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Abstract— This paper addresses the collaborative linear objects to/N distinct agents on a one-to-one basis,
assignment problem (CLAP) for a class of allocation ap- with maximizing a summation objective function
plications. CLAP entails using agents to seek a concurrent 55 the optimalgoal. LAP manifests itself in a
allocation of one different object for every agent, to opti- diverse range of interesting applications, either as an

mize a linear sum efficiency function as their (soft) social I fi bl borob| f I fi
goal. Anchoring in the standard framework of automated allocation probiem or a subproblem of co-allocauon.

negotiation allows an original BDI negotiation model for Examples include personnel managemesdsign
CLAP to be conceptually separated into a BDI assignment tasks to persons vehicle transportation agsign
protocol and an adopted strategy. Facilitated by this passenger requests to ta)isnanufacturing gssign
conceptual separation, the contributions of this work are: jobs to parallel machindsand telecommunication
(i) providing a rigorous analysis of the protocol and (match sending and receiving statigngor which
demonstrating its salient properties, and (i) formulating . . .

new strategies using a novel idea of cooperative concessioncemralIzed algonthms have been appllt-?‘d [1].

Four different strategies for a negotiation agent and the ~ OUr research aims to develop techniques to ad-
arbitration agent provide sixteen arbitration-negotiation dress distributed versions of these LAP applications,
combinations running with the protocol, and these are emerged to exploit recent advancement in computer
empirically assessed for their performance profiles in gnd internet technology that has made it possible
negotiation speed and solution quality. Important findings to have situated agents collaboratively plan the

including the stability of the protocol in producing better . o
than good enough global allocations, and the strategic assignment®y themselves. This is in contrast to a

influence of cooperative concessions on performance, arec€ntralized algorithm planninipr them [1]. Solved
examined. The significance and practicality of the work in this way, the basic problem is termed a collaborative

relation to existing work are also discussed. LAP (CLAP) (Section Il). While the centralized
Index Terms— Intelligent Agents, BDI Models, Auto- @PProach was acceptable in the past, it limited active
mated Negotiation, Cooperative Concessions, Reasoningnvolvement of distributed agents in incremental
Systems. planning or problem solving.
This paper addresses and discusses the solutions
|. INTRODUCTION of CLAP in the framework of automated negotiation

Central t | I licati , 2], where negotiation is viewed as a process of
entral to many real world applications In & Norge, e agents searching for a solution called an

centralized environment is the fundamental pmbl%reement The search process is realized via a
oL.anlgnlngb or a[[locstltng objects to agents. The s qtiation mechanism (or algorithm) implementing
object can DE a 1ask 1o assign or a resource éonegotiation model comprising of a high level
aIIo_cate. Perhaps the most baS|_c is the Ilneqr (Sug?z)tocol and a set ofstrategies In general, given
a35|gtnmenft r?robltem (LAP) ;Vh'Ch. de;lsd_vxg.th tth protocol specifying the ‘rules of interactions’,
question of how toconcurrentlyassign.v- diStnCt - gittarent strategies can be designed for individual
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signment solution (or agreement) faces the basment negotiation (Section Ill), (ii) a formal analysis
issue of deciding what action to perform. In sof the BDI assignment protocol that exposes three
doing, each agent needs to reason about its belisfdient properties, namely solution guarantee, sim-
and preferences as well as its collaborating agentglicity, and stability in some specific sense (Section
mediating through interactions among the agentg), and (iii) a detailed study of the empirical
during planning. The goal of LAP becomes thperformance of all possible arbitration-negotiation
joint social goal of these agents. One agent negatbmbinations of strategies, along with a discussion
ation mechanisnMA? [3] realizing this implements on the comparative effectiveness of these strategy
a Belief-Desire-Intention (BDI) negotiation modetombinations and the stability of the BDI assign-
developed for CLAP. Essentially, the mechanisment protocol for CLAP (Section V). Discussions
involves agents negotiating under the regulation of relation to existing multiagent work examine
an arbitration agent. In seeking the social godhe significance of the work (Section VI), with
each agent reasons communicatively and submitsatscluding remarks in Section VII.

intention- an object exchange proposal with another

agent that will increment the social gain if executed II. THE CLAP FRAMEWORK

- for arbitration in a finite humber of negotiation _ _
rounds. The N x N CLAP framework [3] entails using

Anchored in the framework of automated negotiay. 29€nts to negotiate for an efficient concurrent
tion, in the originalMA?, every negotiation agent asaII(_)catlon of N different objects_, Wlth one different
well as the arbitration agent adopts a simple gree@i€ct for every agent. The original framework [3]
strategy ‘embedded’ in a BDI assignment protocb‘f defined W|thta.sklagents negonatmg_ for different
(Section 1lI-A). The strategy isgreedy because "€SOUTCes here it is sl'lghtly genergllzed concep-
it asserts that only an object exchange propoddflly tO agents negotiating for objectut with
associated with théighestsocial gain is selected® change in mathematical formulation. Thus, in
in an arbitrary round. Conceptually separating tH8iS framework, there is a team of agents =
protocol and the strategy opens up the opportunitie& ¢1: -+ ,ay-1} of size N> 2, and a set of
for formal analysis of the protocol and developmefiifferent objects® = {ro,ry,---,ry_,} of size N.
of new strategies for CLAP, along with comparativiitially, agenta < A only has knowledge of the
evaluations of their performance. A-QoS (appl_lcatlon quallty-of-serwc)elt can offer

The development of new strategies in this pap’ €ach object, defined by[a,r] for all r € O.
for determining local intentions and arbitrating therformally, the objective ofV x N CLAP is to find
in MA? is based on a novel idea calledoperative the particular (total) assignment
C(f)ncessiorvyhicg de;]/iates from_the Ius_,éljal de}finition 11: A — O such that fora;, a; € A,
of concession By the conventional idea of con- e
cession in automated negotiation, each negotiation i # j implies Il{a;) # I(a;)
agent considers whether to give up (or concedg)one-to-one mapping of agents to objects that
an object if an exchange is to be agreed upd@approximately) maximizes the total A-QaS,;,

[2]. However, by cooperative concession, whether
an agent should concede is considered by another
agent, depending on which object the former is Stot = Z dla;, 11{as)] (2)
holding that the latter believes it might exchange =0

its current selection for, to increment social gaidl(a) € O refers to an object selection by agent
So intuitively, the proposed idea of cooperative € A (under an arbitrary permutation &f); and
concession asserts that consider whether ‘You' max{S;.(2)} defines the (ideal) social gdabf the
should give inand conversely, instead of the usualgents. An assignment or allocation set (or simply
definition of ‘I’ consider whether ‘I’ should give in assignment) corresponds to one permutatiorilof

Following, the main contributions of this paper
are: (I) the novel idea of Cooperative concessionl,’\'Ot,e, that this glopal optimum i; not the same as the sum
strategies and their formulations for determininOf individual local optima (each being the largest A-QoS value

: ! S o i 8, 7] among all objects ir® for an agenta € A), unless their
local intentions and arbitrating them in BDI assigreorresponding selections form a permutationlof1).

(1)
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(1), and can also be equivalently represented Bs Strategies for Determining Intentions

containing elements of the forfa, I1(a)) € AxO.  Negotiation strategiesThree strategies for a ne-

In attempting to reach an agreement (social godlhyiation agent are possible with the BDI assign-
the basic issue a negotiation agentc A faces ant protocol in a negotiation round:

Alterative seleclions to exchange 1 for, as detaiec?) " (e NGreedy strategy, the agent il select
9 ’ the best (local) desire - the one that offers a

In Section Ill. net exchange gain that is the highest from the
agent’s perspective as its intention.

I”_’ BDI _N EGOTIATION MODEI‘_ FORCLAP 2) In the NMinCon strategy, the agent will se-
signment protocol and the strategies that constitute gain along with its exchange partner conced-

the proposed negotiation model faf x N CLAP. ing the least from the agent’s perspective as
its intention.
A. The BDI Assignment Protocol 3) In the NMaxCon strategy, the agent will se-
The proposegbrotocol divides the reasoning pro- lect a (local) desire that offers a net exchange

cess into negotiation rounds, and in each round, gain along with its exchange partner conced-
performs negotiatory means-end reasoning, where ing the most from the agent’s perspective as
the end is to increase the social value, i.e., the its intention.

total allocated A-QoS (2), using theneans of Arbitration strategies: Similarly, three strategies
object exchange between two negotiation agentsr arbitration are possible in a negotiation round.
In each round, each agent locally accesses &ahdk following describes the strategies for arbitration
directly acts only on its own row of A-QoS datadone through a dedicated (arbitration) agent:

and determines itbelief set - the information or 1) In the A.Greedy Strategy’ the (arbitration)
evidence that indicates all the possible options - agent will select an intention with tHeighest
the alternative objects - a negotiation agent can  exchange gain, among all intentions gathered,
exchange its current object selection for to achieve  for object exchange.

its end. Every agent then begimegotiatingby  2) |n the AMinCon strategy, the agent will
communicating with one another to acquire A-Q0S  select an intention with the exchange partner
data from any agent whose current object selection  of the proposing agent concedirtge least

is in the agent's belief set. In collaborating, any such  among all intentions gathered, for object ex-
agents will respond with the required A-QoS values,  change.

using which the agent would deliberate to determine3) |n the AMaxCon strategy, the agent will
its own desire set - the means of exchanging its  select an intention with the exchange partner
current object selection for options (that survive the  of the proposing agent concedirige most

deliberation) with the respective agents (currlently among all intentions gathered, for object ex-
holding on to these options). Each desire is an  change.

exchange means for the agent to achieve its endgg|ative toGreedy

As a final step in a negotiation round, the agent Wilf,ore  A_ QoS information requests in subsequent
adopt astrategythat must select a (local) desire as,, nqs whereaminCon tends to encourage less.
its intention which it would then use as the basis foAn important motivation of this research is to

an object e_xchange proposal. All the agents’_objeﬁhdy’ with Greedy as the base case, how differ-
exchange intentions would undergo arbitration {0, 3 rpjitration-negotiation combinations including
decide which two agents to proceed with the objef{ase cooperative-concession strategies impact per-

exchange, before negotiation is concluded, and e ance in terms of negotiation speed and solution
next round begins. The negotiation process ter Lality.

nates when sim_ultan(_aously, all negotiati_ng agentSpandom strategyin the simulation study (Sec-
have no (more) intention to exchange objects. V), we also introduce aandom ‘strategy’ for

2This rule is necessary to ensure that any strategy will always se|E|8€ arbitration ajnd negotiation agentsl; f’in agent Is
an available exchange means that exists. said to be adopting a random strategy if it nondeter-

MaxCon tends to encourage



ministically selects one of the three proposed befoaad selects’ € O, and in exchange, agent € A
negotiation begins. So, a total of sixteaitration- gives up its current selection € O and selects
negotiationstrategy combinations are investigatedi® € O0. Thus, any desird € D;, when carried out,
will definitely lead to an increase in total A-QoS
C. Formalization of BDI Concepts & Cooperativé’vithom _vioI_atingH (1). Quite naturally, it provides
the motivation for agent; € .4 to want to exchange

Concession . . !
) its current object selection.
To formally ground and combine the BDI con- If the cooperative concessiofi;; agenta; € A

cepts and strategies of cooperative concession fQkaives from an agent; € A is greater than
CLAP, the following CLAP-specific data structures. . this means that agém]te A will concede its
are formally defined, in such a way that they can Qﬁ)ject for agents,'s with a local A-QoS decrease

naturally interpreted as a negotiation agent's belie{g,i,o object exchange with agemt € A takes
desires with concession information, and intentio ace. If C;; < 0, it means that the agents will
. 1] ’

computed in an arbitrary round of negotiation. 1§, ally benefit with a local A-QoS increase should

these definitions, the current object selections gfg exchange occur.

all agents refer to those made under an arbitrarypqfinition 3: [Intention 7,] Given that an agent
permutation offI (1). a; € A's desire set isD;, D; # 0. Then, agent

Definition 1 (Belief SeB;): Given that an agent ;- s intention /, is determined according to the
a; € A’'s current object selection ig" € O. Then strategy adopted:

its (current) belief seB; is given by 1) N-Greedy strategy

Bi ={r € 0| dla;,r] > dfa;, ']}~ (3) I, = [(ai,17), (a;,7"), p, =] € D,, for which
If B, # (), this means that agent € A has at least AR .
one alternative object selection € B; that may p=max{p’ | [ =0, -] €D}
lead to increase in total A-QoS (2) (when made in (6)
exchange with an agent whose current selection is2) N-MinCon strategy
r e 0). ; i .
Definition 2 (Desire Seb; and Concessioit’;;): L= [(?i’rj),’ (aj, 1), _’Cij] € D;, for which
Given that an agent; € A’s current object selection Cij = min{C" | [-,—,—,C"] € D; }
is ri € O and its belief set isB;, B; # 0. An (7)

arbitrary agenta; € A whose current object 3) N-MaxCon strategy
selection isr? € O is said to accept agent € A’s . ; )
beliefs B; if r/ € B,. To generate the desired I; = [(ai,17), (a;, "), —, Cy] € D;, for which
exchange options or desired;, agenta;, € A Cy =max{C' | [-,—,—,C"] €D; }
broadcasts its beliefs3; and current selection o _ - (8)
ri € O, and an arbitrary agent; € A who accepts Agenta; € A's decisive stance or intention i§
the beliefs would respond with a pair of A-Qo®r it is said to have no intention if eithéd; =
valuesd|a;, ] andd[a;, 7], so that for each of theOr D; = 0, in which casel; = nil, wherenil =
|B;| responses received, the corresponding objéct — 0, —].

exchange optiori(a;, /), (a;,77), p, Ci;] € D; (i.e., Finally, in the role of grbi_trqtion, an intenti_on
is agenta; € A's desire) ifp > 0, wherep is I = [=,— p. =], p > 0, is similarly selected in
defined by accordance to an adopted strategy, but over all the
, , agents’ intentions (or the lack thereof communicated
p = —dla;,r"] + dla;, '] = Cj (4) as anil intention) J; € | gathered.
with The r_legotiation process will terminate following
Cy; = (d[aj77,j] — dfa;, ) (5) a negotiation round when all agents have no (more)

intention to exchange objects and so submit
defining thecooperative concessiaf agenta; € A intentions, discovered through arbitration.
for agenta; € A. With the above formalization, a distributed agent
If p > 0, it means that there is a net exchange gaatgorithm that realizes the BDI negotiation model
if agenta; € A gives up its current selectiorh € © (consisting of the BDI assignment protocol and the



set of strategies proposed) is presented in Section V. PROTOCOLANALYSIS

[lI-D. This algorithm is referred to as &ulti- Formally, the BDI assignment protocol induces

Agent AssignmentAlgorithm (MA?), and handles {he permutations ofI (1) for an N x N CLAP

the simple role of arbitration through a dedicatggy 5 negotiation space formalized as an assign-

agent. ment reachability graplj. EssentiallyG defines
the complete space of possible sequential execution
of desires selected as intentions in a negotiation

D. Distributed Agent AlgorithnMA?3 process.

MA3 assumes thatd| = |O| = N, and consists
of an arbitration agent (or arbiter) and a team
agents,a € A. Each negotiation agent € A has _
initial A-QoS (local) knowledge, i.ed|a, r] for each ~ FOr @ set of agentsl and a set of object®), for
objectr € ©. Agenta € A initially selects an object Which |[A] = 0] = N > 2, let
reQ accor;ling to (6_1 pt_'-)rmutation _ofl_ A—- O G def (V. D,s,V,,) (9)

(1). The arbiter then initiates negotiation. . .

The generic BDI reasoning mechanism of a n&EPresent an assignment reachability graph (ARG)
gotiation agent and the simple role of the arbitratidA Which: o
agent in an arbitrary round of collaborative negoti- 1) V' denotes a (nonempty) finite set of states

ation can now be described as follows: uniquely characterizing the permutationslbf
(1), and we writell(a)|, to denote the object

selection of agentt € A in statev € V.

. Negotiation Space: An Assignment Reachability
raph

MA?3 : Collaborative Negotiation Agent |V| — NI. The total A-QOS (2) in a state €

1) If agent believes that there are alternative object se- V (i.e., a permutation ofl) is denoted byv|

lections which may lead to increase in total A-QoS, it and given by

would, based on its (local) beliefs, generate the desired

exchange options or desires, from which an option in (N-1)

accordance to its adopted strategy will be chosen as its |U| = Z d[ai’ H(ai) |U]

intention.
2) Agent submits its intention (or the lack thereof) to the =0

arbitration agent. 2) D CV x V denotes a finite set of desires.
3) Concurrent with Steps 1 and 2, it responds to any re- 3) § - DxV — V is a state transition

questing agent whose beliefs it accepts, by sending to . .

the requesting agent the A-QoS values as required for functlon_ (due to ObJECt exchange between

computing the requesting agent’s desire. two arbitrary agentsi;,a; € A), such that
4) Agent changes its object selection (and then acknowl- 5(6”7@) — v eV iff H(ai)‘v’ — H(aj)’U

edges it), proceeds to next round of negotiation or quit,

as decided by the arbitration agent. andTl(a;)|, = I(a;)|, and the magnitude of

eij € D, Negjl, > 0, is defined by
Aegly = {=dlai,(a;)|] + dla;, (a;)[o]} +

MA?3 : Arbitration Agent {—d[aj, H(aj)|v] + d[aj, (a;)|,]} > 0.

1) Agent first receives the intentions (or the lack thereof) of We can interprelleij ]U as the increase in total
all the negotiation agents. _ ; ) i ;

2) If agent sees that all agents have no intention to ex- A QOS i agem“’ and aggntzj eXChange.thelr
change, it terminates the negotiation by telling all agents object selections held in S_tabe eV, e,
toquit. II(a;)|, andl(ay)l,, respectively.

8) Otherwise, it 4) V, C V denotes a finite set of terminal states

a) selects an intention in accordance to its adopted ; ;
strategy and instructs the two agents concerned to such that forv, € V, (e, v,) is not defined
proceed with the object exchange. for anye € D.

b) receives acknowledgement of object exchange |et D* contain all possible finite sequences, or
made as instructed (from the two agents con- : : 3
cerned), before telling all agents to proceed to next _St_“_ngs’ overD, plus the null stringe. Then, def
round of negotiation. inition of 4 can be extended t®* as follows:

d(e,v) =,




(Ve € D)(Yw € D*), §(we,v) = (e, d(w,v)). veV, < Va € AD,=10

: : , : {by Axiom 2}
For a strings € D* that is defined at an arbitrary = Va, € A, L, = nil

veV(ie.,d(s,v) € V)and hence is called aed- {by Axiom 3}.
_m|SS|bIestr|ng, s| denotes the length of the stnngHenCe the result.
i.e., the number of elements of sél, assumed
nonempty, in strings. |s| =0 if s =«¢.

Finally, to define the belief8;, desiresD; and
intention I; of an agenta; € A in a statev € V,
we write: B;|,, D;|, and I;|,, respectively; if agent
a; € A has no intention in a statec V', we write
I;|, = nil. We also call a state € IV an agreement,
and |v|, an agreement value.

This leads us to formally stating the basic logical
relationship among the beliefs, desires and intention
of an agenta; € A under an agreemente V, in
accordance to the BDI assignment protocol.

|
Property 5: If v € V is an optimal agreement,
thenv € V.
Proof: We prove by contrapositive reasoning.
v Q V, = not (\VICLZ S .A, ]z|v = ml)
{by Property 4
= da, € A:L|l, =[—-—,p,—] #
nil
{ by propositional reasoning
= eV v =0d(ev)
{ by Definition 3 of intention as a
desire, which is a transitiof |, =
ee D of ARG G (9) }
= P eV || >

B. Characteristic Axioms of BDI Assignment Pro- { by Property 1}

tocol — v eV is not optimal.
Axiom 1: B;|, = ) = D], = 0. Hence the result. [ |
Axiom 2: (Va; € A,D;|, =0) <= v € V,. The proofs of the next two properties rely on two
Axiom 3: Dy, = 0 < |, = nil. elementary results (Lemmas 1 and 2) for a directed

Axiom 13 states that in an arbitrary statec 1/, graph, denoted~, and some terminology, namely,
if an agenta; € A has no belief, it has no desirea bipartite and a colorable graph, and its chromatic
Axiom 2 states that a statec V is in V, provided numbery(G); these are presented in Appendix .
all the agents have no desire. Axiom 3 states thatProperty 6: The following statements are true
in an arbitrary state € V, an agent; € A has no and equivalent: 1x(G) = 2 and 2)§G is a bipartite
desire provided it has no intention. graph.

Proof: By Property 2,G is acyclic, implying
. it has no cycles and hence no cycles of odd length.
C. Properties of ARG Thus, by Lemma 1,G is 2-colorable; therefore

Below, we present some basic properties of affG) = 2. Since by Lemma 2y(G) =2 iff G is a

ARG G (9). These properties are needed to establisipartite graph, it follows thag is bipartite. Hence

the key properties of the BDI assignment protocehe result. [ |

in Section IV-D. By Property 63 is a bipartite graph (2-colorable)
Property 1: If e € D andd(e,v) =o' € V, then implying V' can be partitioned into (disjoint) sets of

|| > |vl. V-0 andV-1, i.e.,

Proof: See proof of [3, Property 1,p. 2601
Property 2: ARG G is acyclic (i.e.¥v € V,there vV =V-0UV-1 such thatV-0NV-1=0 (10)

is nos € D* — {e} such thati(s,v) = v). Together with acyclicity o by Property 2, we can
Proof: See proof of [3, Property 2, p.260M fyrther partitionV/-0 and V-1 individually, with
Property 3: V, # ( (i.e., given an arbitrary €
V, Jw € D* : 6(w,v) € V,).
Proof: See proof of [3, Property 3, p. 2601

Property 4: Va; € A, I;|, = nil iff v €V,.
Proof: for some finite integers andb, such that withz

{0, 1}*, the following two conditions are true:

3Axiom 1 is not used in any proof in this paper, but is presented
here for completeness’ sake. 4Think of z as a binary variable, witls denotingnot z.

a b
V0= JV-0y andV-1 = JV-1opr  (12)
=0

=0



1) Forz # y,V-z, N V-z, = 0; D. Properties of BDI Assignment Protocol
2) @l = d(e,v) andv € V-z,) = 3ly > = :  proposition 1 (Solution Guarantee)fhe  BDI
v e V-zy,. assignment protocol ensurlBA* always terminates
Property 7: For an arbitraryv € V, s € D", if in a finite number of negotiation rounds.
o(s,v) €V, |s| < N(N —1) - 1. Proof: Starting from an arbitrary state e V/
Proof: If s is a null stringe, (s,v) =v € V; of an ARG G, by Property 3,MA? will take a
and trivially, [s| = 0 < N(N —1) —1, sinceN > 2. finite number of transitions, one per negotiation
By (10) and (11), an arbitrary admissible stringound to reach a state, € V,. In this state, a
s € D* — {e} traversing ing alternates betweenfinal round of negotiation proceeds during which,
states inV/-0 andV'-1 through a sequence of partihy Property 4, the arbitration agent will receive the
tion subsets}'-0p- — V-1y« — V-02- — V-13- — |ack of intentions by all agents and inform them to
= Vezige, 2 € {0, 1} andk™ > j* for k = j+1. terminate negotiation. Hence the result. u
In traversing from one such partition subsétz, - Proposition 2 (Computational Simplicity):
possible Given an arbitraryN x N CLAP instance, the

N
Agy
_ §2 BDI assignment protocol ensures the worst-case
desired exchanges (undél) from the subset is complexity of MA? in terms of the number of
taken, whereav, > 1 is the number of states inla- negotiation rounds i©(N?).

z,+ and A,, is the number of non-desired exchanges Proof: By Property 7, the maximum num-

[out of a poss|b|e(N)] from a state indexed by ber of transitions in an admissible string 6f is
N(N —1) — 1. SinceMA3 will execute a transition

per negotiation round until the last round when all
agents discover their lack of intentions to exchange
objects, the negotiation rounds would not exceed

|S|71 Wy
<(N) _ Aacy) < ((N2> _9N (N)> _ N(N —1). In terms of the number of negotiation

to another, one of_ ",

in V-2, 0 < Ay < (];7) Following,

2=0 y—1 2 2 2 rounds, it follows that the worst-case complexity is
=1 w, O(N?). Hence the result. |
Z Z Agy — ( ) 7 With Property 4, we can characterize a worst case
agreement (when negotiation terminates), denoted

=0 1
. ” . e €V, as follows:
wheres, 1 < g < |V,|, is the number of terminal

states not in any subsét-z,-, 0 < z < |s| — 1.
Simplifying, we get

|s|—1

o (3)= (£) oo ().

|Vwe] = min{|v,| | v, € V,} (12)

With Property 5, we can characterize an optimal
agreement, denoted,, € V, as follows:

=0

.. . o - ) o V;) 13

Rewriting the left-hand side, we have [Vopt| = masc{[ue] | v, € Vol (13)
N N? N Given an agreement € V/, its deviation in value
|s|av (2) < < 9 ) — (2N +05) (2> , from (or error with respect to) the optimal is defined
by
where S, €, = [Vopt| = [v] % 100% (14)
o = r=0 7T -, 1. |Uopt|

Definition 4: A negotiation protocol is said to be

So in general,

()= (£)-even(2)

Is| < N(N —1) — 1.

or

Hence the result.

e,-stable if any strategy utilized with it will converge
to an agreement value| that is withine, of (the
optimal) [vep|.

Using ane,-stable negotiation protocol, the implica-
tion is that no negotiation agents which can tolerate
a maximum ofe, from the optimal agreement value

B will have any incentive to deviate from their adopted
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strategies. Importantly, this simplifies agent desighe distributedVIA® agents executing their adopted
as it means that no additional, complex and tinstrategies. The centralization is aimed at simplifying
wasting reasoning is needed by any agent to spethie code that, importantly, automates and speeds
late about others’ strategies to arrive at an agreeabfe the experimental (running and data collection)

solution. process, but with all the features of the original
Let ¢, = €, Whenv = v, and we arrive at the algorithm retained, except for its distribution.

following proposition. In principle,MA? can handle an arbitrary problem
Proposition 3 (Stability): The BDI assignment size N. But for a complete simulation, the number

protocol in MA? is ¢,.-stable. of simulation runs required iSV! per problem

Proof: By Property 3,MA? will reach a state instance. Clearly for a bigV, it can become in-
v, € V, regardless of any strategy used, where titactably time consuming to simulate for a large
will terminate since by Property 4, the terminationumber of problem instances. For experimental
condition for negotiation is satisfied, guaranteeingpurposes, we limitN = 10, requiring 10! (or
stays in state, € V,. Hence the result by Definition3,628,800) simulation runs per problem instance,
4 with €, = ¢, in (14). B along with using an available implementatioof
Ideally, €,,. = 0%. As Section V will show, empiri- one LAP algorithm [4] to produce an optimal total
cally ¢,. is found to be quite small, approximatelyalue as a reference solution. This was manageable
10%, with a high probability of achieving an everwhen we ran the simulator prototype executing all
smaller deviation of5% through an appropriatethe possible strategy combinations for the same
arbitration-negotiation combination of strategies. set of 100randomly generated( x 10 problem
instances. Despite the limit oW, we note that
V. SIMULATION RESULTS, ANALYSIS & the simulation results can also provide a base
DISCUSSIONS reference for addressing large problem instances
c&ecomposed into smaller subproblems A3,

In this section, we present an empirical stu . :
foblem decomposition, however, is usually done

of MA? to assess the comparative performance 0 q licati ific criteria that b q
all strategies proposed. The performance is assesﬁ?ﬁe on apfptlhc_a lon-specific criteria that are beyon
primavily by the solution quality produced and th ?rr?gog\?e?agelssi?f\ﬁ&ion result of each variable
implementation-independent negotiation speed. The

p p g p Z S {Ewcy Nmazx, Pac7 chy thi7 Phi7 PZD} (nOta'

solution quality is measured (and graded) in ter tional definitions in Appendix Il) is computed and

of the various extents (in %) that a solution pro : S
duced deviates from the optimal one, and the ne 8pmate.d for comparatlve_ st_udy of aifbitration-
tiationstrategy combinations.

tiation speed is measured in terms of the number 790
negotiation rounds needed to converge to a solution. _
The ‘profile’ of the performance is gathered togeth&- Performance Comparisons

with the various probabilities of interest defined, The simulation results for negotiation speed and
which include those of converging to these ‘gradesblution quality are tabulated in Tables | and Il
solutions, and those of the algorithm running aespectively. SincéMA® does not guarantee an op-

various defined speed levels. timal agreement in general, it seems reasonable to
interpret the agreement reached more qualitatively
A. Simulation Set-up to categorize its acceptability level. So in the follow-

. ._ing discussion drawn on the tables, an assignment
To conduct the study, we first prototyped a SlrrEgreement is said to od enoughif its total A-

ulator for the algorithms. The simulator consistéoS value (2) is withir20% of the optimal; isnear

of a centralized program running on an Ifitel = . P : :
, . timalif it is within 10%, andalmost optimalf it
Pentiun® personal computer with a 1.8GHz CP 'spwithin 5% 0% P

and 512MB (RAM) memory. For d& x N prob-
lem instance, the program generates and input§=rom website http://www.magiclogic.com/assignment.html

each of theN! initial assignment solutions to a 5 It seems appropriate to use ‘good enough’ as a qualitative refer-
Ge for solutions with total A-QoS if9).8 max{Siot }, max{Siot }]

. . . n
re‘?‘somng m_eChamSm which computes the ager&ﬁce, applyingPareto’s 80/20 rule 80% of CLAP applications can
object selections which would have resulted fromlerate a20% deviation from their optimal solutions.



TABLE I
MA? SIMULATION RESULTS. QUALITY PERFORMANCEPROFILE

Strategy

Solution Quality

A

N

€we (%0)

Py

P

Py

Pys

Py

PU)C

MaxCon

Greedy

10.3596

0.3167

0.9250

0.9963

1.0000

1.0000

0.0012

Random

Greedy

10.3596

0.2928

0.8996

0.9926

1.0000

1.0000

0.0017

MaxCon

MinCon

10.3596

0.2729

0.8919

0.9925

1.0000

1.0000

0.0057

Random

Random

10.3596

0.2613

0.8886

0.9899

1.0000

1.0000

0.0019

Random

MinCon

10.3596

0.2585

0.8897

0.9926

1.0000

1.0000

0.0036

Greedy

Greedy

10.3596

0.2584

0.8940

0.9903

1.0000

1.0000

0.0021

MaxCon

Random

10.3596

0.2522

0.8772

0.9894

1.0000

1.0000

0.0024

Greedy

Random

10.3596

0.2506

0.8813

0.9877

1.0000

1.0000

0.0023

Greedy

MinCon

10.3596

0.2391

0.8777

0.9895

1.0000

1.0000

0.0038

MinCon

Greedy

10.3596

0.2168

0.8924

0.9926

1.0000

1.0000

0.0029

MinCon

MinCon

10.3596

0.1972

0.8829

0.9926

1.0000

1.0000

0.0039

MinCon

Random

10.3596

0.1845

0.8779

0.9899

1.0000

1.0000

0.0033

Random

MaxCon

10.3596

0.1816

0.8775

0.9913

1.0000

1.0000

0.0006

Greedy

MaxCon

10.3596

0.1754

0.9243

0.9953

1.0000

1.0000

0.0002

MinCon

MaxCon

10.3596

0.1702

0.9161

0.9913

1.0000

1.0000

0.0001

MaxCon

MaxCon

10.3596

0.1246

0.7805

0.9723

1.0000

1.0000

0.0029

TABLE |
MA? SIMULATION RESULTS SPEED PERFORMANCEPROFILE

Strategy Negotiation Speed
A N Nmax Pyni Pp; Py,
Greedy | Greedy | 16 | 0.0040| 0.1162| 0.0270
Greedy | MinCon 16 | 0.0037| 0.1073| 0.0414
MinCon | Greedy | 16 | 0.0034| 0.0953| 0.0497
MinCon | MinCon 16 | 0.0032| 0.0918| 0.0550
Greedy | Random| 17 | 0.0035| 0.0980| 0.0564
Random| Greedy | 17 | 0.0028| 0.0792| 0.1092
MinCon | Random| 18 | 0.0029| 0.0777| 0.0887
Random| MinCon 19 | 0.0025| 0.0704| 0.1826
Random| Random| 20 | 0.0022| 0.0585| 0.2393
MaxCon| Greedy | 21 | 0.0015| 0.0345| 0.2451
Greedy | MaxCon| 24 | 0.0010| 0.0200| 0.4680
MaxCon | MinCon | 26 | 0.0012| 0.0209| 0.4851
MinCon | MaxCon | 27 | 0.0009| 0.0157| 0.6045
MaxCon | Random| 27 | 0.0009| 0.0149| 0.5839
Random| MaxCon| 35 | 0.0007| 0.0127| 0.6714
MaxCon | MaxCon| 51 | 0.0002| 0.0017| 0.9641

above the mid-range. Together, the findings suggest
that where speed is not a major concern, better

than good enough agreements can often be reached
without knowing the strategies adopted by these

agents.

The A-Greedy:N-Greedy strategy combination
had the highest probabilities of reaching agreements
at very high speedK,,;) and high speedH,,),
and the lowest in the maximum number of rounds
possible {....) and in the probability of reaching
agreements at low spee#,(). The AMaxCon:N-
Greedy strategy combination had the highest prob-
abilities of achieving optimal /), almost optimal
(P5) and near optimal#;,) agreements. Following,
the former strategy combination produced the best
speed performance profile with an above mid-range
profile in solution quality, whereas the latter one
produced the best quality performance profile with
a mid-range profile in speed.

The A-MaxCon:N-MaxCon strategy combina-

The worst case agreement had a constant deyig@n produced the worst performance profiles in
tion of 10.3596%, and hence was (almostgar op- both speed and solution quality. In fact, with agents
timal or better thargood enoughlin fact, regardless @dopting the NMaxCon strategy, the performance
of the strategy adopted, the probability of arriving &rofiles are among the lowest in both speed and
a near optimalagreement was a high score of oveguality. This finding suggests that the negotiation
97%. Besides, when the arbitration and negotiatigi¥ents should avoid the MaxCon strategy alto-
agents randomly adopted one of the respective th@&ther.
strategies, the speed performance profile was in thaVNith the negotiation agents adopting the N-
mid-range and the quality performance profile wasreedy or random strategy, the arbitration agent
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adopting the AMaxCon strategy tended to lowerreasoning, originally developed by M. Bratman [11],
the speed performance profile, but raise the qu#te basic model guides us to develop an agent to
ity performance profile. Conversely, the arbitratiodecide moment by moment which action to take
agent adopting the MinCon strategy tended toin the furtherance of a goal. We adapt this model,
raise the speed performance profile, though not m®tivated by its appropriateness in allowing us
high as adopting the greedy strategy, but lower the conceptualize and metaphorically describe an
quality performance profile that was worse off thaagent’s reasoning mechanism, moment by moment,
adopting the greedy one. This finding is significamt terms of the agent’ mental attitudes B, D and
in anticipation of autonomous negotiation agentsto solve CLAP. However, two aspects clearly
preferring a greedy or unknown strategy, necessidferentiate our work from existing BDI models. In
tating a decision on which strategy to use for thée first is our approach to modelling. Existing BDI
arbitration agent to influence speed or quality. models are developed without concisely formulating
Finally, that the protocol is theoretically,.- the problems they attempt to solve while in our
stable is supported with,. found to be empirically work, the BDI model is developed with a clear
small, approximatelyl0 %, implying that agents formulation of the problem it addresses, namely,
using the protocol can produce better thgpod CLAP. In the second, eaghomenis not a moment
enoughglobal object allocations, regardless of thef reasoning in reaction to changes in its envi-
strategies adopted. ronment, but a negotiation round of collaborative
In summary, behaviorally, we observe that seasoning - in fact, existing BDI models give no
Greedy agent is more focussed on the social g@athitectural consideration to explicitly multiagent
as it seeks to optimize incremental gains in eveaspects of behaviour [12] that is essential for ad-
round, whereas a MaxCon agent encourages mdressing CLAP.
negotiation by inducing its exchange partner with
more beliefs in a subsequent round. Where both .
the arbitration agent and the negotiation agents &re Automated Negotiation
focussed on the social goal, the result is highestin the literature on general negotiation frame-
speed performance profile. Where the arbitratiamorks, agents that can negotiate with exact knowl-
agent (overseeing the negotiation process) encoedge of each other’'s cost and utility functions, or
ages more negotiation, with the negotiation agergdsch knowledge learnt in the initial step of inter-
focussed on the social goal, the result is highesttion, have been proposed [13], [14]. There are

quality performance profile. agents that negotiate using the unified negotiation
protocol in worth-, state-, and task-driven domains
VI. RELATED WORK where agents look for mutually beneficial deals to

A. Distributed Constraint Reasoning perform task distribution [15], [16]. In negotiation

v'f argumentation (NVA), the agents negotiate by
n

There are some efforts not cast in the context ding each other proposals and counter-proposals.

assignment but appear to have addressed a simjlar. : i
problem in the context ofdistributed constraint f [17], these proposals are accompanied by sup

. o ._porting arguments (explicit justifications) formu-
reasoning notably, work on distributed constrain : —_ i
optimization problem (DCOP) (e.q.. [5]. [6]). Inﬁ'ﬂed as logical models. In [18], the distributed con

o . 0" . traint satisfaction problem (DCSP) algorithm [19],
principle, CLAP is a DCOP, as originally pointe . :
out in [3, p. 262]. That CLAP is a DCOP no 20] provides the computational model, extended

. ith the supporting arguments (accompanying the
addressed by current DCOP techniques has b .
discussed in [7, p. 1580]. G;\)?Bposals) formulated as local constraints. In [21],

agents can conduct NVA in which an agent sends
over its inference rules to its neighbour to demon-
B. BDI Models strate the soundness of its arguments. Finally, there
Among the agent architectures/models (see [@ge also negotiating agents that incorporate market
Ch. 1]), the BDI model [9], [10] is one of the besdriven techniques (e.g. [22]), auction mechanisms
known and studied model of practical reasonin¢e.g. [23], [24]) and other Al techniques (e.g. [25]).
Based on a philosophical model of human practical The proposedvA? differs from existing work on
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negotiation in that it employs a new BDI negotia- APPENDIXI
tion model for CLAP (Section IIl) not specifically BASIC GRAPH-THEORETICTERMINOLOGY &
addressed in all existing work, which, to emphasize, RESULTS

e v oee 1) A (it sat) raph denotad s aid to be

it can bé casily adapted to respoa-the-fly (i.e k-colorablg if each of its statgs (or vertices)

during the negotiation process) to online c.ha.,nges can be as&gned_onebt:oloyrs n SUCh away
that no two adjacent vertices (i.e., vertices

in individual A'QO.S values, a}nd .(ii) It produces connected by an edge) are assigned the same

anytime r_ead)solutlon_s, rengierlng it the robustness colour.

to deal with a dynamic environment [3]. 2) The chromatic number of a gragh denoted

X(G), is the smallest: for which the graph is
VII. CONCLUSIONS k-colorable. For &’-colorable graplG, 2 <

X(G) < K.

3) A graph isbipartite if the vertices can be
partitioned into two setg/-0 andV'-1, so that

This paper has visited the BDI negotiation model
for CLAP in the standard framework of automated
negotiation, conceptually separating it into a BDI
assignment protocol and an adopted greedy strat- the _only_edges of the grap_h are between the
egy. Facilitated by this conceptual separation is a vertices inV’-0 and the ve_rtlces IW-1.
systematic and more extensive development of th&/0 elementary graph-theoretic results are as fol-
model. On the one hand is a formal and mof&Ws.
rigorous analysis of the protocol, establishing its Lemma 1:A graph is 2-colorable if and only if
salient properties, namelgplution guaranteesim- it has no cycles of odd length.
plicity, and e,.-stabilit. On the other hand are Lemma 2:x(G) = 2 if and only if G is a
new strategies developed based on a novel idégartite graph.
of cooperative concessiprextending to a strat-
egy set for the arbitration and negotiation agents. APPENDIX I
Extensive simulations of all possible arbitration- SIMULATIONS ® LEGEND
negotiation combinations of strategies running with o
the protocol, as embodied iNA3, reveal several 1) 7 :number of negotiation rounds. _
important findings (Section V-B) on the speed and 2) 7maz - Maximumn, obtained when algorithm
quality performance profiles. Combining theoretical ~ terminates, and is the largest of all ob-

and empirical insights on,,.-stability, an important tained from each of theV! different initial
inference to draw is that by the BDI assignment  a@ssignments simulated for/d x N problem
protocol for CLAP, distributed agents can utilize  Instance.

local A-QoS information with BDI-driven commu- 3) « : total A-QoS valueS;, (2).

nication. The outcome is better than good enough?) Qopt - OPtimal cv. . .

global allocations (Footnote 6), regardless of the ) Qwc : Worst-casev, obtained when algorithm

strategies adopted. terminates, and is thg wor:_:,t of a:u’§ com-
Some future work includes (i) decentralizing the ~ Puted based on the simulation b1 different

arbitration role to the negotiation agents to remove  Initial assignments generated for & x N

the centralized arbitration agent MA® altogether, problem instance.

by adapting the idea of collaborative local mediation 6) ¢ : error, given byo%l X 100%) (Note:

[7] to the new cooperative-concession framework  This is equivalent to (14)).

proposed in this paper, (i) extending the protocol 7) e, : worst-case:, wherea = ay,..

to reach better agreements and (iii) the use of8) P, : probability that an initial assignment can

heuristics to speed up negotiation. lead to a solution with total A-Qo& within
To conclude, the research dWA3 for CLAP 2% of optimal, i.e.,a € [T 0, a,].

should provide a base reference for researchers in9) P,. : probability that an initial assignment can
terested in agent negotiation approaches for solving lead to a worst-case solution, i.e., with=
traditional combinatorial problems in general. Qe



10) P, : probability that the algorithm runs atf10]

11)

12)

very high speed, i.e., the number of negotia-
tion rounds it can take to reach a solution is
not more than the greatest integer0.3/V. [11]
Py; : probability that the algorithm runs at
high speed, i.e., the number of negotiatio[r%zl
rounds it can take to reach a solution is not
more than the greatest integer0.5N.

P, : probability that the algorithm runs at low
speed, i.e., the number of negotiation roungss]
it can take to reach a solution exceells

All the probabilities of interest defined above are

computed using formul g) where integers is

[14]

the number of initial assignments satisfying the as-
sociated conditionsipon termination of algorithm [1°]
and integery is the total number of different initial

assignments input for simulation.= N.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El
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