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Supervising Passenger Land-Transport Systems
Kiam Tian Seow,Member, IEEE, and Michel Pasquier

Abstract— In this paper, we propose a supervisory control
approach, based on controlled automata concepts, to the planning
for online service-operations control of a new class of Passenger
Land-Transport Systems (PLanTS’s). A PLanTS belongs to
a class of dynamic demand-responsive transportation systems.
Rapid advances in information and communication technolo-
gies are providing a new infrastructural and communications
basis upon which higher levels of automation, flexibility and
integration in the development of such transportation systems
can be achieved. But to achieve these necessitates the use of
more formal approaches for system planning and design. The
supervisory control theory of Ramadge and Wonham offers one
such methodology that presents the design for service-operations
control as a formal synthesis of a modular supervisory controller.
Importantly, the design solution is guaranteed to satisfy the
given behavioral specifications in some optimal fashion, without
blocking the completion of certain defined ‘mandatory’ tasks.
The supervisory design methodology is presented and illustrated
in detail via what in our opinion is a simplified but realistic
PLanTS model. A structural property of the PLanTS model is
used to analytically establish thenonblocking property of the
modular supervisory controller designed. All automaton models
for the PLanTS and the behavioral specifications consideredare
provided, together with the automata design of the corresponding
modular supervisor.

Index Terms— Automata, Discrete-Event Systems, Supervisory
Control, Passenger Land-Transport, Service-Operations

I. I NTRODUCTION

Passenger land-transportation systems are concerned with
transporting travellers from their source locations to their
destination locations in a fleet of carrier vehicles, subject to
various qualitative and quantitative constraints. These con-
straints characterize the environmental traffic conditions in
which the services of transportation are carried out, as well
as the operating conditions, limitations and preferences of the
vehicle fleet operators and travellers. Taxi service management
is an example of such a system. These systems are, however,
open loopin that the logical feedback-control to react to and
interleave the occurrences of incidents (eg. vehicle breakdown
and admission of a travel request) in some desired manner, is
apparently absent, implicit or at best done by way ofad hoc
human intervention. Traditionally, the techniques available for
these systems, such as those surveyed in [1], [2], do notclose
the loop, for they only determine the assignment of travellers
to the fleet vehicles and construct the corresponding vehicles’
service schedules or route plans. The automatic feed back of
dynamically changing logical conditions needed to update the
online information such as the availability of fleet-vehicles

K.T. Seow is with the Division of Computing Systems, School of Com-
puter Engineering, Nanyang Technological University, Republic of Singapore
639798.asktseow@ntu.edu.sg

M. Pasquier is with the Division of Computer Science, Schoolof Com-
puter Engineering, Nanyang Technological University, Republic of Singapore
639798.asmbpasquier@ntu.edu.sg

and the status of travel requests has never been formally
characterized and explored. In other words, a basic research
problem in passenger service-operations lies in theopen loop
nature of the information process flow in these transportation
systems.

With rapid advances in information and communication
technologies, such as Internet Technology [3], [4], Geographic
Information Systems GIS [5], [6], Global Positioning Systems
GPS [7], [8] and Intelligent Transportation Systems ITS [9],
a new infrastructural and communications basis has emerged
upon whichthe information loop can be closedto potentially
achieve higher levels of automation, flexibility and integration
towards the development of new transportation systems. But
to achieve these necessitates the use of appropriate formal
approaches for system planning and design. In particular,
an alternative but complementary framework is needed that
views a fleet of service vehicles and travellers uniformly
as behaviour-basedcomponents, subject to various logical
constraints to be met under close-loop supervision, or what
we call service-operations control.

In this paper, we consider online service-operations con-
trol of a class of Passenger Land-Transport Systems
(PLanTS’s). A PLanTS is a system that receives and services
geographically-distributed travel requests, not knowna priori,
that demand immediate (i.e., ‘as-soon-as-possible’) service. It
belongs to a class of dynamic demand-responsive transporta-
tion systems [10]. In an attempt to model and understand
the dynamics of discrete information flow in the service-
operations control of aPLanTS, we address the service-
operations control problem using the controlled automata
concepts and techniques of supervisory control for a class of
logical discrete-event systems [11], [12], [13], [14], [15].

We model the service-operations in aPLanTS as a discrete-
event system (DES) of interacting processes to be supervised
or controlled. DES’s represent dynamic systems that evolvein
accordance to some abrupt and asynchronous occurrence of
events. Such systems are encountered in a variety of many
other fields, for example, in computer and communication
networks [16], [17], manufacturing [18], [19] and task-level
robotics [20].

To the best of our knowledge, our work represents a first
effort to apply control-theoretic ideas of supervisory control
to this class of transport service-operations problems. The
approach is based on information feedback on the occurrence
of events (see Fig. 1). Accordingly, the approach centres
around three related elements, namely,

1) the models of the system (as discrete-event systems
DES’s) to be controlled,

2) the models of the control objectives (also called behav-
ioral specifications) to be satisfied, and

3) a supervisory controller to be synthesized.
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Fig. 2. The Logical Control Framework

These are graphically depicted in Fig. 2. The proposed
methodology admits the design for service-operations control
as an automata-based synthesis of a modular supervisory
controller for thePLanTS. Other techniques such as Petri
nets [21], [22] and communicating sequential processes [23]
may be exploited, but the proposed methodology offers the
following important advantages over these approaches:

1) the supervisory controller is correct by automatic con-
struction, such that the resulting controlled system does
not contradict the behavioral specifications, and is non-
blocking; and

2) the controlled system is optimal (orminimally restric-
tive) within the behavioral specifications, such that all
events whose occurrences do not eventually contradict
the specifications are allowed to occur.

In other words, the design solution is guaranteed to satisfy
given behavioral specifications (eg., vehicle seat-capacity must
not be exceeded) in some optimal fashion, without blocking
the completion of certain defined ‘mandatory’ tasks such as
emptyingthe service-queue. A formal and conceptually rich
control synthesis softwareCTCT [11] is now freely available1

to support the automatic synthesis of supervisory controllers.
Using CTCT , a DES model, behavioral specification and
supervisory controller are represented by finite state automata
that allow qualitative information such as theadmission of a
travel requestand theassignment of a request to an available
vehicleto be treated in a uniform way as events which are the
state transitions in the automata.

In automating service-operations for passenger land-
transportation, it is not exactly clear what constitutes a DES
model for a PLanTS. Strictly speaking, no known prior
and related work on service-operations control of a demand-
responsive transportation system has been formally done from
which a suitable DES model can be abstracted. However, a

1CTCT design software can be downloaded from website
http://www.control.toronto.edu/people/profs/wonham/wonham. html

service-orientedmodel for a general transportation system
exists [24] which conceptually specifies three submodels of
demand, supplyanddemand-supplyinteractions. Our starting
point is based on this conceptual model but seen from a
supervisory control perspective. Together with a general un-
derstanding of the conventional but related problems of vehicle
assignment and route planning (and the variations thereof)
[1], [2], [10], we abstract and fix, in Section IV, what in our
opinion is a simplified but realistic DES model for aPLanTS.
The DES model incorporates the behavioral components of
service demand by travellers and service supply by a fleet of
vehicles. Importantly, thePLanTS model provides a basis on
which various interesting behavioral specifications of interest
representing the desired demand-supply interactions can be
formulated, lending a unique opportunity to demonstrate the
applicability of modular supervisory control theory to this
problem. In our analysis, in Section IV-C.1, of a property
that the PLanTS model has, we have also been able to
infer some structural insights on a general DES model design
which guarantees the nonblocking property in a supervisory
controller that exists. These constitute the main contributions
of this paper.

There has been some prior work on applying the supervisory
control theory in different areas of intelligent transportation.
For instance, Spathopoulos and de Ridder [25] consider the
DES modelling and distributed supervisory control of a sub-
way system. Yoo et al [26] design and verify a supervisory
controller for a high-speed train. However, these past research
has restricted itself to the supervision of a physical system such
as a train or subway system modelled as a DES. As opposed
to a physical oriented model, the research herein attempts
to characterize, understand and supervise a service oriented
model for a demand-responsive transportation system.

There has also been a lot of prior work done which is
applicable to intelligent transportation. For instance, in the
survey papers [1], [2], [10], [27] that include those cited
earlier, algorithms based on heuristics, tabu search, constraint
model and mathematical programming have reportedly been
developed for the related problems of vehicle assignment
and route planning. However, these algorithms are aimed at
generating vehicle assignments and route plans that optimize
(i.e., minimize or maximize) somequantitativeperformance
specifications such as some cost or benefit functions. In
contrast, the service-operations control problem addressed
herein is aimed at regulating the flow of service-related events
in passenger land-transportation in accordance to qualitative
specifications, and is thus related but incomparable with these
existing efforts.

The rest of the paper is organized as follows: Section
II reviews the formulation and concepts of the supervisory
control theory that are relevant to our research. Section III
presents the supervisory design methodology to address the
supervisory control problem in transport service-operations.
Section IV illustrates the design methodology via a simplified
but realisticPLanTS. All automaton models for thePLanTS
are provided, together with the automata design of a modular
supervisor that ensures proper service-operations according
to a given set of behavioral specifications. Finally, Section
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V presents the conclusions and points to some future work.
Preliminary versions of the research work appeared in [28],
[29].

II. REVIEW OF SUPERVISORYCONTROL THEORY

The control theory for discrete-event systems (DES) con-
sidered in our work is based on controlled automata concepts.
The essential concepts and results reviewed are taken from
[11] and can also be found in [13], [14], [15].

A. Discrete-Event Behaviour

1) Automaton Model:The behaviour of DES, such as (the
service-operations of) aPLanTS, and behavioral specifica-
tions, can be modelled by finite state automata [30] at some
appropriate level of abstraction. An automaton is a five-tuple

A
def
= (Σ, Q, δ,Qm, q0)

in which
1) Σ denotes a finite set of transitions or event labels,
2) Q denotes a finite set of states,
3) δ : Σ×Q 7→ Q is a state transition function,
4) Qm denotes a finite set of marked states (states indicat-

ing the completion of the tasks or sequences of tasks
from a control perspective), and

5) q0 ∈ Q denotes the initial state.
Finite state automata are naturally described by directed-
transition graphs. In order to represent the automatonA, a
stateq ∈ Q is identified by a node (represented by•) of the
graph whose edges are labelled by transition labelsσ ∈ Σ
(represented by•

σ
−→ •. The initial stateq0 ∈ Q is labelled

with an entering arrow→•, while a marked stateqm ∈ Qm

is labelled with an exiting arrow•→. Whenq0 ∈ Q is also a
marked state, it is labelled with a double arrow↔•.

2) DES as Composition of Automata:Consider an automa-
ton G modelling (the behaviour of) a DES. A DES model
G is usually modelled as a system of several interacting
processes, each modelled by an automatonGi. To compose
several automataGi to obtain the global automatonG, the
idea ofsynchronousproduct of automata taken from [23], [11]
is utilized.

G = G1 ‖ G2 ‖ · · · ‖ Gi,

where ‖ is the composition operator. To elaborate, consider
the case of two automata, i.e., i = 2. Then the synchronous
productG1 ‖ G2 models the behaviourG1 andG2 operating
concurrently, by interleaving sequences generated byG1 and
G2 such that

• events common to both the automata can occur only if
each automata is in a state where such an event is defined;
and

• events that are not common to both the automata may
occur as long as they occur in the order defined by the
respective transition functions ofG1 andG2.

If the event sets ofG1 andG2 are disjoint (i.e., no common
event between the two), the synchronous product reduces
to the shuffle product ofG1 and G2. For a more formal
definition, see Hoare [23].

3) Language Characterizations:The setΣ∗ contains all
possible finite sequences, or strings, overΣ, plus the null string
ε. The definition ofδ can be extended toΣ∗ as follows:

δ(ε, q) = q,

(∀σ ∈ Σ)(∀s ∈ Σ∗), δ(sσ, q) = δ(σ, δ(s, q)).

The behaviour may then be described by two languages:L(A),
the prefix-closed language generated by automatonA, and
Lm(A), the language marked by automatonA. More formally,

L(A) = {s ∈ Σ∗ : δ(s, q0) is defined}

Lm(A) = {s ∈ L(A) : δ(s, q0) ∈ Qm}

By definition,Lm(A) ⊆ L(A) is the subset of strings inL(A)
which end in any of the states inQm and is a distinguished
subset - if automatonA represents a DES, thenQm is meant
to represent completed ‘tasks’ (or sequences of tasks) carried
out by the physical process that the modelA is intended
to represent [13]. If automatonA represents (or models) a
behavioral specificationK, thenK = Lm(A), the behaviour
of interest.

An automatonA is said to be trim if it is accessible (i.e.,
every stateq ∈ Q is reachable inA) and co-accessible (i.e.,
every stateq ∈ Q is co-reachable inA). A state q ∈ Q
is reachable inA if there exists a stringw ∈ Σ∗ such that
δ(w, q0) = q; and co-reachable inA if there exists a string
w ∈ Σ∗ such thatδ(w, q) ∈ Qm. Note that if automatonA is
trim, thenL(A) = Lm(A), i.e., every string inL(A) can be
completed to a string inLm(A).

B. Control Formulation and Concepts

As formally described in Section II-A, a DES (or plant)G
can be modelled by an automaton:

G
def
= (Q,Σ, δ, q0, Qm).

To establish the control framework, the event setΣ is par-
titioned into disjoint sets ofcontrollable eventsΣc and un-
controllableeventsΣu. Controllable events can be prevented
(i.e., ‘disabled’) or allowed (i.e, ‘enabled’) by control,while
uncontrollableevents cannot be disabled by control and are
deemed permanently enabled. The basic problem [13], [15] in
supervisory control is to design a supervisory controller whose
task is to enable or disable each of the controllable events
during its observation of the event sequence generated by DES
G, such that the resultant closed-loop system generates only
a subset ofL(G). Conceptually, a supervisory controllerS
consists of two components:

S = (S,V) (1)

where supervisorS = (X,Σ, ζ, x0, Xm) is an automaton
called recognizer, and control lawV : X 7→ 2Σ is the
state feedback map. In a typical closed-loop configuration as
shown in Fig. 1, the supervisor and the DES interact with each
other via what is called ‘event-feedback’ throughV(x). The
automatonS, as a language acceptor, is driven by the string
of events generated by DESG and fed back toS, which in
turn, with S in statex ∈ X , the next set of eventsσ ∈ Σ of
DESG are subjected to the control lawV(x) such that only
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events inV(x) are enabled. Note then that such a supervisor
may be dynamic in the sense that not all strings of events of
the DESG that lead to the same state will necessarily result
in the same control action at that state. In a supervisor, the
strings generated by the controlled system will always bring
its automatonS to a defined state inX through the transition
function ζ (see [13]). Consequently, the closed-loop system
S/G, called the supervised or controlled DES, is another
automaton which is defined as

S/G = Accessible(X ×Q,Σ, (ζ × δ)V, (x0, q0), Xm ×Qm)

where(ζ × δ)V : Σ×X ×Q 7→ X ×Q is defined as

(ζ × δ)V(σ, x, q) =











(ζ(σ, x), δ(σ, q)) if σ ∈ V(x) and
both transitions
are defined

undefined otherwise

For aproper supervisory controllerS, at (x, q) ∈ X ×Q,

σ ∈ V(x) iff ζ(σ, x) andδ(σ, q) are both defined,

such that
Σu(q) ⊆ V(x),

whereΣu(q) = {σ | δ(σ, q) is defined andσ ∈ Σu}. Hence-
forth, unless otherwise stated, a supervisory controller is
assumed to be proper.

Let Σ(q) = {σ | δ(σ, q) is defined andσ ∈ Σ}. Then, with
S in statex ∈ X andG in stateq ∈ Q,

V(x) = Σ(q)−V(x),

whereV(x) defines the subset of eventsσ ∈ Σc disabled at
x ∈ X .

In general, a supervisory controllerS can be decomposed
into two or more subsupervisors, giving rise tomodular
supervision. In the case of a modular supervisorS consisting
of two supervisory controllersS1 andS2 given by

S1 = (S1,V1) andS2 = (S2,V2),

we denoteS by
S = S1 ∧ S2,

such that

x = (x1, x2) andV(x) = V1(x1) ∩V2(x2).

Then, withS in statex = (x1, x2) ∈ X andG in stateq ∈ Q,

V(x) = Σ(q)−
2⋃

i=1

Vi(xi),

and in this sense, we say that these two subsupervisors jointly
enable (or disable) events. The above notion of modular
supervision can be readily extended to more than two sub-
supervisors.

The behaviour of the supervised DES is described by
the languagesL(S/G) = L(S) ∩ L(G) and Lm(S/G) =
Lm(S) ∩ Lm(G). ClearlyLm(S/G) ⊆ L(S/G). Supervisor
S is said to be nonblocking if

Lm(S/G) = L(S/G),

i.e., every string inL(S/G) can be completed to a string in
Lm(S/G).

C. The Nonblocking Supervisory Control Problem

The basic supervisory control problem considered [13], [15]
is as follows:

Given a DES automatonG over an event setΣ, with the
associated languagesL(G) and Lm(G), and a behavioral
specification (or control objective)K ⊆ Σ∗, the supervisory
control problem is to find a (proper) nonblocking supervisory
controller S such thatLm(S/G) ⊆ K (or we say the DES
under nonblocking control,S/G, satisfies specificationK).

What this framework captures is a DES (finite-state ma-
chine)G and a behavioral specification describing a desired or
legal behaviourK, with a supervisory controller being sought
so that only desirable sequences ofLm(G)∩K are generated.

1) A Centralized Solution:To provide a solution to the
above problem, the notion of language controllability is in-
troduced. A languageM ⊆ Σ∗ is said to be controllable with
respect toG if

MΣu ∩ L(G) ⊆ M,

whereMΣu = {sσ| s ∈ M andσ ∈ Σu}. This controllability
condition requires that if anyw ∈ M , i.e., any prefix of a
string inM , followed by an uncontrollable eventσ ∈ Σu is in
L(G), thenwσ ∈ M , i.e.,wσ ∈ L(G) must also be a prefix
of a string inM .

Now, suppose there is as ∈ K such thatsσ ∈ L(G) is
not in K. Then,sσ 6∈ K. So, if σ ∈ Σu, no S exists that can
exercise control to guaranteeLm(S/G) = K. In this case,
we say thatK is not controllable with respect to DESG. But
a largest or supremal controllable sublanguage (possibly∅)
of the marked languageK ⊆ Lm(G) with respect toG can
always be found [14]. It is denoted bysupC(K,G) ⊆ K and
is a solution languageL(S) for the nonblocking supervisory
controller S such thatLm(S/G) ⊆ K. To emphasize, the
supervisory controllerS is maximally permissive, i.e., it
disables events in DESG only when absolutely necessary, as
evident from the fact that the sublanguagesupC(K,G) ⊆ K
generated as a result is the largest.

2) A Modular Solution:Let A1 andA2 be two automata.
Then the prefix-closed languagesL(A1) andL(A2) are said
to benonconflictingprovidedLm(A1) ∩ Lm(A2) = L(A1)∩
L(A2). If A1 = (A1,V1) is a supervisory controller (of the
form (1)) forA2, thenA1 is a nonblocking supervisor forA2

providedL(A1) andL(A2) arenonconflicting.
With the above definitions, the result on modular supervi-

sion, readily extendible to more than two subsupervisors, may
be given as follows:

If

1) L(S1) and L(S2) are each controllable with
respect to DESG,

2) L(S1) ∩ L(S2) andL(G) are nonconflicting,

thenS1∧S2 is a nonblocking (modular) supervisory
controller for DESG.

A generic softwareCTCT [11] is now available to support the
automatic synthesis of supervisory controllers. The DES and
behavioral specification are input as automata to the software
CTCT ; operations supported byCTCT include composition
of automata, supremal controllable sublanguage computation
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for a given behavioral specification with respect to the DES of
interest, as well as a nonconflict test between two languages.

III. D ESIGN METHODOLOGY

To encompass the components of the supervisory control
framework (see Fig. 2), the methodology to facilitate the
planning for online supervision of aPLanTS consists of the
following steps:

1) Modelling thePLanTS and Behavioral Specifications
Both the service-operations process behaviour of a typ-
ical traveller and vehicle and the behavioral specifica-
tions are modelled as DES’s translated into the form
of automata. The modelling of the service-operations
processes should also, through appropriate abstractions,
take into account of the dynamic vehicle assignment
(and routing) capabilities [27], [31] that an underlying
planner is assumed to possess. More will be said about
this planner later.

2) Synthesizing the Supervisor and Control Law
Taking into account the supervisory control architec-
ture adopted (for example centralized or modular), the
automata representing the system of service-operations
processes to be controlled and the automata representing
the corresponding behavioral specifications are fed to the
control synthesis programCTCT [11]. CTCT will tell
us whether it is possible for the system to behave within
the specifications and return the supervisor(s) and the
corresponding control law(s) that ensure the controlled
behaviour of the system is maximally permissive within
the latter specifications.

3) Simulating the Supervisor and Control Law
The supervisory control system is simulated to evaluate
its effectiveness in that it takes appropriate actions in ac-
cordance to the supervisor(s) and corresponding control
law(s). By default, all controllable events are assumed to
be disabled. Let automatonS denote a supervisor, and
G, the PLanTS model. Then the simulation allows an
enabled event as input (to simulate its occurrence), and
control evaluation updates the current statex of S to, say
x′ and subsequently produces the corresponding control
V(x′) - the updated (online) permission set - only
from which the next enabled event can be input. Only
transitions inV(x) are events enabled or permitted to
occur, and their occurrences never result in any eventual
contradiction of the behavioral specifications; in this
manner,V(x) keeps the system operations within the
behavioral specifications.

Generally speaking, specifications should encompass the most
desired2 dynamic but orderly conditions under which a subset
of vehicles in a given fleet is chosen, from which the admitted
travel requests can be assigned to based onquantitative
specifications asserting the desiredquality of serviceto be
achieved. Thesequantitativespecifications are of course to
be met by the underlying planner; the extent to which they
would be met depends on various factors the planner considers,

2What is meant by ‘most desired’ is decidedly a subjective opinion of the
system analyst.

such as the vehicle assignment and route planning techniques
used, the task-execution capabilities of the vehicle fleet and
the accurate update of traffic information by the surveillance
system. How the many existing algorithms - basic and applied
- as reported in the literature (see [10], [27], [2], [32] andthe
references contained therein) might be exploited to address
the related optimization problems of vehicle assignment and
route-planning under close-loop supervision are beyond the
scope of this paper. In the terminology of DES [11], the
planner can be viewed as part of the underlying ‘decision-
making engine’ ofPLanTS that is capable of some ‘choices’
of spontaneous occurrences of events, including assignment
and reassignment events denoted respectively byasij andrasij
as precisely defined in Table II of Appendix I. These events
are decision ‘outputs’ of the planner underlying our illustrative
PLanTS model as described in the next section.

IV. A S IMPLE AUTOMATED PLanTS

In this section, the design of a modular supervisory con-
troller for a PLanTS using the methodology discussed in
Section III is presented in detail.

A. Problem Description

In the scenario considered, travel requests are randomly
initiated, geographically distributed, and require immediate or
emergency attention. Each request is associated with only 1
person. The transport fleet is homogeneous. It consists of a
small fleet ofN vehicles and has a small seat capacity ofCs

requests per vehicle and an assignment capacity ofCa requests
per vehicle. The assignment-capacityCa of a vehicle refers to
the maximum number of requests that can be assigned to, but
are yet to be fetched by the vehicle.

1) ThePLanT System Components:The main behavioral
components are described as follows.

1) Initiator Behaviour: This is a simple process that initi-
ates the start and end of the transport service-operations.

2) Vehicle Behaviour: From an initialshutdownor idling
state, each vehicle can be service-started or restarted. In
the service-readystate, two possibilities are the vehicle
ending its service-operations, or breaking down during
operation. By the former occurrence, the vehicle returns
to its idling state. By the latter, it falls into thebreak-
down state; repair and maintenance are then needed to
get it to return to its initial state. In any state, it is
possible that the vehicle gets trapped-in or out-of a traffic
jam. The vehicle’s task is considered completed once it
ends its operations and is out of the traffic jam.

3) Traveller Behaviour: From the service-operations view-
point, once a traveller is admitted for service, his request
can possibly be cancelled either by the system or him-
self, or assigned to a particular vehicle by the underlying
planner, after which the request cannot be cancelled
unless the timeout set occurs before he boards the
vehicle. While in a vehicle, the traveller has the options
of making an urgent call (for another vehicle’s service)
or leaving the vehicle. The service-task is considered
completed once the traveller exits the system.
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2) Resource LimitsN , Cs and Ca: In our current work,
we consider the following limits: Number of VehiclesN =
3, Vehicle Seat-CapacityCs = 2 and Vehicle Assignment-
CapacityCa = 1. These limits determine the upper bound on
what we termsystem processing limit, as discussed next.

3) System Processing LimitM ≤ N(Cs+Ca): The system
processing limitM is assumed to be the maximum number of
travellers that can be concurrently serviced without degrading
the performance of the underlying planner. Then, in general,
the upper bound of the limitM , denotedMupp, is N(Cs +
Ca) - the total of the maximal service-capacity(Cs +Ca) of
each vehicle that can possibly be concurrently utilized. Bythe
resource limits in our current work,Mupp = 9, but we assume
M = 4 ≤ 9.

4) The Behavioral Specifications:The specifications to be
conformed to via supervisory control are described below. In
the context ofPLanTS, these specifications are to be satisfied
without ‘blocking’ or preventing the completion of any of the
following mandatory ‘tasks’:

• the emptying of the service-queue and all service-
vehicles,

• the service-terminationof all service-vehicles in normal
traffic conditions.

1) Service Start-Up / Shutdown Operations

a) Request Admission:Once system operation-start
has been initiated, all vehicles must be ready
for service first before any travel request can be
admitted.

b) Service Continuity: During system operation, no
vehicle is allowed to end its individual service-
operations until the system operation-stop has been
initiated, in which case no more travel requests
will be admitted, and no vehicle will be service-
restarted.

2) Service Incident-Response Operations

a) Vehicle Traffic Jam: When a vehicle is caught in
a traffic jam, no task (i.e., travel request) already
assigned to another vehicle is allowed to be reas-
signed to the vehicle until it is out of the jam.

b) Limit on Service-Capacities:

i) Vehicle Seat-Capacity: The number of trav-
ellers (tasks-in-execution) in a vehicle must not
exceed its seat-capacity ofCs.

ii) Vehicle Assignment-Capacity: The number
of (pending) assignments for a vehicle must
not exceedCa. Once assigned to a particular
vehicle, a travel request must not be serviced
by any other vehicle unless it is re-assigned or
timeout occurs.

A vehicle will not end its service-operations when
its service-capacity (i.e., either seat or assignment
capacity) is not empty.

c) Emergency Requests:A traveller can make an
emergency call to request service by another vehi-
cle only when the vehicle servicing him has broken
down.

d) Vehicle Breakdown:When a vehicle breaks down,
no further assignment or reassignment will be
given to it, nor will any traveller be allowed to
enter it unless it is service-restarted.

e) Fleet Service-Diligence:Once system operation is
ready, no vehicle is allowed to end its individual
service-operations when the pending travel request
‘queue’ is not empty.

B. Modelling forPLanTS and Behavioral Specifications

Formalizing, thePLanTS’s component processes and the
behavioral specifications introduced above are embodied in
automata shown in Appendix I and listed in Table I therein.
The event definitions are given in Table II of Appendix I. The
trim automaton modelG for PLanTS is a composition of its
component processes via synchronous product [23], [11] as
discussed in Section II-A.2. The completion of the mandatory
tasks of thePLanTS is represented by a marked state which
is formed by collecting together the marked state in each of
thePLanTS’s component processes. The ‘Number’ column in
Table I indicates the number of automata in each category for
the PLanTS with N = 3 andM = 4.

C. Supervisor and Control Law Synthesis

In this section, we first discuss, in relation to the notion
of language nonconflict, the special structures of the automata
representingPLanTS model and all the behavioral specifica-
tions considered. These structures help to analytically establish
the nonblockingproperty of our modular supervisor design.

1) Special Structures and Nonconflicting Languages:The
trim structure of the automaton modelG for PLanTS is such
that there exists a string of uncontrollable events that leads
any unmarked state in the structure to a marked state (which
is the initial state) of the system. This property is formalized
as follows.

Property 1: At any ‘unmarked’ stateq ∈ Q−Qm of DES
modelG

def
= (Σ, Q, δ,Qm, q0), there exists a stringt ∈ Σ∗

u

such thatδ(t, q) ∈ Qm.
In the following, Property 1 and the notion of language non-

conflict [11] (reviewed in Section II-C.2) are used to establish
Theorem 1. As the subsequent section will show, this theorem
allows us to analytically establish the second condition (as
in Section II-C.2) of nonblocking modular control synthesis
[11], [15] for PLanTS, withoutdirectly testing the property of
language nonconflict which, for the whole set of specification
automata considered (as shown in Appendix I-B), is found
to be infeasible for theCTCT software to verify, due to the
large state space complexity of intersecting these behavioral
specifications.

Theorem 1:A controllable prefix-closed languageL(A),
with automatonA having the property ofG-closure [13], i.e.,

if s ∈ L(A) ∩ Lm(G), then s ∈ Lm(A),

is nonconflictingwith (the prefix-closed language of) a DES
modelG that satisfies Property 1 .

Proof: Given that the prefix-closed languageL(A) is
controllable with respect toG. Then, supposeL(A) conflicts
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with L(G); this means that there exists a prefixs ∈ L(A) ∩
L(G)−Lm(A) ∩ Lm(G); δ(s, q0) ∈ Q−Qm (i.e., prefixs is
not marked by automatonG) since automatonA is G-closed.
By Property 1, there exists at ∈ Σ∗

u such thatst ∈ Lm(G).
But st 6∈ Lm(A) (because prefixs cannot becompleted to
a marked string inLm(A) ∩ Lm(G) ). Clearly st 6∈ L(A)
since automatonA is G-closed, thus contradicting the fact
thatL(A) is controllable.

Remark 1: It is easy to re-designate some unmarked states
as marked states to transform a given automaton into an
automatonA that is G-closed. Therefore, we can readily
infer from Theorem 1 that an arbitrary DES model design
that satisfies Property 1 will guarantee nonblocking in a
supervisory controller (A, V) that exists.

2) Nonblocking Modular Synthesis:The trim automaton
G obtained forPLanTS has 559,872 states and 11,197,440
transitions ! Fortunately, we could find a simpler trim model
G

′ for PLanTS, having 110,592 states and 2,875,392 tran-
sitions, that renders the control computation usingCTCT
feasible. The control synthesis with respect to modelG

′ is
the same as that with respect to modelG, the elaboration of
which is given in Appendix I-A. The automata representing
the behavioral specifications are shown in Appendix I-B, and
arbitrarily referenced herein asSk. UsingCTCT on modelG′,
each prefix-closed languageL(Sk) is found to be controllable
with respect toPLanTS modelG. Hence the overall prefix-
closed language (

⋂

all k

L(Sk)) is also controllable [11]. Let

L(A) =
⋂

all k

L(Sk), with automatonA being the (reachable)

cartesian product of allSk; hence,Lm(A) =
⋂

all k

Lm(Sk). By

inspection, each simple automatonSk (as in Appendix I-B) is
G-closed; it then follows that automatonA is alsoG-closed
and hence, by Theorem 1,

⋂

all k

L(Sk) is nonconflicting with

G. Thus, according to the modular control result [11], [15]
(reviewed in Section II-C.2),

∧

all k

Sk, whereSk, in coded form,

is shown in Appendix II, can serve as a modular supervisory
controller which, when acting in synchrony withPLanTS, is
nonblocking with respect to those mandatory ‘tasks’ defined
at the beginning of Section IV-A.4, and therefore generates
the largest (‘marked’) sublanguage of thePLanTS model that
lies within the overall specificationLm(A).

D. Supervisor and Control Law Simulation

To illustrate that the supervisory subcontrollers thus ob-
tained jointly enable or disable events correctly, the following
case is simulated.

Proper Start-Up/Shutdown:The following two sequences

test the specification
3⋂

i=1

Lm(Vi SUDSP), (where automaton

Vi SUDSP is shown in Fig. 6). Note that these test (prefix)
sequences are feasible sequences ofPLanTS, and violate only
the specification under test.

By sequence 1:tstart, st1, st2, ad2, ...,
the system operation-start is successfully initiated, butonly

vehicle 1 and vehicle2 are ready for service when travel
request2 is admitted, thus violating the specification which
requires all vehicles to be ready first after startup before
any request can be admitted. Indeed, the simulation succeeds
because only the eventststart, st1, st2 can be input in that
order; eventad2 cannot be input thereafter because it is
disabled.

By sequence 2:tstart, st1, st2, st3, end1, ...,
the system operation-start is successfully initiated and com-
pleted with all vehicles ready for service when vehicle 1 ends
its service-operations, thus violating the specification which
requires an order of shutdown (eventtstop) to be given first
before any vehicle could end its individual operations. Again,
the simulation succeeds this time because eventend1 cannot
be input at that respective instance.

V. CONCLUSION AND FUTURE WORK

Our initial study reported herein suggests that the theory of
supervisory control [11] provides a useful framework for cap-
turing the high-level structure of a dynamic service-operations
manager for aPLanTS. The structure is realized in the form
of a permission-basedsupervisory policy. The supervisory
control theory offers a simple methodology for describing the
event-based characteristics of aPLanTS and for determin-
ing the existence of nonblocking supervision. If nonblocking
supervision exists, it is guaranteed that thePLanTS under
such control will satisfy the behavioral specifications in the
least restrictive manner without preventing (or ‘blocking’) any
‘marked’ service-operations task from completion. Besides,
changing the desired behavior of thePLanTS is a matter of
adding or removing a behavioral specification.

In the domain of planning for passenger transport-service,
the supervisory control framework serves to provide a new
basis to support the systematic development for online super-
vision of PLanTS. In this research, a modular approach using
at least two subsupervisors to jointly track the behavior of
PLanTS is considered. Importantly, the modular supervisor
designed is structurally very simple and it issues permissions
V(x) that form the necessarylogical condition for the online
validity of the vehicle assignment and route plans generated
by the underlying planner.

The state space complexity which arises from intersection
of all L(Sk), where Sk refers to the automaton of each
behavioral specification given in Appendix I-B, prohibits the
use of theCTCT software to verify the property of nonconflict
between

⋂

all k

L(Sk) and L(G). But, fortunately, by exploit-

ing the special structures of thePLanTS model G and all
Sk, as formally discussed in Section IV-C, the property of
nonconflict, and hencenonblockingfor modular supervision,
could be verified. The structural property of thePLanTS
model provides a practical guide to general DES model design
which guarantees the nonblocking property in a supervisory
controller that exists.

It is hoped that in the future, progress on supervisory control
will render the complexity problem more manageable, so
that a more capable transport-service planner in terms of a
larger N , Cs and Ca may be deployed using the proposed
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supervisory control approach. Note that in our illustrative
supervisory design for thePLanTS, the system limitM is
restricted to only 4 for a fleet of 3 vehicles (N = 3). Our
conjecture about the design is that it is ‘scalable’ in the
sense that the controllability and nonconflicting properties of
the corresponding modular supervisor can be preserved for
the same set of behavioral specifications andPLanTS, but
extended accordingly to account for a largerN > 3 and
M > 4.

Finally, the hybrid architectural issues of developing the
underlying planner to perform lower-level tasks such as dis-
tributed vehicle assignment and route planning under close-
loop supervision would need to be defined and investigated.

APPENDIX I
MODELS

A. For PLanTS

The vehicle identification number (ID) isi, 1 ≤ i ≤ N , and
the admitted traveller ID isj, 1 ≤ j ≤ M . In the PLanTS
considered,N = 3 andM = 4. In the ‘Code No.’ column of
Table II are theCTCT code representations of the various
events in PLanTS. For instance, eventas31 - ‘Traveller 1
assignment to Vehicle3’ - is arbitrarily represented inCTCT
as 115, an odd number denoting that it is controllable, while
eventleave23 - ‘Traveller 3 leaves Vehicle 2’ - is represented
as 362, an even number denoting an uncontrollable event.

Composing (via synchronous product [11]) the trim au-
tomaton for Travellerj (as shown in Fig. 4(b)) and all
the N automata (as shown in Fig. 5) yields another trim
automaton (conveniently referenced asTNj) for Traveller j
which includes the ‘natural’ constraint that Travellerj can only
leave the vehicle he has entered (not any other vehicle !). We
call these automataentry-exitlaws when we refer to the kind of
constraint they impose, via composition, on the automaton for
Travellerj (as shown in Fig. 4(b)). Referring to our illustrative
PLanTS with N = 3 and M = 4, incorporating the set
of M such composed automataTNj (each of 6 states and
18 transitions) instead via synchronous product results inan
overall automaton modelG for PLanTS having 559,872 states
and 11,197,440 transitions ! For the behavioral specifications
that we consider, the control synthesis with respect to this
resultant PLanTS model G is beyond the computational
capacity ofCTCT running on a personal computer with a
200MHz CPU and 64MB memory. Fortunately, feasibility of
control computation usingCTCT can still be achieved by
considering only the trim automaton that has a smaller state
size (of 4 states and 18 transitions as shown in Fig. 4(b)) as
the behavioral process of Travellerj. TheN entry-exit laws
consist only of events in this trim automaton for Travellerj,

tstop

tstart

tstop

tstart

Fig. 3. System Initiator: Initiator Process in aPLanTS
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iend
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i
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i
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i
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1 ≤ i ≤ N , 1 ≤ j ≤ M

Fig. 4. Basic Service-Operations Processes in aPLanTS

1
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1

1,

j

j

ecall

leave

2
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2

2,

j

j

ecall

leave

N
jenter

N
j

N
j

ecall

leave ,

1
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1
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j

j

ecall

leave

2
jenter

2

2,

j

j

ecall

leave

N
jenter

N
j

N
j
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leave ,

Fig. 5. Mechanism Underlying Travellerj, 1 ≤ j ≤ M

and composing all of them yields another trim automatonTNj

for Traveller j that only excludesthe obviously impossible
situations of Travellerj in one vehicle leaving another vehicle.
Hence, theseN laws effectively form a component of the
PLanTS’s underlying engine for the behavioral process of
Travellerj. It is thus practically inconsequential to supervision
(that exists) whether or not these automata-theoretic lawsare
directly incorporated into the overall model forPLanTS, but
by not doing so, aPLanTS model G′ (of 110,592 states
and 2,875,392 transitions) with a much smaller state size
results, and this renders our control synthesis of individual
specification automata usingCTCT computationally feasible.

B. For Behavioral Specifications

In each of the following specification automata (Figs. 6
through 12), self-loops (not shown) must be adjoined to
account for all events which are irrelevant to the specification,
but which may be executed in thePLanTS model.
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TABLE I

AUTOMATA FOR PLanTS AND BEHAVIORAL SPECIFICATIONS

Process Name Category Automata Number

System Initiator - Fig. 3 1
PLanTS Vehicle i - Fig. 4(a) 3× 2

Traveller j - Fig. 4(b) 4
Entry-Exit laws in Traveller j - Fig. 5 4× 3

Service Request Admission
Start-Up/Shutdown and Vi SUDSP Fig. 6 3

Operations Service Continuity

Vehicle Traffic Jam Vi TJMSP Fig. 7 3
Service Vehicle Seat-Capacity Vi SEATSP Fig. 8 3

Incident-Response Vehicle Assignment-Capacity Vi AGNSP Fig. 9 3
Operations Emergency Request Vi EMSP Fig. 10 3

Vehicle Breakdown Vi DWNSP Fig. 11 3
Fleet Service-Diligence FLT DILSP Fig. 12 1

TABLE II

EVENTS FORPLanTS MODEL

Process Events –c: controllable (odd no.);u : uncontrollable (even no.) Code No.
System tstart Start of system operation c 01
Initiator tstop End of system operation c 03

Discrete Traffic Change inji Vehicle i caught in traffic jam u i4
for Vehicle i outji Vehicle i out of traffic jam u i6

sti Vehicle i service-start c i1
Service ‘Operational endi Vehicle i service-end c i3
Status’ Behaviour of dwni Vehicle i breakdown u i0

Vehicle i reti Vehicle i return u i2
adj Request admission and label as Travellerj c j01
xxj Traveller j request-cancellation u j02
asij Traveller j assignment to Vehiclei c j1(2i− 1)

Service ‘Demand’ rasij Traveller j re-assignment to Vehiclei c j2(2i− 1)
Behaviour of toutj (Waiting) Time-out for Travellerj u j30
Traveller j enterij Traveller j enters Vehiclei c j4(2i− 1)

ecallij Traveller j leaves Vehiclei and makes emergency call c j5(2i− 1)

leaveij Traveller j leaves Vehiclei u j6(2i− 2)

ist

tstart

ij stad ,

tstop

iend

ist

tstart

ij stad ,

tstop

iend

(Fixed i, Variablej)
Selfloop =Σ− {tstart, tstop, adj , sti, endi}

Fig. 6. Vi SUDSP: Service Start-Up/Shutdown

APPENDIX II
MODULAR SUPERVISORYDESIGN FORPLanTS

The following (Figs. 13 through 19) are the (sub)supervisors
and control laws that constitute the modular supervisory con-
troller designed forPLanTS.

iinj

ioutj

i
jras

iinj

ioutj

i
jras

(Fixed i, Variablej)
Selfloop =Σ− {inji, outji, ras

i
j}

Fig. 7. Vi TJMSP: Vehicle Traffic Jam
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i
j
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j ecallleave,

i
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i
j

i
j ecallleave,i

j

i

leave

end ,

(Fixed i, Variablej)
Selfloop =Σ− {endi, enter

i
j , leave

i
j , ecall

i
j}

Fig. 8. Vi SEATSP: Vehicle Seat-Capacity
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Selfloop =Σ− {endi, as
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Fig. 9. Vi AGNSP: Vehicle Assignment-Capacity
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(Fixed i, Variablej)
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Fig. 10. Vi EMSP: Emergency Requests
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Fig. 11. Vi DWNSP: Vehicle Breakdown
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Fig. 12. FLT DILSP: Fleet Service-Diligence
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(Fixed i, Variablej)
Selfloop =Σ− {01, 03, j01, i1, i3}
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1 {3, i3, j01}
2 {i3}

Fig. 13. Vi SUDCON: Service Start-Up/Shutdown Supervisors
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(Fixed i, Variablej)
Selfloop =Σ− {i4, i6, j2(2i− 1)}

Statex V(x)
0 ∅
1 {j2(2i− 1)}

Fig. 14. Vi TJMCON: Vehicle Traffic Jam Supervisors
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(Fixed i, Variablej)
Selfloop =Σ− {i3, j4(2i − 1), j6(2i − 2), j5(2i − 1)}

Statex V(x)
0 {j5(2i − 1)}
1 {i3}
2 {i3, j4(2i− 1)}

Fig. 15. Vi SEATCON: Vehicle Seat-Capacity Supervisors
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Fig. 16. Vi AGNCON: Vehicle Assignment-Capacity Supervisors
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Fig. 17. Vi EMCON: Emergency Requests Supervisors
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Fig. 18. Vi DWNCON: Vehicle Breakdown Supervisors
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Fig. 19. FLT DILCON: Fleet Service-Diligence Supervisor
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