MBs not marked as outliers. Lastly,
the motion vector affine parameters are grouped together as
px = (1, P2, p3)T and py = (P4, ps, ps)”. From these defini-
tions, we can write Vy = Cpy and Vy, = Cp, which are then
solved for px and py using the pseudoinverse matrix of C:

px = (CTC)'CTVy,

5
p, = (CTC)"'CTV,. )

After each iteration, we calculate the residual motion vec-
tor R,,, as the absolute difference between the actual mo-
tion vector and the estimated motion vector, that is, R, =
[(mvx; — mvx;) — (mvy; — mvy;)|, where mvx; and mvy;
are the estimated components of the motion vector for mac-
roblock i. We propose an adaptive threshold mechanism to
reject outliers in the residual motion vectors. The threshold
T is decided by comparing the mean of the residual motion
vectors over all MBs with a small constant & and choosing
the maximum of the two, that is, T = max(mean (R,uy,), ®).
The role of « is to prevent the rejection of a large number of
motion vectors if the mean of the residuals is very small. We
choose « to be equal to 0.5. The algorithm is initialized by
labeling all macroblocks as inliers.

Having determined the frame-by-frame global motion,
we now describe our motion features for shot classification.
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The first class of motion features is global camera motion
description that includes camera horizontal motion (CHD),
camera vertical motion (CVD), and camera zoom (CZD). The
above features are defined as

_ S Dpsi
CHD = N
N .

CVD = —Z";gp o, (©6)

N
it Psi
czp = Y Pt Psi
i 2

where N is the number of frames included in a scene.

The second class of motion features are total motion ma-
trix, object motion matrix, and camera motion matrix, which
describe the amounts of total motion, object motion, and
camera motion for each macroblock. These features are de-
fined as

tmx; = |mvx; |, tmy; = |mvy;|,

cmx; = min (| mvx; |, |gmvxi|),

cmy; = min (|mvy; |, |gmvyi|), (7)
omx; = max (0, |mvx;| — |gmvx;|),

omy; = max (0, |mvy;| — |gmvyi|),

where gmv (denoting gmvx;, gmvy;) is the global motion
vector filed that is constructed at each macroblock with its
centroid coordinates. Since the estimated “|gmv|” may be
larger than “|mv|” (denoting mvx;, mvy;), we use cm (denot-
ing cmx;, cmy;) as a minimum of |mv| and |gmv/|. Similarly,
if |gmv| is larger than |mv/|, the om (denoting omx;, omy;)
may be negative since om = tm — cm. However, the amount
of motion should not be negative. Therefore, we choose the
maximum of either 0 or the difference. Then we accumulate
tm, om, and cm across a shot. Total motion (T M), camera
motion (CM), and object motion (OM) for a scene, k, with
n number of frames, and r MVs for each frame, are defined
as

n r
TMX; = Z Z tmxi;,
I=1i=1

TMY = Z Z tmyi,

I=1i=1

n T
CMX; = Z Z cmxy;,
I=1i=1

CMYi = > > cmyy;,

I=1i=1

(8)

n r
OMXy = > > omaxy;,
I=1i=1

OMY} = Z Z omyi,

I=1i=1

where TM (denoting TM Xy, TMYy), CM (denoting CM X,
CMYy), and OM (denoting OMXj, OMY}) can be repre-
sented as a matrix of r products. Finally, the projection values

Basketball video

Others

Court view  Bird view

In-court  Qut-of-court

medium oy close-up
view scene scene

Fast-motion Slow-motion Penalty

court-view  court-view scene
scene scene

F1GURE 2: The structure of hierarchical SVM.

of TM, CM, and OM on the horizontal and vertical direc-
tions are used as feature vectors in our experiment.

A hierarchical SVM classifier is built for basketball scene
classification. The structure of the classifier is shown in
Figure 2. The basketball video scenes were classified into
three classes, court view, bird view, and others utilizing the
texture-based features at the first run of the SVM classifier.
The class courts view was further divided into three classes,
fast-motion court-view scene, slow-motion court-view scene,
and penalty scene, based on the global camera motion infor-
mation and TM, CM, OM matrix. Lastly, the class others was
divided into two classes, in-court medium scene and out-of-
court or close-up scene based on the texture information and
TM, CM, OM matrix.

2.2. Audio keysound detection utilizing
hidden Markov models

Audio keysounds are defined as some specific audio sounds
which have strong hints to interesting events. Especially
in sports video, some game-specific audio sounds (e.g.,
whistling, excited commentator speech, etc.) have strong re-
lationships with the actions of players, referees, commenta-
tors, and audience. These audio sounds may take place in the
presence of interesting events as listed in Table 1. Generally,
excited commentator speech and excited audience sounds
play important roles in highlight detection of sports video.
Other keysounds may be specific to a kind of sports game.
Audio signal exhibits the consecutive changes in values over
a period of time, where variables may be predicted from
earlier values. That is, strong context exists. In considera-
tion of the success of HMM in speech recognition, we pro-
pose our HMM-based audio keysounds detection system.
The proposed system includes three stages, which are feature
extraction, data preparation, and HMM learning, as shown
in Figure 3. As illustrated in Figure 3, selected low-level fea-
tures are firstly extracted from audio streams and tokens are
added to create observation vectors. These data are then sep-
arated into two sets for training and testing. After that, HMM
is trained then reestimated by using dynamic programming.
Finally, according to maximum posterior probability, the au-
dio keysound with the largest probability is selected to label
the corresponding testing data. We next introduce the details
of the proposed system in the following.

2.2.1. Feature extraction

We segment audio signal at 20 milliseconds per frame
which is the basic unit for feature extraction. Mel-frequency
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TasLE 1: Audio keysounds’ relationship to potential events.

Sports Audio keysounds Potential events
Applause Score
Tennis Commentator speech At the end (or the beginning) of a point
Silence Within a point
Hitting ball Serve, ace, or return
I Start of free kick, penalty kick, or corner kick,
Long whistling .
game start or end, offside
Double whistling Foul
Soccer Multiwhistling Referee reminding
Excited commentator speech or excited audience sound Goal or shot
Plain commentator speech or plain audience sound Normal
Whistling Foul
Basketball Ball. hitting backboard or basket . . Shot .
Excited commentator speech or excited audience sounds Fast break, drive, or score
Plain commentator speech or plain audience sound Normal

[ mMFCC_ ] —— ; :
e | e L e
: ¢ :| sequence : :
Audio :E [ Delta |: : : :
S0l Rcceloration ]| Teting Dynemic 1,
: [Acceleration |: | . .7 probabilities
: : quence programming | :
Token
© Observation ' Data HMM
vector : preparation

FIGURE 3: Proposed audio keysounds detection system.

cepstral coefficient (MFCC) and energy are selected as the
low-level audio features as they are successfully used in
speech recognition and further proved to be efficient for au-
dio keysound detection in [14]. Delta and acceleration are
further used to accentuate signal temporal characters for
HMM [27].

Mel-frequency cepstral coefficient

The mel-frequency cepstrum is highly effective in audio

recognition and in modeling the subjective pitch and fre-

quency content of audio signals. Mel scale is calculated as
f

Mel(f) = 2595 x log,, (1 + %)

where Mel(f) is the logarithmic scale of the normal fre-
quency scale f. Mel scale has a constant mel-frequency in-
terval, and covers the frequency range of 0-20050 Hz. The
mel-frequency cepstral coefficients (MFCCs) are computed
from the FFT power coefficients which are filtered by a tri-
angular bandpass filter bank. The filter bank consists of 12
triangular filters. The MFCCs are calculated as

)

K

C, = 2 Z (log Sk) cos [n(k—O.S)E], n=12,...,N,
k& k

(10)

where Sg(k = 1,2,...,K) is the output of the filter banks and
N is total number of samples in a 20-millisecond audio unit.

Energy

The energy measures amplitude variations of the speech sig-
nal. The energy is computed as the log of the signal energy,
that is, for audio samples s,, where {n = 1,2,...,N}:

N
E=1log > s,% (11)
n=1

Delta and acceleration

Delta and acceleration effectively increase the state definition
by including first- and second-order memory of past states.
The delta and acceleration coefficients are computed using
the following simple formula (# means the tth coefficient in
feature vector):

5(Ct) =C —Cp1; ACC (Ct) = 5(Ct) - 5(Ct—1)~ (12)

2.2.2.  Our proposed hidden Markov model

As for the HMM generation, we need to determine the
HMM topology and statistical parameters. In this research,
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FIGURE 4: The left-right HMM with 5 states.

HMM for
commentator speech

HMM for excited
commentator speech
Observation . HMMs for audio Likelihood Sequence
vectors - keysounds comparison label
HMM for excited

audience sounds

HMM for audience
sounds

FiGURE 5: The HMM overview structure.

we choose the typical left-right HMM structure, as shown in
Figure 4, where S = {s,...,ss} are five states; A = {a;;} are
the state transition probabilities; and B = {b;(vx)} are the
observation probability density functions which are repre-
sented by a mixture Gaussian density. In our case, each audio
frame is regarded as one observation. Weuse A = (][, A, B) to
denote all the parameters, where [ [ = {7;} are the initial state
probabilities. In the training stage, observation vectors are
separated into classes to estimate the initial value of B firstly.
Then, to maximize the probability of generating an observed
sequence, that is, to find A* = argmax; p(O | 1), we use
Baum-Welch algorithm to adjust the parameters of model A.
The recognition stage is shown in Figure 5, where each audio
keysound is associated with a pretrained HMM. For each in-
coming audio sample sequence A = {fi, f>,..., fi} contain-
ing f audio frames, the resulting audio features from each
frame form the observation vectors. Later, the likelihood of
every HMM is computed. The audio sequence A is recog-
nized as keysound k, if P(O | Ax) = max; P(O | A;) [27]. In
the next step, we are concerned about two issues. First is the
number of states that are suitable for an HMM. The other is
the HMM sample length selection. We will discuss these two
issues in Section 3.

2.3. Multimodal structure analysis
and event detection

Utilizing the video and audio analysis algorithms described
earlier, we have achieved high-level scene classification and
audio keysound detection. The next step is to combine the vi-
sual information and audio keysounds to infer a higher level

of semantic understanding, for example, detecting the posi-
tions of interesting events. These interesting events inside the
basketball game include foul, steal ball, shot at the basket,
and so forth. The goal of proposed event detection program
is to locate the positions of the events and label a scene with
an event.

As mentioned in Section 2.2, the audio keysound detec-
tion algorithm can detect several audio keysounds that in-
dicate the potential events. However, we cannot locate all
events precisely by only using audio information. For ex-
ample, we cannot distinguish the whistling due to break or
foul if only audio information is provided. At same time, al-
though the types and orders of changes in the scenes gener-
ated by scene classification algorithm provide us with a good
understanding of the structure of a basketball video, it is still
very hard to detect the events using only visual features. In
order to locate the exact scenes where events occur, we pro-
pose a multimodal event detection mechanism to get bene-
fits from both visual and audio information. From the do-
main knowledge of the basketball game, we know that the
locations of events have strong relationships with the camera
movement and position. The global camera motion provides
useful information for event detection, because the camera
tracks the players or basketball during the game. Most of the
events are located at the scenes with small camera motion.
Also, the amount of camera motion in the next scene indi-
cates what kind of events may occur in the current scene. To
measure the amount of camera motion inside a scene pre-
cisely, we define a feature called modified accumulated cam-
era motion in time (MACM) as the product of accumulated
camera motion in time (ACM) and dominant camera mo-
tion filter (DCMF), that is,

MACM = ACM x DCMF, (13)
where,

ACM

_ |(CHD - CVD) - eV . D,
" | (CHD + CVD) - e €ZD . D,

if CHD - CVD > 0,
if CHD - CVD < 0,
(14)

where the D; is the time duration for a single scene, and
DCMEF is used to filter out the conflict when two neighbor-
ing scenes have the same camera motion direction within a
single shot:

1 The first large camera motion
scene in the long court-view shot,
1 if (ACMPrevious)
* (ACMeurrent) < 0,
0 All out-of court

view scenes and others,

DCMF = - (15)

L

where ACM,revious indicates the previous detected large cam-
era motion scene. If MACM is above the T,, this scene has
large camera motion. Based on the above definitions, we can
classify scenes into two groups. We name a scene as offensive
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F1GURE 6: Example for ODI detection and event detection.

and defensive exchange interval (ODI) scene, if it contains
large camera motion (MACM > Ty). Otherwise, we call it a
non-ODI scene. Based on the sign of MACM value, two kinds
of ODI scenes can be distinguished: ODI scene with left-to-
right camera motion and ODI scene with right-to-left cam-
era motion. In basketball video, some ODI scenes may not
be captured by the camera because camera might focus on
a single player when he/she is on the move. To detect these
noncaptured ODI scenes, the detected ODI scene sequence
is refined further. The refinement is based on the observa-
tion that left-to-right change and right-to-left change should
alternate in the video. We assign a scene to be an ODI scene
if there is a court-view scene between two scenes that have
the same camera motion direction; otherwise we assign the
second of the two scenes as non-ODI scene.

After ODI scene detection, we describe how to locate the
positions of events using ODI information. Consider two
categories of events: (1) shot at the basket, steal ball, and offen-
sive foul and (2) defensive foul. For the events in category (1),
they occur followed by an ODI scene and for the event in cat-
egory (2), it occurs followed by a non-ODI scene. Therefore,
we define these two categories of events as events followed by
ODI scene and events followed by non-ODI scene. Since we
have given how to detect ODI scene, locating the position for
these two kinds of events can be achieved. Figure 6 shows an
example of ODI detection. In the figure, the hashed blocks
represent ODI scenes and the black squares or round dots
represent the points where events occur. For example, event
foul is an event occurring before the ODI scene, so we place
a round dot on scene boundaries followed by a ODI scene.
However, to present the time interval of one event, we use
the scene before the boundary where event occurs to repre-
sent the event. After locating the potential positions of events
using visual information, it is easy to combine the audio in-
formation to finally label a scene with an event. An algorithm
for detection of “foul” and “shot at the basket” based on vi-
sual, audio information and some heuristic decision rules

Input: Shot classification, ODI information and audio
keysound
Output: The event label “foul” and “shot at the basket” for
a scenes
(1) if The current scene is “court-view and non-ODI
scene” or (the current scene is ODI scene and it’s
neighbor scenes are non-court view scene) then
(2) if The audio keysound “whistling” has been detected
and it does not occur at the beginning of the scene
then
(3)  if The next “court view scene” is an ODI scene then
(4) Event “offensive foul” detected
(5) elseif The “whistling” occurs followed by non-ODI
scene or penalty scene then
(6) Event “defensive foul” detected
(7)  endif
(8) elseif The audio keysound “excited sound” has been
detected in this scene and the next “court view
scene is an ODI scene. then
9) Event “shot at the basket” detected
(10)  endif
(11) endif

ArLGorITHM 1: Event detection.

derived from the domain knowledge of basketball game is
shown in Algorithm 1.

2.4. MPEG-7 compliant annotation file generation

The objective of designing a video analysis and annotation
system is to facilitate content-based search and retrieval of
video entities. Thus, we need to store the results of process-
ing and information in a highly structured format, which
enables the annotation information to be queried and re-
trieved easily. MPEG-7 is a new multimedia standard, de-
signed for describing multimedia content by providing a
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rich set of standardized descriptors and description schemas.
The objective of the MPEG-7 standard is to allow interop-
erable searching, indexing, filtering, and access of multime-
dia content by enabling interoperability among devices that
deal with multimedia content description [28]. The multi-
media description schemes (MDSs) expand on the MPEG-
7 descriptor by combining descriptors and other descrip-
tion schemes to provide description for both the immutable
metadata and the content of audio, visual, and textual data.
MPEG-7 MDSs consist of the following areas: basic ele-
ments, content description, content management, content
organization, navigation, and access. We utilize the descrip-
tion schemes (DSs) of content management and description
provided by MPEG-7 MDSs to represent the results of the
proposed semantic basketball video analysis and annotation
system. Currently, the results for video analysis, event de-
tection, and audio keysounds detection are stored in two
XML files based on different temporal decompositions of the
video. The first file is utilized to store the video analysis and
event detection information. There are two types of descrip-
tors stored in this XML file, in which one type is manually
annotated information and the other is automatically gener-
ated information. The manually annotated information in-
cludes the following.

(i) CreationInformation DS. That describes creation and
production of the multimedia content. CreationInfor-
mation DS is composed of one Creation DS which
contains information about the creation and produc-
tion of the content not perceived in the content, such
as author, director, and characters.

(ii) TextAnnotation DS: This DS contains a FreeTextAnno-
tation DS which provides a free text annotation for the
video contents.

The automatically generated information includes the fol-
lowing.

(i) MediaLocator DS. It contains a MediaUri DS to de-
scribe the location of external media data.

(ii) MediaTime DS. This DS is utilized to specify the time
intervals of a video segment. It contains MediaTime-
Point DS and MediaDuration DS which describe a
time point using Gregorian date and day time, and du-
ration of a time period according to days and day time,
respectively. By utilizing these two DSs, the location of
one video segment in the whole video can be specified
by time.

(iii) AudioVisual DS. This DS is utilized to describe the
temporal decomposition of a video entity. To provide
a highly structured description for the video contents,
the AudioVisualSegment DS is used to describe seg-
ments of audio-visual content and their attributes and
structural decompositions. The structure of the con-
tent description can be described as follows: one Au-
dioVisual DS represents one audio-visual entity and
contains one TemporalDecomposition DS, in which
it contains several AudioVisualSegment DSs to repre-
sent the shots composing an audiovisual entity. Sim-
ilarly, under each AudioVisualSegment DS describing

the shot, there is a TemporalDecomposition DS also,
and the AudioVisualSegment DS under this level of
TemporalDecomposition DS describes the temporal
decomposition of scenes.

In each TemporalDecomposition DS some attributes are gen-
erated automatically to describe a shot or scene; they are as
follows.

(i) MediaTime DS. It specifies the time intervals of a video
segment.

(ii) Term DS. It contains a termID tag to describe the scene
classification information. The termID is defined in
a ClassificationScheme DS based on the classification
rules described in Section 2.1.2.

(iii) Event DS. It describes an event, which is a semantic
activity that takes place at a particular time or in a par-
ticular location.

(iv) FreeTextAnnotation DS. It is utilized to describe ODI
in a scene.

By using the DSs described above, all results of video
analysis and event detection can be represented in a stan-
dardized and highly structured format. The second XML file
is used to describe the information of audio keysounds detec-
tion. The difference between the two XML files is that they
have different temporal decompositions. In the first XML
file, the temporal decomposition is based on the results of
shot and scene detection, and in the second XML file, the
temporal decomposition is based on the intervals of audio
keysounds. Since audio-visual segments in our current sys-
tem have fixed time intervals, we calculate the time duration
of a keysound by summing up the time for the neighboring
segments labelled as having the same audio keysound before
generating the annotation file. That audio keysound infor-
mation is then represented using MPEG-7 DS in a tree struc-
ture similar to the XML file described earlier.

3. EXPERIMENTAL RESULT

In this section, we present the results of our algorithm for
shot/scene detection, scene classification, audio keysound
detection, and event detection. The test videos are two bas-
ketball videos from different matches with a total length of
fifty minutes. The frame structure of the MPEG compressed
test videos follows the standard GOP.

3.1. Video shot and scene detection

The performance of the algorithm for hard-cut boundaries
and gradual transitions is tabulated together. In the test
videos, wipes and dissolves were utilized in the replay and
close-up shot. Overall, the algorithm achieves 84.3% recall
and 97.5% precision rates over 286 shot boundaries. We got a
low recall rate since our color-based shot detection algorithm
could not detect the gradual transitions accurately. However,
the scene detection algorithm helps to reduce the nondetec-
tion of gradual transitions. Since scene detection is a very im-
portant stage for generating the data which are utilized in the
scene classification and semantic video analysis algorithms,
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TasLE 2: Classification rates for level-1 and level-2 classes.

Classes Correct classification rate (%)
Court view 95.2
Bird view 99.8
Others 95.0
Penalty scene 83.4
Slow-motion court-view scene 87.0
Fast-motion court-view scene 91.3
In-court medium view scene 88.0
Out-of-court or close-up scene 88.2

the results of these subsequent algorithms can be used to
measure the performance of scene boundary detection indi-
rectly.

3.2. Video scene classification

Currently, a two-class SVM classifier was implemented to
handle the scene classification. For the case of multiple-class
classification, the classification rate of target class versus oth-
ers is used as the experimental results. Table 2 shows the re-
sults of scene classifications for the level-1 and level-2 scenes
over a total of 1053 scenes. In the experiments, half of data
set were used as training set and the remainder were used as
test set.

3.3. Audio keysound detection

Excited commentator speech and excited audience sounds
directly correspond to sports highlight which attracts audi-
ence’s interests mostly. Compared with whistling and hit-
ting the ball, the recognition of these two keysounds is quite
challenging as excited parts always interlace with plain parts.
Therefore, in our experiments, we concentrate on excited
commentator speech and excited audience sounds.

The audio samples come from 40 minutes of basketball
game. They are collected with 44.1 kHz sample rate, stereo
channels, and 16 bits per sample. We used two third of the
samples for training and one third for testing. For the HMM
learning, different number of states may model different
states transition process, which could influence the results.
Moreover, as each kind of audio keysound has its own dura-
tion, we need to choose appropriate sample length for train-
ing different keysounds. Therefore, we conduct some exper-
iments to compare HMM structures with various states and
change HMM sample length to achieve the best performance
of our proposed audio keysound detection system.

HMM with different hidden states

Table 3 shows the precision and recall rates for each audio
keysound as the number of states are changed from 3 to 5. We
find that 3-state HMM is good while 4-state HMM provides
better performance for excited commentator. In some sports
games, when the environment is very noisy, we cannot detect

TABLE 3: Performance of various HMMs with different states for
audio keysound detection.

Audio keysounds States number Recall (%) Precision (%)
5 states 95.74 95.74
Audience 4 states 95.74 95.74
3 states 100 100
5 states 100 91.07
Commentator 4 states 98.04 94.34
3 states 100 92.73
5 states 85.71 85.71
Excited audience 4 states 85.71 85.71
3 states 100 100
5 states 66.67 100
Excited commentator > states 66.67 100
4 states 86.67 100
3 states 73.33 100

sports highlights only by excited audience sounds while ex-
cited commentator speech is able to provide the most im-
portant cues. Therefore, higher performance of excited com-
mentator speech identification is necessary. Based on the
above criteria and performance results, we thus use the 4-
state HMM to generate audio keysounds.

HMM with different sample lengths

Observation of real sports games reveals that the short-
est keysound whistling lasts slightly longer than 0.2-second.
Therefore, we segment audio signals into 0.2-second samples
for whistling detection. However, other audio keysounds,
such as commentator speech, excited audience sounds and
so forth, last much longer than 0.2 second. Table 4 lists the
results of different sample lengths for several types of au-
dio keysounds. The results show that 1-second sample length
is much better than 0.2 second for audience sounds and
commentator-speech-related audio keysound detection. The
main reason is that longer sample length provides much
more contextual information for HMM to learn in order to
differentiate between different audio keysounds.

Comparison between HMM and SVM

We perform a comparison between the HMM-based method
and the SVM-based method [10]. According to the previous
experimental results, 4-state left-right structure is selected
to build HMM. We choose 0.2 second as sample length for
whistling detection and 1 second for other audio keysounds
(i.e., commentator speech, audience sounds, etc.). Compared
with SVM-based audio keysound detection, the proposed
HMM-based method achieves better performance as listed in
Table 5. For the excited keysounds detection, which are more
significant for highlight detection, the recalls and precisions
are improved by at least 5%.
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TABLE 4: Performance of different sample lengths for audio key-
sound detection (5-state HMM).

Audio keysounds Sample length Recall (%) Precision (%)
Audience 0.2s 95.39 96.61

ls 95.74 95.74

0.2s 96.52 83.33

Commentator

1s 100 91.07
Excited audience 0.2 83.33 75.95

1s 85.71 85.71
Excited commentator 0.2 31.65 7333

1s 66.67 100

TaBLE 5: Audio keysound detection results (HMM versus SVM).

Audio keysounds Methods  Recall (%)  Precision (%)
Whistling SVM 99.45 99.45
HMM 100 100
: SVM 83.71 79.52
Audience
HMM 95.74 95.74
SVM 79.09 78.27
Commentator
HMM 98.04 94.34
Excited audience SVM 80.14 81.17
HMM 85.71 85.71
Excited commentator SVM 78.44 82.57
HMM 86.67 100

TasBLE 6: The statistics about the appearance of ODI detection.

Performance Ground truth Recall (%) Precision (%)
Before refining 93 91.4 93.4
After refining 93 97.8 92.0

3.4. Multimodal structure analysis
and event detection

Firstly, we show the experimental results of video analysis
and event detection by using visual information only, and
then we show the experimental results of event detection
by using multimodal approach. Table 6 shows the results of
ODI detection. The first row of the table shows the results of
ODI detection using MACM and the second row of the table
shows the results after applying the refining algorithm.

The ground truth, in Table 6, was defined as the actual
number of ODIs that occurred including the captured and
uncaptured ground truths. The results of potential event de-
tection is shown in Table 7. From the table, we can see that
arbitrary number of events have been detected and classified
to correct classes. Table 8 shows the results of event detec-
tion using multimodal approach. In the table, the offensive
foul and defensive foul are tabulated together and shown as
“Foul.” Comparing with Table 7, we can conclude that the ac-
curacy of event detection is improved significantly by com-
bining the visual with the audio information.

TaBLE 7: The statistics about the appearance of potential event de-
tection.

Events Ground truth Recall (%) Precision (%)
Events before the ODI 85 87.0 92.5
Events without the ODI 29 76.6 76.7

TaBLE 8: Results of event detection using the multimodal approach.

Performance Ground truth  Recall (%)  Precision (%)
Foul 25 96.1 96.1
Shot at the basket 51 94.5 89.5

4. CONCLUSION

We have presented a novel semantic analysis and annota-
tion approach by using multimodal analysis of video and au-
dio information and tested in basketball videos. In shot and
scene boundary detection, motion prediction information
are used to detect scene boundaries. Moreover, motion fea-
tures, describing the total motion, camera motion, and ob-
ject motion, are utilized for scene classification. At the same
time, our proposed HMM-based method for audio keysound
detection outperforms the previous SVM-based method, es-
pecially for the excited commentator speech and excited au-
dience sounds. This conforms to the fact that the HMM-
based method effectively captures rich contextual informa-
tion so as to improve different keysounds’” separability. Ex-
perimental results have also demonstrated the effectiveness
of event detection by using the combination of audio and
visual information. Utilizing our method, we can generate
a detailed description for video structure and detect an ar-
bitrary number of events in a basketball game. The annota-
tion information generated by the proposed method can be
further combined for high-level video-content description
and that information can subsequently be utilized to index,
search, and retrieval of video contents.
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EURASIP Journal on Advances in Signal Processing

Special Issue on

Advanced Equalization Techniques for Wireless

Communications

Call for Papers

With the introduction of personal communications services
and digital packet data services, broadband wireless technol-
ogy has experienced a significant upswing in recent years. To
support the fast-growing wireless market, wireless research
has to cope with formidable challenges that stem from
wireless fading and multipath effects, finite-precision DSP,
high signal dimension, and limited device size, to name a few.
The goal is to design wireless devices that attain high data
rate and high performance at low complexity. To achieve this
goal, an essential step is channel equalization.

An ideal equalizer should achieve high performance, high
rate, and low complexity. The tradeoffs among these three
metrics are fundamental yet challenging in both theoretical
analysis and hardware implementation. The aim of this
special issue is to bring together the state-of-the-art research
contributions that address advanced techniques in channel
equalization for wireless communications. The guest editors
seek high-quality papers on aspects of advanced channel
equalization techniques, and value both theoretical and
practical research contributions. Topics of interest include,
but are not limited to:

e Low-complexity equalizers for wireless fading chan-
nels, including those that exploit sparsity

e [terative equalization and decoding (turbo equaliza-
tion)

e Time- and/or frequency-domain equalization for
OFDM or single-carrier systems

e Equalization for rapidly time-varying channels

e Equalization for MIMO channels

e Equalization for multiuser systems

e Equalizers with finite-bit precision

e Equalization for cooperative relay systems

e Joint channel estimation and equalization

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/asp/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete

manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due October 1, 2009

First Round of Reviews | January 1, 2010

Publication Date April 1, 2010

Lead Guest Editor

Xiaoli Ma, Georgia Institute of Technology, USA;
xiaoli@ece.gatech.edu

Guest Editors

Tim Davidson, McMaster University, Canada;
davidson@mcmaster.ca

Alex Gershman, Ruhr-Universitit Bochum, Germany;
gershman@nt.tu-darmstadt.de

Ananthram Swami, Army Research Lab, USA;
a.swami@ieee.org

Cihan Tepedelenlioglu, Arizona State University, USA;
cihan@asu.edu
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EURASIP Journal on Advances in Signal Processing

Special Issue on

Advanced Image Processing for Defense and

Security Applications

Call for Papers

The history of digital image processing can be traced back
to the 1920s when digital images were transferred between
London and New York. However, in the past, the cost of
processing was very high because the imaging sensors and
computational equipments were very expensive and had only
limited functions. As a result, the development of digital
image processing was limited.

As optics, imaging sensors, and computational technology
advanced, image processing has become more commonly
used in many different areas. Some areas of application
of digital image processing include image enhancement for
better human perception, image compression and transmis-
sion, as well as image representation for automatic machine
perception.

Most notably, digital image processing has been widely
deployed for defense and security applications such as small
target detection and tracking, missile guidance, vehicle nav-
igation, wide area surveillance, and automatic/aided target
recognition. One goal for an image processing approach in
defense and security applications is to reduce the workload
of human analysts in order to cope with the ever increasing
volume of image data that is being collected. A second,
more challenging goal for image processing researchers is
to develop algorithms and approaches that will significantly
aid the development of fully autonomous systems capable of
decisions and actions based on all sensor inputs.

The aim of this special issue is to bring together researchers
designing or developing advanced image processing tech-
niques/systems, with a particular emphasis on defense and
security applications. Prospective papers should be unpub-
lished and present innovative research work offering contri-
butions either from a methodological or application point of
view. Topics of interest include, but are not limited to:

e Multispectral/hyperspectral image processing for
object tracking and classification with emphasis on
defense-related targets and objects

e Real-time image processing for surveillance, recon-
naissance, and homeland security

e Biometric image processing for personal authentica-
tion and identification with emphasis on homeland
security applications

e Image encryption for secure image storage and trans-
mission

e Image processing to enable autonomous and intelli-
gent control for military, intelligence, and homeland
security applications

e Image processing for mental workload evaluation with
emphasis on homeland security applications

e Image interpolation and registration for object visual-
ization, tracking, and/or classification

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/asp/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

December 1, 2009
March 1, 2010

Manuscript Due

First Round of Reviews

Publication Date June 1, 2010

Lead Guest Editor

Yingzi (Eliza) Du, Department of Electrical and Computer
Engineering, Indiana University-Purdue University
Indianapolis, 723 W. Michigan Street, SL 160, Indainapolis,
IN 46259, USA; yidu@iupui.edu
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Knox Road, M/S 6302 China Lake, CA 93555 USA;
alan.vannevel@navy.mil

Jin-Hua She, School of Computer Science, Tokyo
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