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Abstract— This paper presents a novel multiagent approach
to automating taxi dispatch that services current bookingsin a
distributed fashion. The existing system in use by a taxi opge
ator in Singapore and elsewhere attempts to increase cust@n
satisfaction locally, by sequentially dispatching nearbytaxis to
service customers. The proposed dispatch system attempts t
increase customer satisfaction more globally, by concurrgly
dispatching multiple taxis to the same number of customers
in the same geographical region, and vis-vis human driver
satisfaction. To realize the system, a multiagent architeare is
proposed, populated with software collaborative agents tht can
actively negotiate on behalf of taxi drivers in groups of sie NV
for available customer bookings. Theoretically, an analyis of
the boundary and optimal multiagent taxi-dispatch situations is
presented along with a discussion of their implications. Egeri-
mentally, the operational efficiency of the existing and prposed
dispatch systems was evaluated through computer simulatis.
The empirical results, obtained for a 1000-strong taxi fleebver a

discrete range of N, show that the proposed system can dispatch

taxis with reduction in customer waiting and empty taxi cruising
times of up to 33.1% and 26.3%, respectively; and up to 41.8%
and 41.2% reduction when a simple negotiation speedup hesiic
was applied.

Note to Practitioners— With the liberalization of the taxi
industry in Singapore and elsewhere, keener competition aong
taxi operators has emerged. We believe the taxi operator tha
leads the competition will be the one with the best automated
taxi dispatch system, offering the highest cost productity and
customer satisfaction. Our research is motivated by the in@asing
need for better automated approaches to match customer sene
requests and taxis, whose arrival and availability, respeively,
might be sporadic or not known a priori. In this paper, we
propose a novel multiagent system, calledvTuCab dispatch, to
automate taxi dispatch in a distributed fashion. Our experiments
for a 1000-strong taxi fleet show that NTuCab dispatch can
outperform existing centralized dispatch in terms of redudion
in customer waiting and empty taxi cruising times, when both
leverage on real-time traffic information for shortest-time path
computation over a road network as proposed in [2]. Additiorally,

NTuCab dispatch can be implemented on an existing techno-

logical infrastructure, providing the opportunities to harness
the existing power of multiple intelligent transportation systems
technologies. A more efficient dispatch system can help magin
a higher standard of customer service vis-vis human driver
satisfaction, especially when the demand for taxi servicesi
manageable for the fleet size. In future research, we will nek
to add more features and investigate their effectiveness wards
achieving overall efficiency, including techniques to inflence and
better match the physical distributivity between service eémand
and available taxi supply in real-time.
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|I. INTRODUCTION

Taxisare a convenient means of paratransit in many coun-
tries, including Singapore. In providing quality custonser-
vice, fast and efficient fleet dispatching is essential. In- Si
gapore, online dispatch of available taxis to current aqusto
bookings is done with the aid of a satellite-based taxi digpa
system; the system utilizes a Global Positioning SystenS)GP
to automatically locate taxis in real-time [3], [4].

In handlingcurrent taxi bookings, the major focus of taxi
dispatch systems has been primarily on reaching individual
customers in the shortest time possible to enhance customer
satisfaction [2]. This means reaching the customers via the
shortest real-time paths possible. However, merely irsinga
individual customer satisfaction, as is the current practice, is a
local endeavor, in that it entails assigning the nearest taxi to a
customer prioritized in a first-come, first-served queughauit
considering the effects of the assignment on other awaiting
customers in the request queue.

In a real world scenario, there are often multiple taxi
service requests (current demand) and multiple taxis aviail
(current supply) in a given time window. To improve taxi
fleet service performance, ideally, we should simultanigous
and optimally assign taxis to service all customer bookings
that are made within the time window. This is a challenging
problem confronting current taxi dispatch systems. Pcatiy,
one feasible approach is to effectively group these custome
bookings and then efficiently assign each group to the same
number of available taxis. One method that we propose along
this vein will be described later. The key purpose is to focus
ongroup averageustomer satisfaction instead of a prioritized
individual's. This is a moreglobal endeavor that will need
to consider the mutual assignment exchange effects among
the taxis for the concurrently awaiting customers, namely,
“Would (group) total customer waiting time shorten if twoisax
are allowed to exchange their currently assigned book?hgs
The motivation is that, by increasirgyoup averagecustomer
satisfaction, overall, more customers can be satisfied.

To elaborate, consider a scenario of two available taxis in
the vicinity of two taxi (service) requests, as depicted ig. F
1. The shortest-time path to reach a request location can be
computed using real-time traffic information [2], but foreth
convenience of illustration, we shall assume that a shorter
distance path is also a shorter real-time path. Say, requisst
initiated before request 2 within a small time window. Under
the current practice, requests are allocated differens taxe
request at a time on a customer first-come, first-served.basis
So the dispatcher would have to attend to request 1 first,



e Rauss @ increasing prominence in automation research, and hawe bee
successfully formulated or applied in the domains of manu-
facturing (e.g., [6]), warehousing (e.g., [7]), producinily
design (e.g., [8]) and hierarchical decision-making pcots
(e.g., [9]), to name a few. Although using multiple autondate
agents is also not new in intelligent service transpontatio
as seen in transport logistics [10] and route guidance [11],
we realize that it might be a radically new ideology to
deploy them for the specific purpose of taxi dispatch. For,
the new idea entails the software (‘agents’) localized ia th
in-vehicle computing units taollaborate and play a more
active role in consensus decision-making, rather than just
passively presenting a new request from, and relaying the
human driver’'s request acceptance or refusal decisiondo th
taxi dispatch center. However, in our opinion, investiggti
this idea is timely, since a multiagent approach will inaaty
provide a set-up to harness the existing power of multiple
intelligent transportation systems (ITS) technologies for
example, vehicle routing [12], automatic vehicle locatjd8],
Fig. 1. A taxi dispatch scenario mobile phone location determination [14] and palmtop-dase

navigation [15], exploiting the huge investments alreacdidm

in the internet, wireless communication and mobile deviess
and assign taxi 1 to service it since taxi 1 is nearer to theell as GPS-based location, geographic and traffic infaonat
request than taxi 2; this leaves taxi 2 to be assigned to t@stems.
remaining request 2. However, one can see that if we couldThe rest of this paper is organized as follows. Section
allow the taxis to exchange their assigned requests, thepgral describes the basic architectures of both the existing an
average distance (or time) taken by a taxi, and hence thagrgroposed taxi dispatch systems, with emphasis on the core
average) customer waiting time, would be shorter. This mopgoblem and solution of the latter. Section Ill presents and
balanced allocation is often possible if the two requestscto discusses a microscopic simulation study comparing the pro

be consideredoncurrentlyfor taxi assignment, exploiting the posed and current dispatch approaches. Section IV corglude
mutual assignment effects in attempting to minimize thaltotthe paper and points to some future work.

real-time travel period of the taxis in picking up the cusesm
And the allocation is practically efficient only if it can bemke II. TAXI DISPATCH SYSTEMS
without excessive communication between the taxi dispatch
center and the taxis. To the best of our knowledge, currht
taxi dispatch systems do not support the kind of concurrent
taxi assignment envisaged, and cannot therefore explisit 1

real world scenario to full advantage as needed for impigvi % A Q@b
fleet performance.

Current Taxi Dispatch System

g . .
N GPS satellite
Wireless T

In our opinion, to support such concurrent taxi assignme &g communication network
for current taxi bookings necessitates a novel approach Customer 2
fleet dispatch operation. The new approach should not o 8 ‘,/ o
aim at increasing average customer satisfaction, but atso ' . .5 Taxi
a-vis average driver satisfaction. And it must be impletable Nyl
on an existing technological infrastructure. With this lpki & B _ j,_,
ophy in mind, we propose a multiagent approach deployi Customer miRaich cenes - e

collaborative taxi agents that can, on behalf of taxi driver
cooperatively negotiate to decide among themselves tF | siesidl ‘
different assignments, from among the multiple taxi retpe " = OUDELIL > Disnatetiee.

Request queue /© \ Taxi pool
®A

initiated within a time window A taxi agent is an active
software entity residing in an in-vehicle computing unitaof
taxi. By cooperative negotiation [5], several taxi agerds ¢
collaboratively search for an assignment solution tha/ th@ig. 2. curent state-of-the-art taxi dispatch system:ttdimed architecture
jointly agree!

Intelligent agents and multiagent approaches are gainingrig. 2 depicts the basic architecture of a current taxi digpa

Tne e _ o o system in use by a taxi operator in Singapore and elsewhere.

At this juncture, a general notion of negotiation sufficesyill become

clearer in Section 1I-B, where a specific automated negdotiainechanism Ipcomlng taxi s_erwce requ.eStS are queued on a first-come,
for taxi agents is introduced and elaborated. first-served basis at the dispatch center. For each customer
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Fig. 3. ProposedTuCab dispatch system: Non-centralized

(online booking) request, available taxis in the vicinitf oB. Proposed Taxi Dispatch System

the customer pick-up location are considered, and a taxias suggested in the introduction, multiagent collaboratio
among them is dispatched to service it, upon the human driYﬁfght leverage on the improved dispatch method [2] by
acknowledging acceptance of the booking job. It is emplisica exploiting the mutual assignment exchange effects among
confirmed that an efficient way of dispatch is to assign @yitiple taxis awaiting multiple requests - a scenario tisat
nearby taxi that can traverse the shortest-time path to th&t uncommon. Towards this end, an infrastructtoesupport
customer pick-up location, computed using real-time taffh taxj agent capable of collaboration is proposed, as shown i
information over a road network [2]. Fig. 3(a). And, to effectively utilize such software agefus

In general, it is not feasible to compute the (locally)axi dispatch, we deploy them in a multiagent architecture,
shortest-time path for each of a possibly large number pfoposed as depicted in Fig. 3(b).
available taxis nearby a customer location, since deténgin 1) Multiagent Taxi Dispatch Architecturefhe architecture
such a path requires a considerably significant amount adsumes that a geographical road network is partitionexd int
computation time. Thus, it has been assumed [2] that a taxilogical areas of taxi operationp > 1. This partition is
with the shortest-time path is found among a limited numberade known to all taxi agents. At the dispatch center, avigila
(say, 20) in the vicinity that are the nearest in terms ofrtheiaxis and booking requests in a logical area are recorded in
shortest straight-line distances to the customer location  a taxi queue and a request queue, respectively. The area and

As a remark, besides [2] and a related but different effogrresponding queues are identified by the same indéex<
that empirically examines the performance improvement 6 .
using GPS in taxi dispatch operations [3], there is appirent Initially, all participating taxis are in one of the desiged
little work in the published literature on automated taxs-di areas of operation, and the taxi queues at the dispatchrcente
patch. This is despite its importance and commercial istére are updated accordingly. The ‘housekeeping’ communinatio
Henceforth, for comparison purposes, we shall assume tRg@tocol supporting the dispatch operations can then be pre
the existing (state-of-the-art) taxi dispatch system lapge Scribed as follows:
employs the centralized architecture of Fig. 2 and appliesl) A taxi agent [see Fig. 3(a)] performs the following
the dispatch method proposed in [2]. In our opinion, this mandatory tasks:

system should compare favorably with the centralized déispa a) Announce thavailability of its taxi in a new area
system provided by a market leader. According to the website of operationto the dispatch center when (i) it is
(www. cor di c. conm), the commercial system associates every not in negotiation, (ii) the taxi has entered (and is
taxi service request with a taxi queue according to its custo currently in) the new arehand (iii) the passenger
pick-up location, and then offers it to the first taxi in that

3 We recommend JADE [16] as the agent technology developrmeaitage
for MA3-LM agent software implementation. In principle, howeamy other
agent development package that supports communicationbeaysed.

4That an area is new means that, operationally, the taxi agent has not

2Examples of commercial companies delivering automated dispatch notified the dispatch center to insert its taxi record inte téxi queue (that
solutions include Cordic, DDS Digital Dispatch and Mobisof otherwise does not contain the record).

queue.



has just alighted from the taxi or the taxi is empty, 3) Continue with Step (2) if not all thad hoctaxi groups

with no committed taxi request to service next. across all the logical areas have completed negotiation,
Also does so if its already assigned customer is  else do tasksDMT-A and DMT-B as needed and
found to have cancelled the booking. proceed to next cycle of dispatch operations.

b) Negotiate on behalf of its human driver for ape call the resulting system ti-Taxi Group CollABorative
booking job when it receives, from the dispatciNTuCab) dispatch system.
center, a request package containing a group of2) Core Problem & SolutionWithin this architecture, the
bookings and thed hocgroup agent members with core issue in multiagent taxi dispatch is a linear assigmen
whom it will collaborate with. problem (LAP) [17]. The problem is concerned with efficigntl

¢) Inform the dispatch center of the taxi driver’s deciassigning every taxi agent with a different taxi requeste Th
sion to accept or refuse its negotiated assignmegiciency (or optimality) of the concurrent allocation ises

2) The dispatch center performs the following mandatogured either in terms of minimizing total cost or maximizing
housekeeping tasks: total service quality.

a) DMT-A: Update the availability of taxis in the To elaborate formally, consider a group of taxi agedts-
respective taxi queues, taking the information fronfao, a1,--- ;an—1} of size N > 2, and a group of different
a common taxi queue that is continually updated itgxi service-request®) = {ro,r1,--- ,rx_1} Of size N. The
response to notification by the taxi agents. Whef\-Q0S (@pplication quality-of-servigethat an agent: € A
a taxi has left an area and entered a new areacan offer for each request is defined @M,T‘] forall » € O.
y, update by deleting the taxi record from the taxi hen our core objective of taxi dispatch is to find, forfsix N

queuer, and inserting the record, in a first in firstLAP, the particular (total) assignment solution

out fashion, into the taxi queug I1: A — O such that fora;, a; € A,
b) DMT-B: Insert the records of taxi bookings into the - i imolies TI . Q)
respective request queues, taking the information i # j implies Tl(a;) # I(a;)

from a common request queue that is continually one-to-one mapping of agents to requests that (ideally)
accepting customer taxi bookings. If a taxi requeshaximizes the total A-QoS,,;,
is from an area, insert the record, on a first-come, A1
first-served basis, into the request quéue
, - Stot = dla;, TI(a; 2
c) DMT-C: Delete the records of a taxi and the ot Z [a:, TH(a:)] @

negotiated assignment that the taxi has accepted; .
and communicate the service information of thel(a) € O refers to a request selection by agent A (under

taxi to the assigned customer. Penalize by placird] arPitrary permutation dif); andmax{S;.,(2)} defines the
the record of a taxi that has refused to accept i{g}leal)_optlmal social goal of the agents. An assignment or
negotiated assignment at the tail of the same ta@flocation set corresponds to one permutatiorilo(1), and
queue at the time of update; and compensate " also be equivalently represented as containing elenoént

placing that of the refused assignment at the hed¢ form(a,1l(a)) € Ax O. _ ,
of the respective request queue. The generic LAP has been extensively researched in the Op-

Under the proposed architecture, the dispatch centeresarr:?erggg?iezzzfggcnige;aet\%ﬁ)I[Dle%]':gse'rr]]? g%i%tar:igfneshﬁg]d [20]
out the_fol!owmg ope_ratlons per cycle: ) ) for a multiagent version, termed collaborative LAP (CLAP),
1) Dlgtrlbute pending requests to available taxis for eaghere knowledge about the LAP is distributed among the
logical areai. agents, such that every agemte A initially only has its
Take a group ofV requests from the head of the requesfyy |ocal informationdja, 7] for all » € ©. The automated
queue and send it to aad hocgroup of taxis assembled o chanisms developed enable collaborative taxi agents to
from the head of the taxi queueThe size ofN of the  ;4qneratively negotiate for different requests themselves,
last group assembled may vary depending on the numQer.qhast to a centralized algorithm decidifeg them as in
of pending requests and available taxis. Do so until tgg) | essence, these taxi agents can compute and leverage
the taxi or request queue is empty. (As s00n as & groyR the possible overall A-QoS increments, achievable tiou
of bookings is received, the taxi agents concerned WB'roperIy reassigning requests among themselves.
asynchronously carry out intra-group negotiation OVer gne ‘imnortant development for CLAP is a decentralized
the N requests.) S __agent algorithm calleA3-LM [20], which is well-suited and
2) Do housekeeping and await taxi assignment decisiongganted for use with the proposed taxi dispatch architectur
a) Do housekeeping taskSMT-A and DMT-B as The reasons for considerifgA3-LM are: (i) the core problem
needed till notification is received about complem collaborative taxi dispatch - taxi online assignment or
tion of a group collaboration; following which gjlocation - can clearly be treated as a CLAP, (if)A3-
there is a pre-specified period when every agent [\ is decentralized and so maps directly onto our proposed
the group submits the human driver's decision ghultiagent architecture, and (jii) being computationaiple
either accepting or refusing its negotiated bookingind easy to understand, one of our research contributions is
b) Do housekeeping tasBMT-C . to propose the first potential real-world service-autoorati

i=0



application of MA3-LM, along with an investigation of its arbitration to decide which two agents to proceed with the
applicability and performance. request exchange, before a negotiation round is conclaaed,
The MA3-LM agents divide their collaborative reasoninghe next round begins. Essentially, an intention: [—, —, p]
process into negotiation rounds. All the agents begin nith the highest exchange gain> 0, i.e., one that contributes
gotiation with an initial selection made under an arbitrarip the highest increase (in total A-QoS) if carried out, vebul
permutation ofII (1) (the one-to-one mapping). For taxineed to be selected. In so doing, all the agents perform
dispatch, every taxi agent in groud negotiates with the local mediation to arbitrate their intentions. This invedv
other agents in the same group over the request8.imThe incremental arbitration of intention as the better intenffi.e.,
purpose is to decide which two agents are to exchange thiie one with higher net exchange gain) - between a taxi
current request selections in every consecutive rounds Thigent’s own and the intention it received - is passed by the
is done by collaborative reasoning per round, during whiggent to another in a circular fashion, before finally reaghi
every agent determines its individual request exchalegires a taxi agent that is concurrently and dynamically entrugtied
and resulting exchangatention(its best desire), based on itsrole of a request selection-exchange initiator for a palic
computedbeliefs of exchange alternatives that may increaseegotiation round [20]. This process differs from that ir th
the group’s total A-QoSS;,: (2). original mechanism calleBA3 [19], which uses the same BDI
Definition 1 (Belief SeB;): Given that an agent; € A’'s reasoning model but has an extra agent dedicated to regeivin
current request selection i€ € O. Then its (current) belief and arbitrating all agent intentions. The negotiation pesc
setB; is given by will terminate following a negotiation round when all agent
i have no (more) intention to exchange request selections@nd
B, = {r e O | dlar] > dlai,r} (3)  submitnil intentions, discovered through arbitration by local
If B; # 0, this means that agent; € A has at least one ., .4iation.
alternauve request selectione B; that may lead tq INCréase  The relevant algorithmic details fdviA3-LM agents [20]
in total A-Q0SS;,t (2)_ Wh_en made in exchange with an agent caq on the formal description above is generically summa-
whose current selection isc O. rized in [1, p. 1050]MA3-LM agents always terminate with
Definition 2 (Desire Seb;): Given that an agent; € A'S 5 often highly efficient but not necessarily optimal saati
current request _select|on s € O and its belief set iB;, fter a finite number of negotiation rounds [19], [20].
B; # 0. An arbitrary agents; < A whose current request 14 reqyce the number of negotiation rounds in the negotia-
selection isr’/ € O is said to accept agent; € A's beliefs  jon process, an assignment initialization heuristic €l H-
B; if 77 € B;. To generate the desired exchange Optiofgay) can be applied prior to negotiation, the details of which
or desiresD;, agenta; < A broadcasts its belief8; and  5re gocumented in the appendix. And to significantly reduce
current selection” € O, and an arbitrary ageni; < A the average communication time per negotiation round in
who accepts the beliefs would respond with a pair of Asractice, a faster version called non-redundant BDI reiagon
QoS valuesi[a;, '] anddla;, ], so that for each of théB;|  yiscussed in [21, p. 685] foMA? can be easily adapted to
responses regelved, the cprrespondmg request exchgtlgg ORVIA3-LM agents.
[(ai,77), (aj,7"),p] € D; (i.e., is agents; € A's desire) if | oyr current work, the A-QoS data entrifa;, ;] < 0
p >0, wherep is defined by denotes the negation of the shortest (planned) real-time fo
p = —djas, '] + dlas, 7] — dlaj, 7] + d]a;j, 1] (4) Faxi (th_at theMA3-LM agenta; € A represer_1ts) to travel_ from
If p > 0, it means that there is met exchange gaiif agent its designated <_Jr_c_:urrent location to the pick-up Io_cat@rao
a; € A gives up its current selection’ € O and selects customer (who initiated the requ_eg_t_e 0); the negation is so
ri € 0, and in exchange, agen} € A gives up its current that theMA?’-_Ll\_/I agents, in maximizing the total A-QoS;.;
selection’ € O and selects’ € O. Thus, any desird € D;, (2), are mlnlmlzmg.the. total travel time of their 'FaXIS. ‘hi
when carried out, will definitely lead to an increase in totdfal-time travel period is that computed over a directediroa
A-QoS without violatingIT. Quite naturally, it provides the network with real-time traffic information [2]. The smallis

motivation for ageni; € A to want to exchange its Currenttime value is, the nearer to the customer the taxi is said to be
7 . . . .
request selection. 3) Decentralized versus Centralized - A Discussidre

Definition 3 (Intention;): Given that an agent; € A’s NTuCab disp.atch system architecturg deliberately avgids us
desire set iD;, D; # (. Then, agent; € A’s intention/; is "9 & centralized (single-agent) algorithm [18] for assign
given by requests to taxi agents, thus removing a processing bettien

‘ . and a crucial ‘single point of failure’. The A-QoS informati

I = [(as,r7),(aj,7"), p] € D;, for which 5 s already distributed among the taxi agents, so it is waltef

p=max{p | [-,—,p]€D;} ) to have to replicate by centralized information gatherimg o
Agenta; € A’s decisive stance or intention has to hesince it computation, required if single-agent assignment praoagss
is viewed as the best exchange option (in terms of net exehanged instead. In decentraliz&dA3-LM processing, multiple
gain from the agent’s perspective) that the agent can peopadsixi agents share their local A-QoS information only as eeed
It is said to have no intention if eithé8; = () or D, = ), in when they negotiate for a request. In practice, the proposed
which casel; = nil, wherenil = [—, —,0]. architecture can even allow the$8A3-LM taxi agents to

All the agents’ exchange intentions (or the lack therediexibly respond on-the-fly (i.e., during negotiation) to@eS
communicated as#! intention)/; € | would need to undergo data invalidation, by their independently correcting tHecal



A-QoS values as necessary before the start of each negotiaformal definitions of Belief (B), Desire (D) and Intention)(I
round. Such data invalidation can occur due to, say, suddamd the termination condition d¥lA3-LM. For the proof of
changes detected in road traffic conditions. In this pratticProposition 2, the reader is also referred to the appendix fo
situation, the centralized algorithm, on the contrary, ldoudetails of the speedup heuristid;Max.
have to recompute from scratch the assignment solutioer, aft Proposition 1: The MA3-LM taxi-agents in situation®T-
data validation through recomputing or re-gathering the ASC and CT-DC will incur one negotiation round to reach
QoS values from the agents involved; and this could possidy optimal (or a maximal) total A-QoS assignment which is
incur even higher processing and communication overheadsbitrary.
Finally, the proposed system can also be readily extended to Proof: We sketch the proof as follows: In either situation,
degrade more gracefully when some of the taxis or taxi agemtsthe first round of negotiation, eveA3-LM taxi-agent
are out of service temporarily. will yield a nil intention (Definition 3) - the termination
4) Theoretical Boundary & Optimal Situationhe physi- condition for MA3-LM. In the former situation, it is due
cal locations of taxis and customers are significant infdioma always to an empty belief set (Definition 1) computed by every
for taxi dispatch. They are in general not knoapriori. How- agent. In the latter, it is due always to an empty desire set
ever, two theoreticaboundarysituations about their relative (Definition 2) computed by every agent except one, which
locations can be identified: yields anil intention due always to an empty belief set.
1) DT-CC: Geographically distributed taxis for concenThe first round is thus the last negotiation round. Finally,
trated customers, as when dispatching taxis to a tekie total A-QoS assignment solution reached must be optimal
stand. when negotiation terminates, since, in either situatiamy a
2) CT-DC: Geographically concentrated taxis for discollaborative assignment reached is associated with time sa
tributed customers, as when dispatching taxis from set of A-QoS values{d[a,II(a)] | a € A}, and thus it has the

depot. same total value regardless of the request selections [uhde
(2)]. Hence the proposition. |
rg r1 T To T1 T2 In other words, in situation®T-CC and CT-DC, MA3-
ap | Ty, TR TR a0 | Tv Yo 2o LM taxi-agents will incur the minimum number of negotiation
a1 | yn  Yn  Yn a1 | Ty Yo 2o rounds [19], [20]. Despite the quick decision, negotiateonot
as | zn  zn oz a2 | Ty Yo 2o needed in such situations since every assignment is optimal
Proposition 2: The MA3-LM taxi-agents usingH-Max in
(@) ForDT-CC (b) ForCT-DC situationOM-TC will incur a total of two negotiation rounds

to reach an optimal total A-QoS assignment.
Proof: We sketch the proof as follows: In situation

Being ‘geographically concentrated’ means that the tax@3M-TC, immediately after assignment initialization through
or customers are in close physical proximity of one anothéi-Max, every MA®-LM taxi-agent [underII (1)] will have
Theoretically, we shall assume that they are at the sasgjected or reselected a different request that is the steare
location point. Following, thedDT-CC and CT-DC situations to its taxi location. This initialization process is coresied
result in taxi agents facing the types of CLAP as depicted fa incur the first negotiation round. In the second round of
Fig. 4, where each row of matrix entries are the respecti®€gotiation that follows, everilA3-LM taxi-agent will yield
A-QoS valuesd|a;, ;] as computed by an ageat € A for anil intention - the termination condition fMA*-LM - due
every request; € O. always to an empty belief set computed by the agent. The

In between the two boundary situations, we also identify second round is thus the last negotiation round. Finalhgesi
situation, labelledOM-TC, where the geographical distribu-every agent will have selected its nearest request [urdg)]
tions between the taxis and the service requests are optimathen negotiation terminates, it follows that the total ASo
matched, such that every taxi agentc A has a different assignment solution reached is optimal (or maximal). Hence
requestr € O that isthe nearesto its taxi location; all its the proposition. |
other requests are not as near. An example of situ@MATC Proposition 2 suggests that situati@M-TC characterizes
is given in Fig. 5, in which the values shown each indicates tthe ideal condition to be in, where a relatively quick nego-
largest A-QoS (or the least negative travel time) of an agefiation will result in an assignment that is both locally and

Fig. 4. Types of CLAP for the boundary situations, shown fér= 3

a; € A for a different request. globally optimal. By local optimality, every taxi ageate A
selects a request € O for which the A-QoSd[a, r] among
o T1 T2 all requests inO is the largest; and by global optimality, we
a | — — a3 mean that the total A-QoS of the assignment is maximized.
a | — @ - From the above analysis and discussion, we infer that if the
ag |2 — - working scenarios are exclusivedT-CC or CT-DC, as could
be reasonably assumed in the past, the proposed taxi dispatc
Fig. 5. A CLAP instance 0DM-TC, with N = 3 approach (see Fig. 3) might only perform as well as the

current approach (see Fig. 2). However, in a situation which
Following, we present two propositions &A3-LM in the is in betweenDT-CC or CT-DC and OM-TC, we envisage
situations identified. The proofs entail an understandinp@ that the proposed distributed approach can often signtfican



MITSIMLab

Motif
Wrapper

[
Drawable
Road
Network

[ 1
General Road
Network

Information
Network

IPC Wrapper
(PVM)

SIMLAB

T™MS
MITSIM
MESO TS

Vehicle
Trip Table

Surveillance
System and
Traffic
Controller

GDs
Wrapper

OD Trip
Table

S5 S

Road Customer
Ri

Network C——> equest
Wrapper nager

Taxi
Dispatch
Operator

Collaborative
Taxi Agents

Fig. 7. The urban road network model used

simulation-based laboratory originally developed for

evaluating traffic management system designs at the
operational level. It was adapted as the environment for all
the experiments, along with a urban road network model
uilt by MITSIMLab developers using a road network editor

3]. The urban road network model used is shown in
g. 7; it covers a physical area of abolikm x 10km.

D providing the required real-time traffic information for

service has set to become more geographically distributéjés.pﬁ[ﬁh I(\)/Ilfl)'le'rsaﬁ\l/loc’l?rl; abs(;ractt;ed roa((zlj nettworkk wasdall$b bui
This emerging real-world scenario, along with the induced’®" "¢ ab-based urban road hetwork modet.
necessity for empty taxis to roam about more frequently, 1n€ TM2S module wraps around the MITSIMLab to sim-

means that such in-between situations could become a cdHfte the real time activities of a dispatch operator and the
mon occurrence, and it is no longer acceptable to simppSOCiatedVIA®-LM negotiation processes of a network of
assume situatioDT-CC or CT-DC. All these are suggestive collaborative taxi agents, in accordance to either theraknt

of a better performance using our proposed approach, asd {gfd O the proposediTuCab dispatch system (see Section
is confirmed by simulations. 1), but confined to one logical area of operation. The TM2S

module assumes that the taxi agents negotiate over a high-
speed wireless communication network. In calculating the
] multiagent negotiation time, the module abstracts away the
To study the comparative performance of the proposggjeriying detailed communication costs and instead estisn
NTuCab dispatch system and an existing centralized Systgia ota| negotiation time based on the number of negotiatio
(see Section II-A), we conducted microscopic computer simpy 1nds taken and a conservative estimate0 @iV seconds
lations, simulating taxi operations in a selectgd ITS-ngaaa per round for anN-group of taxi agents. The estimate is
urban road network of reasonable complexity. We focusggs |ongest average time per negotiation round that we found
on operational efficiency. For both the systems, this wag v — 20, when we experimented separately for groups of
investigated in terms of customer waiting time versus empfy € {5,10,15,20}, by running a Java program MA%-LM
cruising time. In our simulationszustomer waiting times implemented on a multiagent platform called JADE [16] in a
measured from the moment a customer raises a requesfgiQy grea network (emulating the high-speed communioatio

the moment an assigned taxi arrives to pick up the Cusmmf?ﬁ"rastructure), and without applying the speedup heiarist-
empty taxi cruising timeés measured from the moment it isyy 4y

available to the moment it accepts (or commits to service) a
negotiated assignment.

Fig. 6. The TM2S-MITSIMLab simulation model

outperform the existing centralized one. With the peneasi
use of mobile phones and the associated technologies &s citi
like Singapore, where one can conveniently book a taxi fro
almost anywhere, the demand by individual customers far t

Ill. SIMULATIONS & PERFORMANCEEVALUATION

In the MITSIMLab environment, the taxis move randomly
in the road network. The human drivers of available taxis
are assumed to always accept and service any taxi request
A. Experimental Scope & Investigation negotiated by their agent. Upon the taxi agents in TM2S
The experiments were performed on MITSIMLab [22]accepting their negotiated assignment, each correspgtain
[23], [24], through a Taxi Management Microscopic Simutatonoves from its current location to the assigned customer’s
(TM2S) developed for this research study. The overall safew pick-up location, and then to the customer’s destination.
architecture of the simulator is shown in Fig. 6. For both the centralized and proposed systems, we com-
The MITSIMLab simulation software (available fromputed the travel times using real-time traffic informatio a
web.mit.edu/its/mtsimab.htnd) is an existing proposed in [2]. As defined, the A-Qa8a,r] < 0 denotes



. . . TABLE |
the negation of the expected shortest travel time for a tax
g p bPERATIONAL EFFICIENCY OFNTUCAB AND CENTRALIZED DISPATCH:

(represented by an ageatc .A) to move from its current
location to the pick-up location of a customer (who initthte
the pending request € O); since taking the shortest-time
path is a time-efficient way to service taxi requests [2]. The

CUSTOMER WAITING TIME (IN S)

(a) Without H-Max

. Demand rate
A-QoS formula used is N 1 15 > 55 3 35 )
5 1281 127.0 1359 1657 189.0 2812 4799
— i 10 | 109.9 1114 1161 1410 1613 2256 371.8
dla,r] = — min{T} ©) 15 | 1101 1066 1135 1366 1555 2221 352.8
T denotes th ted Itime for the taxi to t | 20 | 112.0 112.9 1208 1441 1686 2559 4229
. denotes the expected real-ime lor the taxi 1o ravel ON —m—1355 1379 1453 1783 2054 3124 521.3
an arbitrary path through the road network connecting the (b) With H-Max
two locations. The expected shortest travel timén{T;}
i ] all i - Demand rate
was calculated using the route choice model provided by N 1 15 2 2.5 3 35 Z
the traffic flow simulator module of MITSIMLab. The time | 5| 127.0 1266 1350 166.5 1871 282.1 4683
. . . X L - 10 | 108.9 1024 933 117.3 1292 1965 3475
computation Con3|dereq (i) current traffic cond|t|or_1$, (amlay. 15 | 1101 995 972 1120 1269 1921 3496
and regulation of turning movements at road intersectiong 20 | 1120 990 950 103.8 127.1 1953 3406
and (jii) possible penalties for certain designated linksg( ©: Centralized dispatch

freeway bias). Along with the determination of the assadat
shortest-time path for a taxi, it is essentially a vehiclateo

planning problem, solved using the techniques developed fo TABLE Il
MITSIMLab [24, Appendix B]. CUSTOMER WAITING TIME: REDUCTIONS(IN %) OF NTUCAB OVER
In principle, both the existing centralized ardTuCab CENTRALIZED DISPATCH

dispatch systems should operate for any taxi fleet size. For
our simulations over the TM2S-MITSIMLab model, a taxi (a) Without H-Max
fleet size of 1000 was simulated for a one-hour duration. N I - 2Dem32“g fates - Z
The taxi fleet is about 30% of the traffic volume that can be ET 53 79 65 71 80 100 90
simulated on MITSIMLab, and constitutes a reasonable traffi 10 | 187 192 201 209 215 278 2955
composition in the urban setting considered. 15186 227 219 234 243 289331

20| 172 181 169 192 179 181 198

We carried out experiments for a range of hourly demand
rates (defined by taxi bookings per taxi per hour). For each
demand rate, simulated with incoming requests generated by | . = 2Dema2r.1g rate3 =2
the request manager, thmustomer waitingand empty taxi 51 61 82 71 66 89 97 112
cruising times were recorded for centralized dispatch, and 10 | 195 257 358 342 371 371 34
collaborative agent dispatch for several group si2ése ol os 2SSl e B GBS >
{5,10,15,20}. The experiments were repeated for collab-
orative agent dispatch with speed-up initialization hgtigi
incorporated (see Appendix).

The simulation data (raw customer waiting and empty
cruising times) gathered from the dispatch operator ani tax Table Il shows that, regardless of the group si¥eunder
agents were saved into a text file for offline performand¥TuCab dispatch, as the demand rate increases, empty gruisin

(b) With H-Max

N=

analysis. time shortens. This implies that taxis roam less frequently
without customers onboard. The empty cruising time con-
B. Analysis of Numerical Results verges approximately to th&-group negotiation time, with

Table | shows that undéMTuCab dispatch, at each demanépe roaming Fime without request negotiation approach.ing
rate and for a smallV — 5, the customer waiting time is zero. Comparing Tables lli(a) and llI(b), we observe thahwi
; }pe speedup heuristic, group negotiation, and hence empty

longer. This is due to less efficient assignments as somerbett = "™ h for all d :
positioned taxis for the requests might not be in the tag[uISing ime, shortens for all demand rates angroup sizes

groups that negotiated for them. A¥ increases, initially, considered.
the customer waiting time becomes shorter due to increasé\t each demand rate (except when it is 1 for = 5,
in grouping efficiency, but for a bigge¥ = 20, especially at and without applying speedup heuristié¢yTuCab dispatch
higher demand rates, it starts increasing due to offsetao thutperforms centralized dispatch, with good reductions in
gains in grouping efficiency, namely, longer negotiationdi customer waiting time of up to 33.1% at demand rate 4 for
for a biggerN, and service demand outstripping taxi supplyv = 15 [see Table ll(a)], and up to 41.8% at demand rate 2.5
at higher demand rates. for N = 20, when the speedup heuristic is used [see Table
Comparing Tables I(a) and I(b), we observe that incorpordt(b)]; and with good reductions in empty cruising time of up
ing the speedup heuristic mitigates the problem of nedotiat to 26.3% at demand rate 1.5 fo&f = 20 [see Table 1V(a)],
time, shortening customer waiting time for all demand ratemd up to 41.2% at demand rate 4 f&r = 20, when the
and N-group sizes. speedup heuristic is used [see Table 1V(b)].



TABLE IlI
OPERATIONAL EFFICIENCY OFNTUCAB AND CENTRALIZED DISPATCH:
EMPTY CRUISING TIME (IN S)

data might lead to better advisory for available taxi
drivers to roam more intelligently to match the distribu-
tivity of service requests.

2) NTuCab dispatch queue pre-processing: Re-grouping

Without H-M ) o )
() Withou > based on physical proximity between requests and taxis

Demand rate

N T 15 2 25 3 35 7 in the respective queues, prior to the start of every

51 2780.7 19739 15724 8852 4951 4089 308.9 dispatch cycle, might better match the geographic dis-

10 | 23055 1544.0 12356 697.2 389.2 3332 247.1 T i i

15 | 52913 15198 11845 6881 3890 348 2303 tnbytmty of service requests to that of the available

20 | 2332.6 14875 1227.6 709.8 4127 3253 250.9 taxis.

© | 27155 20183 15963 9042 5114 4202 3152 The jmpetus is to influence and better match the physical dis-
(b) With H-Max tributivity between service demand and available taxi supp

Demand rate in real-time.
N 1 15 2 25 3 35 4

E 156856 19477 15093 8600 4951 4030 308.9 In conclusion, leveraging on the shortest-time paths com-
ig gigs.g gig.g ﬁéé'g giﬁ g%.g gsga.g ggg.é puted using real-time traffic information [2], the proposed
20 | 22511 14088 10967 6022 3406 2702 1gba N1uCab dispatch system can potentially achieve high effi-
©: Centralized dispatch ciency, particularly in limiting customer waiting time prided
the demand for taxi service is manageable for a fleet size.

Explicated in this paper are, in our opinion, important theo
retical and empirical insights about our proposed multiage
approach. These fundamental insights would serve as a base
reference in further research and development on autognatin
(@) Without H-Max distributed taxi dispatch, including the formulation amges-

Demand rate tigation of new A-QoS formulas to incorporate human drivers

N[ 1 15 2 2.5 3 35 4 preferences.
5| -24 22 15 21 32 27 3§

TABLE IV
EMPTY CRUISING TIME: REDUCTIONS(IN %) OF NTUCAB OVER
CENTRALIZED DISPATCH

10 | 151 235 226 229 239 207 216
15 | 182 247 258 239 239 227 241
20 | 141 263 231 215 193 226 204 APPENDIX
(b) With H-Max Assignment Initialization Heuristic: The negotiation
Demand rate speed ofMA3-LM depends on the initial assignment. In at-
N[ T 15 2 25 3 35 4 : h h L imole heuristicflat
511 35 42 39 37 41 38 tempting to hasten the negotiation, a simple eu_ns{uoe( a
10 | 211 275 241 312 281 335 362 H-Max) is presented herein. Intuitively, the heuristic attempts
15201 247 268 291 334 334 363 to set the initial (assignment) solution, with each agest.4
20 | 171 302 313 334 334 357412 . = ; i ;
selecting, as far as it is possible, a self-optimal but déifé

requestr € O to begin negotiation with. Logically, it can be
said to contribute one negotiation round but the overalktpss
V. CONCLUSION can become faster. The details, wjith| = |O] = N > 2, are

For automating distributed taxi dispatch, this paper h&s follows:
introduced the new idea of multiagent collaborative assign Heuristic H-Max: One of the agents in groud is desig-
ment of current bookings. The propos&éfiuCab dispatch nated as the speedup initialization (SI) agent, and thisifac
system realizes the idea usimgA3-LM through a proposed made known to all agents at the outset. Every agesat A
multiagent architecture (see Section 1I-B). Theoreticalmd- selects and proposes to the Sl agent a request O that
ary (DT-CC and CT-DC) and optimal OM-TC) situations satisfies the following:
are analyzed (see Propositions 1 and 2, respectively) and
discussed. Using TM2S-MITSIMLab simulations on an urban dla,p] = max{da,r]|r€O } )
road network model (Fig. 7), we evaluated the performance of - . o
theNTuCab dispatch system, and showed that, even on a basi S| Qgent, upon receiving all such proposals (mcludls.;g :
infrastructure [Fig. 3(b)], the distributed multiagentssym own), will evaluate them as follows. For each request O:
approach is promising in terms of significant improvements ¢ It will approve an agent’s proposal (i.e., request sel@gtio
in operational efficiency over an existing centralized apgh if it is the only agent selecting request O.
(see Section 1I-A). We also showed that incorporating a #mp « If two or more agents select the same requestO in
negotiation speedup heuristic (see Appendix) could rdise t  their proposal, it will approve the proposal by an agent
efficiency further. that offers the highest A-QoS value among them.

To approximate more towards the ideal situat©OM-TC  Assume thatt” > 1 agents have had their proposals approved.
in real-time so as to better manage the overall efficiengshen following the proposal evaluation, [V — F) > 1, the
of NTuCab dispatch, future work includes investigating thg| agent will arbitrar”y allocate each of the remaini(]]g —
following issues: F) agents with a different request taken from € — F)

1) Intelligent taxi roaming: Using historical service dema unselected requests.
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