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Abstract—This paper studies the linear-time temporal logic system modeling and control in continuous or discrete time
(LTL) control of a class of fair discrete-event systems (DES). It  differential-equations.
is motivated by the curious extent in which the use of LTL can e In this paper, the linear-time temporal logic (LTL) of Manna

strengthened and differentiated in control theory developnent. L .
Over a fair DES model, a marker-progressive supervisory cotrol and Pnueli p] is adopted for the study of supervisory control

problem is formulated in LTL. The problem formulation admit s [6], [7], [8] of fair DES's. This LTL is a branch of symbolic
a more flexible specification of multiple markers to distingish logic in discrete mathematics developed in computer seienc

different DES tasks, and seeks to find a supervisor — a passive A fair DES contains a subset of fair events that directs the
control function by convention for specified temporal safey — gy giem evolution. By a fair event, its transition occurs at

such that a fair DES under its control is guaranteed to make .~. . . . . .
constant progress to these markers. The problem is studied infinitely many states of a DES evolution, in which the event i

in terms of DES marker-controllability — a new controllability ~ €ither defined at infinitely many states, or permanently deffin
concept formulation of temporal safety for constant marker from some state onwards. Towards augmenting Al and making
progress. This new formulation sheds light on how event faitess | TL control verification and synthesis an integral part of
in DES's coachieves such marker progress with supervisiorat  gystam application design, this paper takes a renewedbgiter
exists. It is shown that a solution supervisor may be found by . - - .
canonical LTL verification. Three examples are provided for to investigate the ex_tent In ‘_Nh'Ch_the use of LT}, [[9] can be
illustration. strengthened and differentiated in control theory develept.
This interest is driven in part by the unrealized potential o
available industrial-strength software tools for apgima DES
modeling and transparent LTL control synthesis.

There are two time views depicting the generation or evo-
. INTRODUCTION lution of discrete structures by a DES: linear and branching
In the temporal logic literaturel], the semantics of formulas
constructed in the syntax of a temporal logic language is
determined by evaluating or interpreting the formulas (ae t

Index Terms—Discrete-event systems, event fairness, linear-
time temporal logic, supervisory control.

The rapid evolution of technology in artificial intelligemc
(Al), robotics, and the Internet has brought about a disvapt

trend towards building a cyber-physical world of innovetiv, ¢5e) over discrete structures in either time view. LTL
service and engineered biological system applicationes&h s yeveloped with the linear-time view. By ‘linear time’, a
applications are embodied in ubiquitous electronic devéed _discrete structure is in the form of a sequence of states, ove

robots__—_ including autonomqus cars and drqnes — Offeriglich an LTL formula is interpreted. Developed with the
_capab|I|t|es that go beyond mdustrl_al p_roductlon to ?ﬂ'SeC branching-time view is Computational Tree Logic (CTL). By
impact human welfare and well-being in everyday life ang,onching time’, a discrete structure is in the form of aetre

work. Arguably limited only by human imagination, thesey.,.tyre of alternative state sequences, over which a CTL

applications can be modeled as discrete-event systems’s{DE_ﬁ)rmma is interpreted. While acknowledging the usefutnes

and controlled to behave as specified at some level of design~1|  gne reason for adopting LTL over CTL in this

abstraction by a systems and control design approach.péper is the generally greater ease of use and intuitivesfess

seminal theory ], [2] of supervisory control was founded| 1 19) Another is the neat classification of LTL formulas
in the 1980's and has been extended to-date in various Ways,a chically into syntactic canonical classéb backed by
in the control literature to support this approach. Thaséhey,qi; (assertional) proof rules and verification methodséo
applications are amenable to DES modeling is because a Di; transition model. This LTL classification over a fair ol

s a model generati_n_g discrete structures (_)f System Staes g, 5 well-organized basis for control theory developmen
possible state transitions; and these transitions reprabeupt ¢ canonical forms for the various LTL classes have a set
occurrences of discrete qualitative changes termed eteaits ¢ o<iricted future modalities, namely operataksays] and
are human-defined labels at the heart of the behavioralmiesg;bemua"y<> applied to past formula®]. Two of the classes
matt(?r for an appllcat!on, such as ‘cup gras_ped’ and ‘bo“r‘{'amely safety12] at the base level and respond&][— a kind
filled” for a home service robotd], [4]. Superwso’ry _cont_rol of progress at a level higher up in the classification hidnarc
theory se_eks t? understa_nd and Con_trol DES's in dl_screé?e relevant to this paper; their canonical forms have dpera
mathematics, since behavioral dynamics of the DES klndﬁ and combined operatar<> applied to a past formula
non-continuous in time and so generally not amenable [9syqctively. LTL formulas in the safety and response efass
- _ assert, respectively, that ‘nothing bad’ will ever occunda
K.T. Seow is with the Robot Intelligence Technology Laborgt School thi d’ h lish t of task il
of Electrical Engineering, KAIST, Daejeon 305-701, Southréa. E-mail: some '”9 gooa’ suc as_ a_c<_:omp IS _men Or tasks will occur
kt seow@i t . kai st. ac. kr ‘regularly’ in the sense of infinite oftenity. Together, yheover



a useful range of control specifications about finishing dastasks specified by a set of marker conditions expressed in
regularly without compromising safety. past formulas, of which marker state sets are a special case;

In the same spirit as the founding, now standard nosuch supervision thereby ensures constant, guarantegeepso
blocking control theory 1], [2] and its rich extensions (see,to multiple markers under specified temporal safety. Event
e.g., in B], [7], [8]) — all in formal languages and finite fairness in DES’s is shown to play a cooperative role induced
(state) automata under tlewent spacéormulation, this paper in such controllability ensuring marker progress, shegdin
extends existing LTL research on DES controllability antight on how the role plays out in coachieving this kind of
control synthesis of temporal safetl/], [15], [16] under the progress with supervision that exists. By the LTL classiitara
alternatestate spaceormulation. Also actively investigated [9], marker-progressive control for fair DES'’s is shown to be
in the Petri nets paradigm (see, e.g., 17][ [18], [19)), the (solvable as) a canonical safety-response verificatiobleno.
state space formulation originates in a predicate and paggli  The rest of this paper is organized as follows. Section
transformer context0], [21], [7, Ch. 7] that has been shownlays an LTL background for DES research on state feedback
to be generalizablelf], [15), [16] to the richer LTL context control. The main contributions of this paper are presemted
subsumed in this paper, which presents a more complete L¥kctionslll to IV, and include the following:

control theory with a new notion called marker-progressive 1) The definition of two new concepts, namely condition
pervisory control. This notion as defined produces subetass  jnvariance and marker-liveness under conditional invari-

of marker-progressive control that correspond to subekas$
control for standard nonblockind], [2] and multitasking §].
Standard nonblocking control theordj [is for supervising a

ance, adding to the set of basic system and control
concepts defined in LTL over the notion of an invariant
(Sectionlll).

DES designed to handle one set of marker states that refsesen) The main results of solution existence and problem
but does not distinguish different DES tasks. In additidums t classification for the marker-progressive control problem
marker state set is termed global, in that each member marker pased on a fair DES model definition. The results are
state is defined only at where all the component processes, hased on concepts presented in Sectibnthe relevant
that a DES is often modularly composed of, complete one canonical LTL classes of temporal safety and response,
of their own process tasks. The control existence of a global and the aggregated concepts and sets defined (Section
marker state set in DES’s is mandatory in (nontriVial) stan- |V) The aggregated Concepts include the Overarching

dard nonblocking control synthesig][ and this might be system concept of marker-controllability for temporal
too conservative. Multitasking control theorg][ a useful safety.

nonblocking generalization, is for supervising a DES ede#h gotiony discusses the control results of this paper along with

to han_dle m“'“P'e_ set_s ‘?f marker stateg, such that every e illustrative examples. Sectidhh discusses related work.
modeling and distinguishing the completion of a differ@#t ga tionvIl concludes this paper

can be independently entered via an arbitrary DES state and
subsequent transitions admissible under control. But, its w
nonblocking, multitasking control theory implicitly asses

that the DES will proactively traverse states not blocked Hy. DES Model

control to regularly reach a state of every specified markerThe discrete-event system (DES) to be controlled — called
state set. This means that a kind of fair event subset someh\ plant in control theory — is modeled by a basic transition
invariably exists post-synthesis, for the DES to be able &ystem@, defined as follows:

realize such assumed proactivity under a control solution
synthesized independently of system fairness.

In contrast, Incorporating ev_ent f_a!rness m_tq DESS_ at thﬁ denotes the finite state variable set which is typed; the type
outset, this paper relaxes the implicit proactivity asstiomp of each state variable e II indicates the domaifRange(v)

and investigates, in LTLY], a marker-progressive supervisoryover which the variable range®. denotes the state set, defined
control problem in the spirit oferification and synthesis of by the cross product of the ranges of the variabIeE[’jri o
control dynamic invariants by state feedba@nd supports 0 def ®,..; Range(v), such that every statg € ( assigns

the resolution of the problem in terms of a nesystem ) . . . !
. s . domain values to all state variableslih and is unique, i.e.,
concept formulation called marker-controllability foresyfied . o -
every state-assignment is differedit.denotes the finite event

temporal safety over the resultant class of fair DES's. i tset artitioned into two sets, namely the set of controdlabl
formulation, the concept of dynamic invariant is naturallﬁq P ' y
i

IIl. DES & LINEAR-TIME TEMPORAL LOGIC

G *(11,Q,%,6,0). (1)

defined by a formula of an unchanging past concomitant w glgt;%band_ﬂ; S-etZOf 1u (r; (-:Ozntxrcc)gllablig?s/i\m(fz’etae;?nit:ilsstils)
temporal safety. Importantly, mapped onto the state space % Yo = e U D 0

an LTL paradigm, this control problem has temporal paé o,q) is defined for a subset A in generald is the initial

extending and DES event fairness refining, respectively, t . .
marker and reachability conditions of standard nonblog:kincond't'on_abOOIean valued formula that characterizesé¢fie

and multitasking control. It seeks to find a supervisor aantr of initial states) < @ of G, such thay € () provided (the

ling an invariant for a given fair DES, to controllably mee%lallue assignment by) € @ satisfies (i.e., ‘makes truet).

a given temporal-safe_zty specificgtion, §u<_:h_ that the DES notgjyen, setsE, Fi1, Bs, E is a partion of 1, Fa, denoted byE —
only can but also will accomplish — infinitely often — allE; o Es, if E=FE; U FEz andE1 n B2 = .

ate transition function that is partial, in that for each Q,



In DES modelG, it is assumed thaf), # &, ¥ # @ due C. Temporal Logic Semantics & DES Model Behavior

to nontrivial system modeling. _ A string is a sequence of events that can be finite or infinite
In the case that DES model is finite state, it may be (in length). An arbitrary string over the event $2of DES G

represented by an edge-labeled directed graph. In thihgrapan pe generally viewed as a map (1, kv oo} —

a node denotes a DES states-#abeled edge, directing a nodeZ such that dzefe(l)e(z) —--e(k)---, wheree(k) € ¥. Thene

deno_ti_ng a statg 10 a node de,noting a statg, denotes the is an event string generated by DES provided there exists a
transition of eventr from ¢ to ¢/, as defined by (o, ¢) = ¢ ‘labeling’ of the string by states : {0,--- ,k,--- ,---} — Q

,Sé\e?gde with an entering arrow denotes a state in initial Staa%derG’s state transition functiod, such thatl def 1(0) —
0-

I(1)—---—1I(k)---, wherel(k) = qx € @ for which
1) I(0) = qo € Qo (an initial state), and
B. Temporal Logic Syntax 2) I(k) = 6(e(k),I(k — 1)), wherek > 1.

LTL [5] is a language of predicate logic that is augmented S_uch a Iab_eling (that _exists) is an arbitrar_y state_ trajectory
with a temporal operator set to facilitate reasoning ov&f intérpretation of:. With & > 0, the k-prefix of 1 is qo —
sequences of states, with predicate logic, which subsunfas~ *~* — 4k, and denoted by(;). A stateq € Q is said
propositional logic, for reasoning over individual statgsere [ P€ terminal (inG) if (Vo € %)(d(0, ¢) is not definedl An
are two subsets of temporal operators, namely past ambfuwpterpretanonl is fmlte and sa_|d to be termlnatlng_ if |t_e_nds
for abstracting arbitrary sequences of states in a logiaat p!" @ Statéqy, that is terminal, i.e.[ = I); otherwise, it is
sage of time, in the temporal past and future as LTL formuld¥inite and said to be non-terminating, i.¢.,= I(,). The
expressed over predicates of state information. Prediaaite St'ing labeled by prefix(,, (k > 0) is called a prefix string.
arity m > 0 are written in symbolic formF(z1,--- , ), Note thatly) = I(0). Two state trajectories of DE&, or,
where every argument; € 1 (1 < i < m) of predicateF is respectively, theirk-prefixes, are defined to be the same (or
non-propositional, and propositional variables are vitvae equal) if the two have the same sequence of states and label
0-ary predicates. To be defined later, future operators declu

the same string.

always[, eventually(>, nextO, until ¢4, andunlessw. Past _ 1he LTL formulas expressed over (sgt of) DES model
operators includéas-always-beefi], once S, previouslyo G are interpreted over models of the f_0|(m, 7_7), Wherew_ :
and its weak versio®, sinceS, andback-to53. {0, ky ooy} P — {true, false} is @ binary function

Formally, LTL formulas are constructed using formulz&hat evaluates an atomic propositipn in stateI (k) (or g €
formation rules over a finite se®P of atomic propositions, Q) as follows:
the Boolean connectiveand not denoted by a dot and true, if p, IS true in g, € Q
an overhead bar, respectively, the quantifietHere exists m(k;pa) = { false, otherwise.
denoted by, and temporal operators. The atomic propositions
in P are expressed by predicates, quantified or otherwise,Tihe satisfaction relatiovﬁlzf(k) w) € {true, false} (read: T
terms of state variables il of DES G (over their domains) at its stateg, satisfiesw’, or simply ‘I satisfiesw’ if k£ = 0,
and the system and control logics which will be defined latesince 7(0) % I) defines the semantics of an arbitrary LTL
Let7: and7; denote an arbitrary unary and an arbitrary binafgrmulaw at stateg (k > 0) along an arbitrary interpretation
temporal operator, respectively. Then the formula foromati 1 of (. Rewriting in terms of this relation, it follows that, for

rules are as follows: an atomic propositiop, € P,
1) Every atomic proposition oP is a formula. 0) =" po iff 7k, pa) = true.
2) If w, wy andw, are formulas, so are, wi - wz, Ti(w) It should be clear that, ovef*) and in stateg,, the
andw; 7z ws. respective evaluations of an atomic proposition, and more

Over arbitrary formulasv, w2, w, the following abbrevia- inductively of a state formula,, are the same, i.eL;I(k) Ds
tions @lways-equals=) are used, about which related connedff =% p,, where(|=% p;) € {true, false} (read: g, satisfies
tivesor +, implies— andequals=, and the related quantifierp,’) defines the semantics of formu}a in stategy.

‘for all’ vV are, respectively, definedw; + w2) = (w7 - @3), In addition to the standard rules for Boolean connectives,
(w1 = we) = (Witws), (W1 = we) = (w1 = we)-(wz = w1), LTL uses satisfaction relation rules for temporal opemtor
and (Vz)w = (3z)w, wherez € II is an argument of someto inductively evaluate the satisfaction of an arbitray)
predicate contained iw. The LTL language also includes(k > 0) over an LTL formula. Below, the rules defined for the
validity true andinconsistencyf alse - propositional constants basis set§[1, O, U}, {&,©,S} of future and past operators
which are defined, respectively, by the following abbreviad are presented. The rule for operatorrequires the following
over an arbitrary formula: true =@ +w and false = W-w. event-transition logic to account for a trajectdryhat is finite.

Aggregation connectives,, | [ denote theor-ing (or logical Definition 1 (Theos-Transition Logic):Giveno € %, for an
sum) andand-ing (or logical product) of a number of formulas,arbitrary state trajectory of DESG, I = gqo—q1— - -—qx. - - -,
respectively. the functiont : ¢ — (I — {true, false}) is a systemo-

A past formula is one that contains no future operators;teansition logic, defined ag;, € ) such that
future formula is one that contains no past operators; and a 1Y iff (M (k+1)) k1 = 0(0, qr)-
state formula is one that contains no future or past opexator Now, given formulasv, wi, ws:




710 . . 1)
1) ' Owiffforall j >k = w. {f, | o € £} at current state

2) |=I(k) Quw iff |=I(k) T - |=I(k+1) w, Wherer = ZTG-. \l/
oEX .
3) " wildws iff there is aj (j = k) such that="" w, {o]o €xis enabled ap by £}
and for alli (k <i < j), =" w. v
4) |:I( ' Qw iff for all j0<j<k), |:I(J) w. Supervisor DES event-selection DES
k . k—1 R
5) L1™ 0w iff k> 0and /" o f mechanism G
6) |:1(k) w1Swy iff there is aj (0 < j < k) such that i
@ o @) e
= wy and foralli (j <i<k), =1 w Selected events

The other temporal operators may be defined by the following
abbreviations: 7X>w = O(w) = trueldw, 8) wiWwy =
Owi + wildws, 9) Sw = (W) = true Sw, 10) Ow = O (W),
and 11)wiBws = Blwi + wiSws.
The model operational premise is this: From every noﬁig. 1. The state feedback supervisory control loop, wittSB#zent-selection
. L ' . mechanism explicitly shown.
terminal state that DE%- is in, one event will occur and

transition the DES into another state.
Interpretations that restrict to the actual behavior of BES By imposing f on DESG in the state feedback loop, the
are termed legal. LeT(G) be the set of legal interpretationsresulting controlled model, denoted ly/, is of the same

defined over DES~. Then, since only actual DES behaviotype (1) but with state uniqueness relaxed, and is defined as
is of interest, the following notion of7-validity of a formula follows:

Next stateg, = 8(a, qx)

w, denoted byG = w, is fundamental: 1) {If()) I'e I(Gf)} — {I,o) | T T(G)}, and
G Ewiff (VIeZ(G) ' w. 2) (VI e Z(G))(¥k = 0)(Yo e 3) (|:f<“ o &y iff
In LTL semantics, for an arbitrary sef(G), w1 = ws (HI’ EI(Gf)> IEk b= Ty — (0, i)
+ ’ :

denotesG = O(w1 = we); in addition, letw; ~ w, denote . . . .
G = (w1 = ws), where the connective: is said to be the From a theoretical viewpoint following7], a standard

anchored version of=. An LTL formula w is said to be criterion imposed on the ‘control technology’ for supeoris
satisfiable ifw % false.ie (3T € Z(G))(3k > 0) |:I<k> w f is that its tontrol should at most restrict uncontrolled

behavior, never enlarge'it To formalize this criterion, let
D. State Feedback Supervisory Control I#(G) = {Ig | I € Z(G), finite k > 0, and Iy ¢ Z(G)},

A supervisor for DESG specifies whether controllableCalled 'the#legally preflx-adm|35|ple s_et._Now, [E@(G).:
events are to be enabled or disabled at state @ of an Z(G) © I#(G). Then formally, th.'s cr_|ter_|0n §tates logically
arbitrary input state history;,, where! € Z(G). that}T e I(GT) —» I e I®(G). If this criterion is obeyed and

Definition 2 (Thes-Definition Logic):Giveno € 3, for an I(G') # &, then the .superwsof is said to jbe proper. In
arbitrary statey € Q of DES G, the function¢ : o — (g — other words, for an arbitrary propér @ c Z(G/) < I®(G).
{true, false}) is a systenw-definition logic, defined such that

=1 ¢, iff (3¢ € Q)¢' = (o, q). E. Fundamental Problem of Supervisory Control

Formally then, for every eI(G),_asupervisoris a.function Consider the specification paitP, M) for DES G,

[ = (I — {true, false}), defined atgy € Q with the \yhere P is an arbitrary past formula ove®, and M —
supervisory, -completeness constraint {My, My, -, M,,}, where eachM; € M (1 < i < m)
(Vo € 5) ‘:I(") (fo = true), is an arbitrary past formula ove€’ specifying a system

] marker condition M is called the system marker set; and the
such thatf, = true and f, = false enables and disablesyn,rker conditions are meant to represent and distinguish th
evento € X at current statey, € @ of hlzzory I_(k>' €SPEC- completion of different tasks or jobs by the processes of DES
tively, if o is defined at the state (i.e=" &,); otherwise, . Given this pair(P, M), the basic problem of supervisory
fo € {true, false} does not enable. Only an enabled event cqniro| is defined as finding a proper state feedback sugervis

at the DES current state can occur; but the supervisor is 5ayf0r G that can confine the DES to state trajectories in a
convention not the cause of its occurrence, hence supenvisg,pset ofZ®(G), along which all marker conditions i

is termedpassive Set up in the closed-loop system depicted,e met infinitely often under the invariance Bf i.e., 0P,

in Fig. 1, the superviso_r is said to issm_Je a new cqntrol pattelh | TL formula in canonical temporal-safety forrs][ [9].
{fo | o € ¥} for enabling and disabling events, in responsgemporal safety includes criteria such as deadlock aveielan

to new state values (i.e., state information) fed back by &,al exclusion, etc. That each marker conditiah ¢ M
discrete state change triggered by an enabled event oncerrgg o pe met infinitely often inG' is specified byd< M;, an
in the DES. Itis hence termed a state feedback superviser. T/ formula in canonical temporal-response for#j, [[9].

choice of event for execution among those enabled at a d;urrenBy the problem description above, the péi, M) denotes
DES state is deemed to be made by some underlying event- ’
selection mechanism of the DES. This mechanism is generally 0 (P _ ﬁOM)

unmodeled in the DES control literature. B



— the control specification to realize. The problem describ¢he samek-prefix asi, and branches off from ¢; into the
is called the marker-progressive supervisory control femmb next state via (the transition of) some eventXaf which in
in this paper, and is in essence about marker progressiverféig. 2 is either evento; or oa; 7, (1) is false otherwise.
under supervised temporal safety. This problem is forredlizBy Condition (i) above, it may be said that a trug, () at
in SectionlV, and the conditions under which it is solvable stateq; alongl means that the-transition has no (legal)

are investigated therein.

F. DES Model Behavioral Logics

The characterizations of behavioral transition logics and
operations are presented. Except for the conditioneditiams
logic and related operators, much of the supporting materia

herein originates in14], [15], [16].

Proposition 1: Consider an arbitrary state trajectofyof
DESG, I = qo —q1 — " —
o€

PLL) =1 (1, — &,). PL2) =T [T =

o'eX\{o}
The converse of B2 is also true if statey is not terminal.

To —

(X, 9)-peers alyy.
Proposition 2: Consider an arbitrary LTL formula over
DES G and an arbitrary state trajectofyof G, I = qo —q1 —

qr - - -- Then, for an arbitrary € %,
(k) N
‘:I ' Tm\a’(dj) - H Tz\a’(w) '
o’'ex\{o}

Definition 5 (Dynamic Conditioned-Transition Opera-
tors): Given arbitrary LTL formulasy, ¢ over DESG and

q---. Then, for an arbitrary ; ¢ ¥ the system dynamic conditioned event-operators

Ozlo(-s+)s Ozle(-,-), OVEr an arbitrary state trajectoty of
G, I=q—q— —q -, are defined as follows:

D51) |:IE: 91\0(7/)790) =0 (Tm\d(w) : (p)
D52) |:I Oz\a(d)v(ﬁ) = (Tz\a(dj) - O‘P)

Behavioral operators over arbitrary LTL formulas follow pefinition 6 (The Event-Transitionsgonsider the event set

next.

Definition 3 (Dynamico-Transition Operators):Given an
arbitrary LTL formula ¢ over DES G and o € X, the
system dynamic event-operatogs,, O, over an arbitrary
state trajectoryf of G, I = qo—q1 —---—qx - - -, are defined
as follows:

D3.1) ' 0,(p) = O(75 - ¢)-

D3.2) E' 04 (p) = (72 = Ov).

Definition 4 (The Conditioned-Transition Logic): Given
an arbitrary LTL formulay) over DESG ando € 3, for an
arbitrary state trajectory of G, I = g0 —q1 — - — qx - - -,
and an arbitrary’ € Z(G), I' = Iy — q;, ., -+ (if it exists),
the functionr, : (0,v) — (I — {true, false}) is a system
1-conditioned transition logic, defined at € @ such that

(k) (k) —
1 (o (@) = 7o - (V1 oy # Tsny)) E7 O).

V)2

Fig. 2. Anillustration of conditioned-transition logicr,, (). Each dotted
arrow depicts an arbitrary sequence of state transitio#m\.(mts). A fanout
of three dotted arrows from each of two of the states is meamkepict an
arbitrary number of legal state trajectories that existhedenoted by’ that
extendsI, by branching offl from stateq,, via either evenry or os.

For illustration, it is assumed, as depicted in F&y.that

other than the event defined at statealong an arbitrary state

trajectoryl of DESG, only two other events, o, are defined
at gx. Then intuitively, alongl, 7,,(¢) is true at statey, if:

¥ =3%.U X, of DESG. The respective system controllable,

uncontrollable, and conditioned event-transitionsr,, 7.(.)

are characterized as follows:
D6.1) 7. = Z Ty

oEX,

D6.3) 70() = Y. 7o ().

Proposition 3:0820nsider an arbitrary state trajectofyof
DESG,I=qy—q1 — - —qx - -, Whereg,, is not terminal.
Then, =" (1, = 7).

Definition 7 (Dynamic Event-Transition OperatorsFon-
sider the event seE = Y. U X, of DES G. The system
dynamic event-transition operatags,, O, ©.(.,.), Oz(.,.)
are characterized as follows:

D7.1) Ou = ), O Ou= [] O

oEY, OEY,

D7.2) Ou(.) = D Oufo(:)i Ozl.) = [ [Oufol.s-)-

oeX oeX
Proposition 4:Consider arbitrary LTL formulag, ¢ over

DESG, and an arbitrary state trajectofyof G, I = go—q1 —

D6.2) 7, = Z Ty

OEX,

<o~ —qp---. Then:
P4.1) |:f“: Oulp) = O(7u - ).
PA.2) ="' Ou() = (ru = O).
P4.3) I 0. (%, p) = © (12(¥) - ¢).

PA.4) E1 0. (4, ¢) = (2(1) = Op).

Proposition 5 (Operator Duality)Consider arbitrary LTL
formulasy, ¢, ¢ over DESG. Then:

P5.1) G EO(©Y = ¢) =01 — Op).

P5.2) G = 0(0u(¥) = ¢) =0 (% = Oul)).

P5.3) G =0(0: (¥, 9) = ¢) =0 (¢ = Ox(¥, 9)).

The concept of (dynamic) invariant and its kernel is funda-
mental in the logic framework of supervisory control.
Definition 8 (The Invariant & Its Kernel):Consider an

DES & CONTROL CONCEPTSOVER AN INVARIANT

(i) 7, is true atq; alongl, and (ii) ¢ is false at the next state arbitrary LTL formulay over DESG. Theny is said to be
after ¢, along every other trajectory’ that is legal, shares an invariant ifo = Ev for some past formulab. If this ¢



has no operatoR in its outermost scope, it is said to be the

kernel of p.
An invariant ¢ and its kernek) over DESG are said to

be initially satisfied ifG = . An invariant may be ‘upper-

bounded’ by another of given interest, as defined next.
Definition 9 (P-History Boundednesggiven the kernelP
of some invariant over DE®/, an arbitrary invarianp over
G is said to beP-history bounded (with respect @) if
GE=0O(p - BP).
Henceforth, in the specification pdiP, M) first introduced

in Sectionll-E, the past formulaP is assumed, for succinct-
ness with no loss of generalftyto be the kernel of some
invariant over DESZ. Then if the invariance (specifiable with

) of P is to be met by supervisory control, an invariant
needs to be found that i®-history bounded, i.e.p is not
weaker than=1P. To satisfy or meefdP as part of solving
the marker-progressive control problem, the invariaralso

needs to be a satisfiable formula whose truth a supervisor ‘féP

(VoeXe) fo=0Oq(¥) [relto (¢, G,

where ‘[rel to (¢, G)]’ reads ‘relative top over G’ and may
be omitted when the context is understood. The supervisor
is said to bestatic if i) is or abbreviates to a state formula
with respect to DESZ; otherwise,f is dynamic

Remark 1:Since the state transition functiah of DES
model G is deterministic, a realization of,,, an arbitraryo-
component of supervisgf for o € ., may be computed by
LTL reasoning over mode(:'s possible transitions axioma-
tized as transition relation$], [14], to remove the operator
O and obtain some past formula,, such that

Oa(d’) = (Td - ﬂ’a)

Recall from Definitionl that theo-transition logicr, is
defined at a state along an arbitrary state trajectofyof DES
G. In interpreting this logic when the DES is at statevhere
several other events may also be definedrw assertion of
7, IS taken to mean that the evemtis exclusively selected
execution by the event-selection mechanism of the DES.

feasibly maintain in DES. The maintenance is done by theThis selection is, however, generally not knoapriori. The

supervisor performing next-state control of the kernekoof

To also meet] H<>MZ— , the whole control problem is

=1
studied in the next section in terms of several basic systain
control concepts defined over an invariant that are predente

is therefore set térue, so that

(VU € Ec) fa = wa [rel to (907 G)]
In this form, an event-disabling bf;, need not first detect the

logic 7,

dmminence of evens. [ |

Definition 12 (M, ¢)-Uncertain State):Consider an ar-

the following. The first two are the LTL concepts of controbitrary invariant ¢ over DES G with system marker set

invariance andX,-invariance that originate inlf], and are
herein reformulated over the more refined Definit®of an
LTL invariant first introduced in16].

Definition 10 (Control Invariance)An arbitrary invariantp
over DESG is said to be control invariant (with respect®)
if, for some state feedback supervisfir

G‘:D @'Z(fU'TU)_)O(P

Definition 11 @u-lnvarigenzce):An arbitrary invariantp over

DES G is said to beX,-invariant (with respect td@>) if
G =0(0ulp) = 9).

Proposition 6: An arbitrary invarianty over DES G is
Y-invariant if and only if it is control invariant (undex,,-
completeness of supervisg).

Proof: Based on the more refined Definitidh of an
invariant, proof is similar to that of1f4, Proposition 3.13].
[ |

Note that a supervisof for DES G, by definition, isX,,-

complete. Therefore, for a control invariaptover DESG,

Z (fo : Ta) - O(P>

oeX

3f) GO (cp-
may be logically rewritten as follows:

Bf(VoeXe) GEDO(e- fo = Oo (),

wherez is the kernel ofp. It follows that they-locally optimal
or most permissive supervisgrthat exists forG is such that

(Vo eX:) GEO(p— (fo = Os(¥))),

which may be abbreviated in the algebraic form:

2BecauseG = OP = O(EP).

M = {My,Ms,---,M,}. Then a stateyy € @ along an
arbitraryI € Z(G), I = g0 —q1 — -+ — qx -+ -, IS said to be

(M, p)-uncertain if =" 7, () - >,
1=1
With 7,(¢) = . 7,0() by D6.3, and by Propositior?,

an (M, go)—uncer(t’eﬁ] state along a legal state trajectorgf
DESG has a truer,, () for someo € ¥, whose exclusive-
transition is thereforéX:, 1))-peerless at that state. A, ¢)-
uncertain state alongjis also where not all marker conditions
are met.

Definition 13 (M, ¢)-Condition Invariance):An arbitrary
invariant ¢ over DES G with system marker seiM =
{My, Ms,---, My} is said to be(M, ¢)-condition invariant
(with respect toG) if

=1
Consider an invariantp over DES G that is (M, p)-
condition invariant. Then since

O (%w-iM) =0 (w-fz(w) : iﬁ>

by P4.3, it intuitively means thafp remains true at an arbitrary
stateq, 1 along an arbitrary legal state trajectdrpf DESG,

if it is true at the previous statg, that is(M, p)-uncertain. In
essence, this means thatgfis true at some arbitrary staig
reached alond and not all marker conditions i are true
there, a next state exists into which the DES can transiton t
maintain theyp-information (i.e., the truth of), albeit along
some legal state trajectory of DES evolved onto that shares
the samek-prefix, but not necessarily the sarfle+ 1)-prefix
as I unless the transition af, alongl has no(X, v)-peers.



In other words, whenevep is true, then unless all marker By the standard criterion imposed on supervisory control

conditions inM are simultaneously met, the DES can evolviechnology discussed in SectiirD, a (non-terminating) state

to maintain thep-information. trajectory of DESG that is not legal in the absence of control
Remark 2 (Dual-Operator DefinitionsBy Proposition5, does not become legal under conttdn view of this, fair

the dual-operator versions of Definitiod® (control invari- events are set as uncontrollable; otherwise, being able to

ance),11 (2,-invariance), andl3 [(M, )-condition invari- ‘disable’ a fair event could contradict the criterion, asight

ance] are obtained. B then become possible for DES under controlf to be kept
Definition 14 (M-Liveness under Conditional Invariance):along a state trajectory of G that is not legal, i.e.] ¢ Z(G)

An arbitrary invarianty over DES G with system marker but I € Z(G7), in that, overG, the antecedent condition of

set M = {M;,Ms,---,M,,} is said to beM-alive under the event’s fairness formula is true, but not the consequent
conditional invariance (with respect @) if condition.
m Henceforth in this paper, unless otherwise statédgefers
G=Op—-0Ol[]oM . to the fair DES model of Definitior5.

i1 : e -
Intuitively, along an arbitrary legal state trajectory oES V\_/'.th Xr S . (as specified n D.e f|n|t|orfl.5), a new

G for an invariantp over G that is M-alive under conditional auxmary. DES, concept over an llnvar_lant, qulpally weaker

invariance, every marker condition ji is true infinitely often than E_u—mvarla_nce and Ca','e,‘ff."”)’ar,"'?‘”ce' Is introduced.

if o is always true. Substlt_ut_e_Eu with X7 and u’ with ]—' in D6.2, D7.1, a_n(_j
Note that, ify is the kernel of invariant, the G-validity the definitions ofrr, ©r, O r are obtained for characterizing

conditions in Definitionsl3 and 14 may be replaced by the the concept, around which ttiE-substituted versions of4l,

following, respectively: P4.2, and 5.2 apply.

m Definition 16 Er-Invariance): An arbitrary invariantp
GO (@m <¢ - ZM> - ¢> and over DESG is said to beX r-invariant (with respect tax)
1=1

if GEOO©r(p) — ¢).

m Intuitively, for an invarianty over DES G that is X z-
GEOy—0O HOMi : invariant, the DES does not ‘slip out of on a fair event
i=1 along an arbitrary legal state trajectory, just as it doetsomo

The basic concepts in this section are defined for DES mo%ﬂ uncontrollable event if is 3, -invariant. In other words,

G with an arbitrarily ascertained legal SB(G) (representing o, maintain thep-information, the DES can branch off a state
the actual behavior of7). As inferred from the adopted trajectory that is not legal iii? onto one that is.

framework of Manna and Pnueli on canonical LTL and fair
transition systemsd], [9], one cannot generally talk about. Problem Formulation, Statement & Solvability
making marker progress without the system actual behawor-l-he LTL control problem described in SectiFE may now

exhibiting_ some Kind O'_c faimess, suggesting a deeper_moqi% formulated with a class of supervisors, defined as follows
characterization to refine the séi(G). The next section  pafinition 17 (P, M)-Supervisor):Consider the kerneP
presents one such DES model refinement adapted f8m {¢ o arpitrary invariant over DES' with system marker set
that is quite general for control-theoretic investigatiosing M = {My, M, -, M,}. Then a state feedback supervisor

the concepts defined herein, and over which the markt;u'-for G is said to beP-regulating andM-progressive if,
progressive supervisory control problem is studied. m

respectively, G/ = OP and G/ = O([[oM:]. A

=1
IV. M ARKER-PROGRESSIVESUPERVISORY CONTROL (P, M)-supervisorf is a state feedback supervisor thatHs

A. Fair DES Model regulating andM-progressive.
Let ©r = Xc U X denote the set of fair events, where Given the specification pa{tP, M) over DESG, formally,

Yc denotes the strongly fair set of compassionate events, éHa marker-progressive supervisory control problem (MFP5

¥, denotes the weakly fair set of just events. Without loss & stated as follows:
ggnerality assume, myzj — J MP-SCP: Find a propel P, M)-supervisorf for fair DESG.

Definition 15 (The Fair DES ModeljThe DES models The conditions under which the MP-SCP is solvable, i.e., a
(1) is said to be fair §, p. 256] (with respect t@» 3, general solution to the problem exists, are establishechby t

) . following result.
whereXr = X UX s such that, for every state trajectofy ) . . . . . .
of G, I € Z(G) iff I satisfies the event-fairness formulas: Theorem 1.Consider an arbitrary invariant with v as its

; ) kernel, over fair DESG with system marker set. Then

1) (Vo e %¢) |= ID<>50 — 007 (Strong faimess) there exists a propdiP, M)-supervisorf for G, such that

2) (Vo eXy) = ©O& —» OO, (Weak fairness) (Vo eXo) fr=0q) [relto (o, Q)]

Intuitively, an arbitraryo € X¢ that is defined at infinitely iff ¢ is: 1) initially satisfied, 2)X,-invariant, 3) (M, ¢)-
many states must occur next at infinitely many states; and @ondition invariant, 4)M-alive under conditional invariance,
arbitraryo € ¥ 7 that is defined henceforth from a certain statand 5) P-history bounded.
must occur next at infinitely many states. The event-fagnes, _ o _ _

f | titute the legal conditions that charactetiee . Note that a state trajectorgf DES G as formall_zed in Sectionl-C is
_Ormu as C_0n5 g ’ either legal or is not; and any terminating state trajectnffDES G satisfies
interpretation sef (G) of the fair DES model5. every event-fairess formula of the DES and hence is legal.



kernel, over fair DESZ with system marker sei. =
(If) That ¢ is initially satisfied andX,-invariant implies m
v is initially satisfied and control invariant with ax(- INV4) G =0¢ — O H<>MZ—
complete) supervisorf, such that(Vo e X.) f, = i=1
O,(1) [rel to (¢, G)]. It follows that Gf = Oy. Thaty Lemma 1 (b, p. 290]): The clas§ of LTL response formulas
is P-history bounded implie&/ = JP. is closed under Booleaand - , in that, for arbitrary past

Next, because is initially satisfied and.M, ¢)-condition formulasés, ¢, over DESG, _
invariant, Z(G/) # ; and because is X,-invariant and OO¢1 - OCk2 ~ OO (62 - O(4256¢1)),
hences -invariant, everyl e Z(G/) satisfies all the legal (or €~ IO ¢1- OO is an LTL response formula (undey).
fairess) conditions of, and over, DES By definition, the su- ~ -€Mma 2: Given arbitrary past formulasy, M, Mo,
pervisorf that exists is proper. That is initially satisfied and " , M, Over DESS’

Proof: Cor_1$|der an grbltrary invariant with ¢ as its INV3) G = O (@m (%w' ZM> R s0>, and

(M, ¢)-condition invariant also implies everdye Z(G/) that Oy — O HOMi ~ ﬁDO (@ — M),
is terminating due to supervisgf satisfies[J H<>MZ— . andis an LTL resip:(;nse formufgl(und:ep_
i=1 . i i :
And by f being proper and that is M-alive under conditional Proof: By applying temporal logic rules|
invariance, every othefr e Z(G¥) is in Z(G) and thus satisfies Op - OOM; =~ D( )+ OO M;
M; ). Therefore G/ |= M; (@) +_D<> !
(e -o(lle ~00(69) + OO M,
Together, by definition, a propé®, M)-supervisorf for >0 (EC(0P) +BOM;)
G exists, such thatVo € X.) f, = O, () [rel to (¢, G)]. ~0O (<>(<>_<P) + OM;)
(Only if) Suppose there is a prop@p, M)-supervisorf for ~ OO (©7 + M;)
DES G, such that(Vo € 2.) f, = O, (1) [rel to (o, G)]. ~ OO (Hy — M)
That f is X,,-complete and in the given algebraic form implies m
 is control invariant, and hencg,-invariant. ExtendingO<& M; to O <H<>Mi>:
That f is proper implieZ(G7) # &; that it is P-regulating i=1
implies Gf = OP, together implyingG = P, i.e., @P m m
is initially satisfied (inG). Now, assumep is not initially Op — 0O (HQMZ) ~ Oy — HDOMZ-
satisfied. Then control by the giveghon G need not guarantee i=1 . i=1
: . -2 il
the invariance ofP, contradicting the fact that?/ = OP. ~ 1—[ Op — OO M)

Therefore,p is initially satisfied, and has to b&-history
bounded forf on G to obtainG/ = OP, with G7 |= 0. n
Next, thatf is ¢-locally optimal and proper implie%(G/) HDQ e — Mi).
is the largest legal set of state trajectories satisfying
without violating any of the legal (or fairness) condition$1< (Elp — M;) is a response formula (in canonical form).
of, and over, DESG. That f is M-progressive implies By Lemmal,

GIEDO (HQM). It thus follows by this nonempty set HDQ (B — M;)

i=1
Z(GY) that:
1) Since everyl € Z(G/) that is terminating due to super-

visor f satisfies[] H<>Mi>, ¢ is (M, p)-condition O¢ —0O (HOMz)

=1 1=1
invariant. m is also an LTL response formula. [ ]
2) Since every othef € Z(G/) satisfieg] H<>Mi and Theor_em 2:The MP-SCP is a canonical safety-response
1 verification problem.
is in Z(G), ¢ is M-alive under conditional invariance. Proof: The expressions in INY— INV3 are LTL safety
m formulas (in canonical form). Since, M; (1 < i < m) in
For an arbitrary LTL formula over DESG and an arbitrary INV 4 are past formulas, by Lemnta the expressmn in IN¥

state trajectory of G, define operato®,, such thatd,(¢) = is an LTL response formula that can be written as a product
®(7u - ). It can be shown that of m response formulas (in canonical form). Hence the result.

]
=" @ulp) iff (k= 0) or £ ©u(e).
ThenG £ (¢ -0 (Ou(y) — ¢) = O (Ou(y) — ). It fol-  C. Controllability of Temporal Safety for Marker Progress

lows by Theoreni that the MP-SCP is solvable iff there exists The LTL controllability concept of temporal safety origi-
an invarianty such that: nating in [L4] is extended to admit constant progression to
INV1) G =0 (@ulp) = ¢), INV2) GEO(e - EP), markers.

is an LTL response formula. Hence,



Definition 18 (Controllability): Consider the kerneP of For the specification paitP, M) input to the MP-SCP, the
an arbitrary invariant over DE®%. ThenOP is said to be set of all M-controllable invariance formulas whose invariants
controllable (with respect ta7) if EP is: CT1) initially are not weaker thail P is introduced:
satisfied, and CT2Y,,-invariant. . )

Definition 1_9 M—Directingness)ansider the kerneP of c(P, M) = O S%S |tsh/e\/lkg?nnglr%:ca:rllei,n\(/v;\r?;em .
an arbitrary invariant over DE% with system marker set that is P-history bounded
M. ThenOP is said to beM-directing (with respect ta@r)
if @ P is: MD1) initially satisfied, MD2)(M, & P)-condition Proposition 7:Consider the kerneP of an arbitrary invari-
invariant, and MD3)M-alive under conditional invariance. ant over fair DESG' with system marker set{, and assume

Condition MD1, equivalently of past formul& beingG- C(P,M) # . ThenC(P, M) is closed under arbitrary
valid, is necessary for an arbitrary legal state trajectbyf or-ings. Specifically,C(P, M) contains a (unique) supremal
DESG to satisfyE P at a statey, of I, or equivalently, for &- element (which is hereby denoted byp C (P, M)).
prefix of I to satisfy(] P. Condition MD2 ensures that every Proof: On the assumption th&(P, M) # &, let Oy, €
prefix, of an arbitrary legal state trajectory@fsatisfying=lP  C(P, M) for all i in some index se¥, and lety = Z Ev;. It
at stateq,, can always be extended to a legal state trajectory ) i ) ) iEN
I that either satisfie&l P, or EP at some non-terminal statef0llows thaty is an invariant because, equivalenty= gy,

g; (j > k) along1, at where all marker conditions iM are Wherey = 2., EY; is therefore the kemel ob. By temporal

simultaneously satisfied. Condition NDensures that every jogc reasoiﬁi%g, it can be shown thatis P-history bounded

legal state trajectory df that satisfies ] P also satisfies every ong satisfies the conditions d¥-controllability. Therefore,
marker condition inM infinitely often. Taken togethef]P

is M-directing if every legal state trajectory of DES has O € C(P, M). Becausedy ~ 0O ZE% ~ ZDM,
somek-prefix (0 < k£ < o) satisfyingd P, and every such
prefix can be extended to or is a legal state trajectorg air
its j-prefix (j > k), satisfyingd P and infinitely often, every
marker condition inM.

Remark 3:Returning to Theorem which characterizes the Z
existence of a properp-locally optimal solution supervisor
for the MP-SCP, Conditiond, 3, and 4 therein define the
M-directingness while Conditions and 2 define the con-
trollability, both of v with respect to fair DES modél.
As the only I|ver!ess reguwement, Co_ndm(;hdepends N controllable formula that is not weaker thanP, and it is
how the setZ(G) is restricted by the fair events of the DES’

T X o . .~ “then called the supremalt-controllable subformula of] P.

(see Definitionl5) for its G-validity. It follows that achieving i i ) )
marker progress under supervised temporal safety depends OTheo_rem 4:Con5|_der the kerneP of an arbitrary invariant
DES event fairness in general. With reference to the closdder fair DES G with system marker seiM, and assume

loop system setup of Fid.,, one may then interpret a solutionC(P’M) # . LetsupC(P, M) ~ Oy, wherey is the

supervisor (that exists) as inducing a subset of the givin f ernel _Of some invariant. Then there exists a profiér)-
events of the DES to render the underlying event-selectiSHP€rvisorf for G, such that
mechanism marker-directable under the controllable The (Vo eX.) fo=0Oo() [relto (@Y,G)].
supervisor maintains the invariance of within which the Proof: (¢ is M-controllable. The result follows by
event-selection mechanism is directed by a fair event subséeorem3. u
to drive the DES to meeting, infinitely often, every marker The solution supervisor characterized in Theoréasd4
condition in M. B is said to be globally optimal for the MP-SCP (if it exists).
Definition 20 (M-Controllability): Consider the kerneP By this global optimality which is with respect toP, M),
of an arbitrary invariant over DE& with system marker set the solution supervisor undét,,-completeness is maximally
M. ThenOP is said to beM-controllable (with respect to permissive in maintaining the invariance Bf while ensuring
G) if OP is controllable andM-directing. the constant, guaranteed progress to multiple markesstin
With respect to the specification pdiP, M), Definition 20
of M-controllability reduces to Definitioh8 of controllability
if M is empty or is the se{ My, Ms,---, M,,} of trivial V. DISCUSSION
marker conditions, i.eM; = P or M; = true (1 <i < m).
Theorem 3:Consider the kerneP of an arbitrary invariant A. Example 1: Nonblocking Control of Fair DES’s
over fair DESG with system marker set. Then there exists
a proper(P, M)-supervisorf for GG, such that

ieN €N
the arbitraryor-ing of M—controllablee[lwi’s bver N is M-
controllableJ%. It follows that, over the whole s&t(P, M),
the supremalM-controllable element issupC (P, M) =~

= |- |
O € C(PM)

In logic terms,sup C(P, M) =~ false providedC(P, M) =

. Therefore, in generasup C(P, M) € C(P, M) u { false}.

ProvidedC(P, M) # &, supC(P, M) is the weakestM-

A general (P, M)-supervisor that exists by Theoreiis

(Vo€ 5.) f, = On(P) [rel to (BP,G)] nonblocking [L] for a fair DES G, if the special case of
iff P is M-controllable.
Proof: Let ¢ = EP in Theoreml. The result follows by M = Z D )
Definitions 18 to 20. [ | 0 !
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is considered for the MP-SCP, whepg is the proposition This is in the sense that, as long as specified safety is never
characterizing the unique statee Q of DES G (1) and is violated, the supervisor permits the DES to enter any state
given by from where itcanlogically transition to regularly reach a state
of the global marker state set, uted noin runtime without

the assumed DES proactivity discussed in the introduction.
To elaborate, consider the example above, where the DES
— a state formula which is a predicate such thét p, and under globally optimal, standard nonblocking supervisi®n
(V¢ e Q\{q}) =7 Pg, and J c Qn, = Q, WhereQ,, is permitted to enter statg; and traverse in the loop formed

a state subset designated as the set of global marker staieswo transitions, namely(os, q1) = g2 andé(o2,q2) = @1

in DES G that is explained in the introduction. This se{see Fig.3). Without the assumed DES proactivity, the DES
Qm is a key feature in the standard DES model used fieed not, in runtime, regularly transition out of this swisor-
standard nonblocking control theor$]] [2], [6], [7]; and the permitted loop to reach the global marker stase

standard DES model is a 5-tuple automatéh X, ¢, qo, Q)

which, in essence, is model)(with IT abstracted outQo g Example 2: Role of Event Fairness.v-Controllability
conventionalized to containing one initial stajg, and Q,,

Pq = n (v; = a;) for somea; € Range(v;)

v; eIl

included.
Note, however, that for this special case/ef (2) reducing d10 oo 99 oo qs
the MP-SCP to nonblocking control, the globally optimal o< Q

(P, M)-supervisor that exists by Theorehis in general more

restricting on the DES than the globally optimal supervibat

exists by standard nonblocking control theotj; [ 7] for some

equivalent specification in formal language, i.e., a setririgs

(over the event sef). The following example illustrates this E

fact. 0
For this example, consider a simple standard DES model

shown in Fig.3, with its only global marker statg, denoted

by a darkened node. For nonblocking control, 8¢t= {p, },

o >0 >0 >0

o
q11 12 q12 013 q13 014 14

Js

%A A— Fig. 4. The DESZ for Example 2. The marker states are denoted by darkened
% T s ?q3 nodes. The forbidden states specified Byare denoted by nodes shaded in

grey.

04

This example illustrates the cooperative role of fair esent
Fig. 3. A simple standard DES model for Example 1. It is an maton with  in M-controllability, using a DES= with system marker set
Qm = {qo}- M = {pg,,pq}, as depicted in Figd. Each marker condition
of the given setM corresponds to a marker state.

and treat the model as a fair DES (over which Theo#em SupposeY,. = {003,011,012,015}, Yc = {005,006},

can then apply). Suppose, = {o»}, X7 = ¢, and for the c %,\X¢,* and for the specification paitP, M),
specification pair(P, M), P = true. By inspection of the P = po. T b In this exampleOP is M-controllable:

?ES mt%dil in CF;g.B;\jgamstLhe_;ﬁ)emg::atlon ﬁ{[a'rg[ It l'sbe‘lr’l‘S}f\lo terminal state results under control that disables event
o see thasup C(F, M) ~ [Ip,,- Thus the resultant globally 011,015 only, and the strong fairness in uncontrollable events

optimal (P, M)-supervisor disables (controllable) event at 506 €NSUres that marker statgs ¢- are visited infinitely

. 0 3
statego, and enables every other event defined at each Sté?ém assuring\-directingness under the controllatlér.
the DES can reach under control. But by standard nonblocking

control synthesis]]], [7], a language deemed equivalent to the ] .
specification pair(true, {p,,}) is the (largest) set of stringsc' Example 3: Solution With No Global DES Marker State
that start and end in staig under the DES model's transition Although the nonblocking case o¥1 (2) for a DES can
function; it is thus representable by the same automatoheas pe addressed by standard control theory, it is by the LTL
DES in Fig.3, and the resultant globally optimal nonblockingounterpart theory of marker-progressive control in traper
supervisor trivially obtained enables every event defined #at a globally optimal nonblocking control solution thatsts
each DES state, all of which the DES can reach under contr@®n guarantee constant progress to a global marker state.
Clearly then, the former solution supervisor is more reitry  Furthermore, unlike standard nonblocking control syrithes
on the DES than the latter. [1], [2], [7], marker-progressive control synthesis in LTL can
In fact, in not explicitly modeling and accounting for syste also be transparently applied to a modular DES without a

event fairness, a globally optimal supervisor that existsef _ , .
“Note that, for this example DE&' (see Fig.4), £ can be arbitrarily

DES l_m(?'er S_tandard nonblocking control theory is the moh%ed since, onc&l¢ is fixed, Z(G) is the same regardless of whether the
‘optimistic’ with regard to global marker state reachalili other uncontrollable events are just or not.
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global marker state, or without one surviving under control

. (91,2, 92,2)
as the following example shows.
03 Oy
q1,2 A %1 q2,2
03
a3 03 o1 T2 oy oy
(91,0, 92,0) (91,1, 92,1) (91,1, 92,2)
d1,0 q2,0 (2] 21
Fig. 6. Transition model equivalent of the globally optini&l, M)-supervisor
G, ( ) G, that exists for Example 3. It is an automaton with no marketest
91,2, 92,2

automaton equivalent of the given specification &irAM) on

the standard DES modéL), %, 4, (¢1,0,92,0), {(q1,2,42,1)})-

This is to select their common formal marker sublanguage,
with a marker sublanguage of an automaton being a subset
of finite strings that start from the initial state and end in a

(@10:920) (@11, 921) (411,422 marker state under the automaton’s transition functiorusTh
this selection actually corresponds to enforcing the rdfine
03 system marker seM’ = {p,, , - pg,, } Under the giverilP,
6=6,1IG, and it returns an empty marker language.

Beyond the specifications for the three examples in this
Fig. 5. The DESG — Gy || Go for Example 3, whereG — sectlpn,the use of past formulas engt_)les an even more #exibl
(IL Q. ,6,pq0). Gi = (I, Qi, 54,61, pg,,) (1 < i < 2). Herein, | specification of system marker conditions, in particulaoam
is a modified version of the synchronous operal [7], by which G is  the component processes of a modular DES. This built-in
gonStr,“ C;ed Suc; tha‘f\fvi; qr([)lim(bfi - 81 ;nfg(’f(; é)l) kfszi) flexibility, coupled with the introduction of fair events in
q0 = PFqi,0 " Paz, = ,0,42,0)y ) ; . , .- . .
(61(0,q1), 62(0,02)) if & € $1 X5 and bothdy (o, q1) and 62(c, ) DES'S, distinguishes LTL marker-progressive control from
are defined, 2)(01(0,q1),q2) if d1(0,q1) is defined ando ¢ X2, 3) formal language multitasking contro8][ and the nonblock-
(a1,02(0,2)) i d2(c,q2) is defined ando ¢ 31, and 4) undefined, o ghecial casel]. This is besides their treating different

otherwise. A darkened node denotes a marker state th@t; iis identified . .
by the corresponding marker condition of the specifiedsttand inG by ~feedback spaces as fundamental — with the formdi-state

the product of its component marker states. For modGlam node that is space and the latter iR-event space.
half-darkened denotes a state containing the marker staired ;.

For this example, refer to a modular DES with system VI. RELATED WORK
marker setM = {p,, ,,pq., }, @s depicted and described in In the DES field of supervisory control, initial efforts
Fig. 5. Then suppose. = {o3,04}, ¥¢ = &, X7 = & propose LTL for specifying and verifying safety and liveses
(as arbitrarily fixed), and for the specification p&iP, M), properties (see, e.g., irRf], [23], [24]). However, since the
P = (Pgis S Pas = Pasg) - (Piss S Paos — Parz)- The  LTL control theory of temporal safety for DES'’s subsequentl
first product component of the temporal-safety g@a® may reported in 4], [15], [16], there has been relatively less re-
be paraphrased as follows: ‘Whenever Procésshas not search using temporal logic faontrol-theoreticdevelopment
proceeded to its statg » since entering its state, 1, Pro- of logical DES’s, other than the following subsequent major
cessGy must not enter its statg, .’ The second compo- efforts. The first 25 is the control theory in CTE for non-
nent may be paraphrased similarly. It can be shown th@fminating DES’s, to handle a class of CTtontrol specifi-
this temporal-safety part may be equivalently rewrittenthwi cations for safety, reachability, liveness, and stabilftye full
P = (Opg, = Pay) - (OPgsy — Pars), andOP is M- branching time logic of CTE is a hybrid of CTL and LTL.
controllable: M-directingness is trivially assured under thehe second effortd6] reformulates the controllability results,
controllableJ P. among others, of supervisory control for model checking in
By Theorem3, it follows that a propef P, M)-supervisor an epistemic temporal logic — a logic based on CTihat
that is globally optimal exists. However, though correbtst is augmented with one version of additional operators for
solution supervisor is deemed blocking with respect to thheasoning about knowledge and belief. The third eff@r s
global DES marker state sétq; 2, 42,1)}, as may be observedan algorithm for computing static state feedback supersiso
from the transition model equivalent of the solution showhased on specifications in a fragment of CTL that supports
in Fig. 6, which has no marker state. As a result, applyingriting requirements of continual reachability of multpl
standard nonblocking control synthesig, [[7] will yield the marker state sets for multitasking] [ However, although these
unwarranted outcome that rejects the transition modelvequiesearch efforts have their own merits, the use of past flasnu
alent, and in fact returns no nontrivial solution. To sees,thifundamental to this paper is not considered, and no temporal
note that standard control synthesis entails imposing &finiogic control research prior to this paper has studied the ro
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of DES event fairness in dynamic state feedback control.In yet another effort 38|, a translator of propositional
Besides, the CTL concept of controllability defined in the LTL, i.e., LTL restricted to its propositional fragment gnis
first effort [25 does not have the familiar system-theoretispecially developed for standard nonblocking control lsgsis
treatment reminiscent of standard control thediy [2]. The in finite automata. Over the standard, finite state DES model
control specifications considered in the second effd@ fre augmented with propositional state variables, the tramsla
in a formal language, not a temporal logic formula, and dailors and limits a useful class of state-based, response
no direct leverage can be made of the specification meritsIGfL formulas to selecting, as control specifications, forma
natural language expressiveness and readability thataehp marker sublanguages of the DES whose corresponding state
logic can offer to the system designer. Finally, while the_LT trajectories satisfy the LTL formulas, and which the trats
combined operator]<> can specify different sets of markeroutputs as finite trim automata — a trim automaton being one
states, asserting that each setistregularly be entered in a generating strings that can be extended to end in a marker sta
DES modeled by a transition system under event fairness, tireder its transition function. The resear@8] also reviews
corresponding CTL combined operator used in the third effa number of early research efforts on control of DES’s using
[27] is only meant to assert that each marker state set specifiechporal logic that are not covered in this paper.
can logically be entered regularly in a DES represented by aln a different language setting, the problem of controlling
transition system with no modeled event fairness. DES’s generatingo-languages to meet progress or liveness
For a setting where controlled and monitored actions aspecifications expressed alsodnlanguages has been inves-
considered in an environment modeled by a labeled transititigated in B9, [40]. Among the earliest research efforts on
system (LTS), a related but different type of control prable liveness in supervisory control, these studies entail atgaf
is studied P8]. This problem is about finding an LTS-basedound of w-closure on specifications relative to (the non-
controller that ‘legally synchronizes’ with the environnte terminating behavior of) a given DES, as originally introdd
(without deadlocking), so as to satisfy a fluent LTL formulén [39). In the automata-theoretic case wflanguages techni-
of the form C - (A — B), where A, B, C are event- cally related to LTL, a supervisor that exists can be coicsaa
predicated formulas, wittd, B modeling the liveness, in the[40] to ‘enforce’ liveness specifications in a ‘live’ DES model,
sense of infinite oftenity, of the environment assumptiams abased only on its making control decisions over finite prefix
system goals, respectively, and with specifying a temporal strings. This essence of control is analogously manifested
safety. The fluent LTL used is a variant of LTL developethe LTL approach of this paper as controlling temporal safet
for specifying state-based temporal properties about tevéor marker progress in a fair DES model, where, relative to
occurrencesd9. In [30], the problem is further investigatedthe respective DES modeld/(-directingness is analogous to
where success and failure of each controlled action in angive-closure.
subset are modeled, over which a specialized notion of gtron On fairness, a conceptually related but technically déffer
fairness is defined that a success-recurrent solutionatentr treatment in a formab-languages and finite automata frame-
is based on. Besides the settings for the problem that iecluglork for modular DES's is presented id]]. This is a rare
treating the event space as fundamental as in standardtonsaper in the DES control literature, besides an early study
theory [1], also different from this paper is the fact thabf some bounded versions of fairness for DES’s in Petri nets
neither the concept of controllability embracing liveness [42], both motivated by an awareness of the significance of
the optimality of control is formulated and studied in thesfairness in controlled systems. In that papéi]] a bounded
research efforts2g], [30]. version of strong fairness is defined instead foralanguage,
Other related research efforts in less comparable settinglsich is such that for every event in each infinite string, the
use LTL primarily as a specification language, with con&oll number of events between successive occurrences of the even
synthesis that is not syntax-based and useautomata — cannot exceed a bound specifegriori. That paper, however,
automata that generate (or acceptfanguages which are setsis on control synthesis to realize the defined bounded fasrne
of infinite strings, and are of either the Rabin or Biichi typén modular DES’s, and not on that to realize constant marker
with each type referring to a different (string) acceptangsrogress in fair DES’s under specified temporal safety thiat t
condition used. The research efforts therefore requirditsie paper is about.
steps of translating specified LTL formulas inteautomata.
One effort B1], [32] presents an evaluation semantics of
LTL formulas for Petri net (PN) models and determinis-
tic PN control synthesis of DES's; this synthesis entails a In LTL, the existence and synthesis results of state feddbac
composition between the Biichi automaton translated frdior marker-progressive control of fair DES'’s, namely Theo-
an LTL formula and a PN DES model. Another effoB3] rems1 to 4, are developed. Concluding, the regular temporal-
uses LTL for designinghierarchically-organizedcontrollers safety execution of multiple DES tasks can be coachieved by
for concurrentDES'’s [34], while yet another 35] uses LTL supervision and event fairness of the DES under its control.
extended with some quality operators that are ‘normalizedResearch studies in terms of system and control concepts
real-number evaluable’ for designimirectedcontrollers B6], in different mathematical formalisms are standard proklem
[37] of a specified minimal quality. The latter two efforts focugor the control theorist. For the practitioner, the impatta
on developing Rabin33] or Bichi [35] game-based control problem is concrete control synthesis. In future work, this
synthesis methods. paper provides an LTL control foundation for research on two

VII. CONCLUSION



approaches to accomplish the control synthesis task for fai]
DES’s in a transparent, syntax-based or symbolic fashign, b
which available industrial-strength software tools foedhem ;5
proving and model checking may be adapted, enhanced, and
used. One approach to the control synthesis task is by cancH]i]
cal LTL verification [L2], [13] based on Theorer for finding
a general control solution (characterized) in Theorgénin
the case 10|, [43] of a decidable specification paijt®, M)
over a finite state DES, the other approach is by fixpoint
computation okup C(P, M) that uses the synthesis method ing]
[16] as a foundation for finding the globally optimal solution

in Theorem3, or more generally in Theored 19]

Finally, recent developmentsi4], [45 have formalized

the mathematical links between some supervisory control
problems from the DES control engineering field and sonFm
reactive synthesis problems from the computer science, field
resulting in reductions between the problems that allow syn
thesis algorithms from one field to be applied to the other. [%1]
the same vein, it may be of interest to investigate the plessib
links between the LTL problem of supervisory control studie

in this paper and an LTL problem of reactive synthedi§],[ [22]
by which some problem reduction of the former may be found
to which the solution algorithm for the latter can be applied?3!
complementing the two approaches suggested above foefutur
work. [24]
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