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Abstract: In control of discrete-event systems (DES’s), the formalization of control requirements from natural language
statements is essentially a human endeavor. Without automated support tools, human designers often face
the uncertainty of not knowing if the control requirements formalized in the rudimentary DES formalism of
automata are as intended, motivating the automata-theoretic study of specification informatics in the field of
DES’s. A specification automaton that renders its linguistic description more transparent should help design-
ers ascertain the prescribed requirement. Such transparency may be formalized in either the state space or
the event space of the DES. In this paper, treating the formeras fundamental, a state-transparent specification
automaton is conceptualized with respect to a full specification automaton (‘full’ in the sense of having all
the a priori transitional constraints of the DES embedded init). It contains only specification relevant states
called specification epochs. Each epoch denotes a “well-defined” disjoint subset of states of the full specifica-
tion automaton in the same phase of execution, meaningfullyaggregated such that the resultant specification
automaton retains the original restrictiveness on the DES.The problem of maximizing the state-transparency
of specification automata for DES’s is then theoretically formulated. Subject to human perceptive or cognition
limits, we believe that such a maximally state-transparentspecification automaton could be more compre-
hensible, showing clearly the compliant execution of the system through a minimum number of specification
epochs, and should aid designers in clarifying if the requirement prescribed is the one intended.

1 INTRODUCTION

Many man-made systems can be modeled as discrete-
event systems (DES’s). Supervisory control theory
for DES’s (Ramadge and Wonham, 1987) provides
a theoretical framework for synthesizing controllers
(called supervisors) for DES’s. A DES is modeled as
a finite automaton, with its possible executions gener-
ating a formal language over a finite event set. A su-
pervisor, also modeled as a finite automaton, restricts
the DES to certain sequences of events or states such
that a given set of control specifications is conjunc-
tively satisfied.

In practice, control requirements are first given
in natural language statements. In our opinion, the
potential benefits of supervisory control theory could
be better harnessed provided the specifications in au-
tomata correctly formalize these verbal or textual
statements (Ou and Hu, 2000). The translation from a
natural language statement of a control requirement
to a specification in automata is often a non-trivial
task requiring the working knowledge of the entire

DES (Cassandras and Lafortune, 2008). Often, de-
signers understand the control requirements in natu-
ral language and manually prescribe the correspond-
ing specification automata. The lack of formal tools
to help designers in turn interpret and comprehend
the specifications prescribed has been identified as a
factor limiting the effective use of supervisory con-
trol theory (Grigorov et al., 2011). Without auto-
mated support tools, designers are generally faced
with the uncertainty of whether a prescribed speci-
fication is as intended. This has been encountered in
many applications of the automata-based DES frame-
work (Grigorov et al., 2010) – in automated manu-
facturing (Magnusson et al., 2011; Cheriaux et al.,
2010), robotics (Košecká and Bajcsy, 1994; Ricker
et al., 1996), communicating transaction processes
(Feng et al., 2007), information systems (Hinze et al.,
2006) and intelligent service transportation (Seow and
Pasquier, 2004), to name a few. In fact, with advances
in computing technologies mitigating complexity to a
practically feasible extent, human comprehensibility
is turning out to be more challenging than computa-
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tional issues in solving industrial problems using su-
pervisory control theory (Wonham, 2003). This moti-
vates the automata-theoretic study of specification in-
formatics in the field of DES’s.

Psychological studies have shown that human be-
ings tend to first abstract the representation of a prob-
lem when addressing complex real world problems
(Rasmussen, 1986). In studying a problem, an on-the-
fly model abstraction of the problem could often help
a human’s limited mental capacity better understand
the essence of the problem (Bredereke and Lanke-
nau, 2005). From this empirical study, we infer that it
might be useful to have an algorithm that can abstract
an input specification automaton, and present human
designers with an output automaton that is structurally
clearer and thus easier to comprehend, but retains the
essential expressions of the requirement prescribed by
the original automaton. Such clarity or transparency
comes from accentuating specification epochal infor-
mation, and correctly suppressing information irrele-
vant to the specification without oversimplifying that
could lead to ambiguity. The development of a sys-
tematic approach to obtain such transparent specifi-
cation automata is the aim of this paper. Not unlike
any study involving human cognition, the proposed
approach is assistive and provides a necessity basis to
individual designers for understanding specification
automata.

Research on specification transparency for DES’s
originates with the work of (Pham et al., 2010).
Therein, the specification transparency maximization
problem introduced attempts to highlight the prece-
dence ordering among a minimal set of events deemed
relevant to the specification, by ‘hiding’ in self-loops
all the events that are considered irrelevant to the
specification but can occur in the DES. For many ap-
plications, it might be more desirable to specify for
the DES in terms of state sequences or trajectories
(Du and Wang, 1988; Ou and Hu, 2000; Faraut et al.,
2011). In fact, it has been noted that while design-
ers of communication systems would prefer to specify
restrictions on event sequences generated by a DES
model, designers of manufacturing systems would
prefer to specify restrictions as constraints on state
trajectories traced by the DES (Cao and Ho, 1990).
A specification automaton in conjunction with a DES
can equivalently be viewed as prescribing a set of
‘legal’ state trajectories of the DES. A specification
automaton that traces state trajectories suitably pro-
jected from this legal set might thus furnish a clearer
state-linguistic description that aids in easier interpre-
tation of the prescribed control requirement. This mo-
tivates an alternative but complementary formulation
of the specification transparency maximization prob-

lem studied in (Pham et al., 2010), namely, one that is
based on states rather than events.

In our theoretical development, we first introduce
the concept of state-transparency of control spec-
ifications prescribed in finite automata. A state-
transparent specification automaton is an abstraction
of a full specification automaton (‘full’ in the sense
of having all the a priori transitional constraints of the
DES embedded in it), with each of its states represent-
ing a unique epoch (or execution phase) of the DES
that is relevant to the specification. As will be formal-
ized and explained, each relevant epoch distills a dis-
joint subset of states of the full specification automa-
ton that is intraconnected. By such intraconnectivity,
any pair of states in each disjoint subset is “graphi-
cally connected” by the automaton via only the states
in the subset, such that the member states reached
by an automaton transition from the same nonmem-
ber state are all temporally strung by a DES string of
events transiting through only the states in the subset.
It is postulated that specification epochs defined and
constructed this way would have well-defined mean-
ings for a state-transparent specification automaton.
For an intuitive understanding, the reader might want
to skip ahead to Section 5 for an example of abstract-
ing the states of a full specification automaton [Fig.
4(a)] into specification epochs, and yielding a state-
transparent specification automaton [Fig. 4(b)].

Different state-transparent specification automata
resulting from a full specification automaton can rep-
resent the control requirement using different sets of
specification epochs; and any specification automaton
is said to be the most (or maximally) state-transparent
if it can retain the original restrictiveness of the speci-
fication on the DES using the least number of specifi-
cation epochs. Subject to human perceptive or cogni-
tion limits, we believe that such a maximally state-
transparent specification automaton could be more
human comprehensible. Constructing such an au-
tomaton is a state-transparency maximization prob-
lem. In this paper, we formalize this problem, which
is shown to be NP-hard elsewhere. As a polynomial
time algorithm cannot be expected for this problem,
we propose an algorithm that can run in polynomial
time and achieve maximal state-transparency in indi-
vidual cases but not in general.

The rest of this paper is organized as follows. Sec-
tion 2 reviews relevant concepts in languages and
automata theory, and in some graph basics. The
new concept of state-transparency is defined, and the
problem and NP-hardness of finding a maximally
state-transparent specification automaton are formally
stated in Section 3. A polynomial time algorithm that
can compute state-transparent specification automata
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is proposed in Section 4. An illustrative example is
presented in Section 5 to demonstrate the concept of
a state-transparent specification automaton. Section 6
presents some related work. Section 7 concludes the
paper.

2 PRELIMINARIES

2.1 Formal Languages and Automata

We follow the framework of Ramadge and Wonham
(Ramadge and Wonham, 1987). LetS be a finite set
of events. A string denotes a finite sequence of events
from S . Let S ∗ be the set of all finite strings fromS
including the empty stringe . A string t ′ is a prefix of
t, if there exists a stringssuch thatt ′s= t.

A languageL over S is a subset ofS ∗. We sayL1
is a sublanguage ofL2 if L1 ⊆ L2. For a languageL,
its prefix closureL̄ is the language consisting of all
prefixes of its strings. As any strings in S ∗ is a prefix
of itself, we haveL ⊆ L̄. A languageL is considered
prefixed-closed ifL = L̄.

Any regular language can be generated by
an automaton. An automatonG is a 5-tuple
(Q, S , d ,q0,Qm), whereQ is the finite set of discrete
states,S is the finite set of discrete events,d : S ×Q→
Q is the (partial) transition function,q0 is the initial
state andQm ⊆ Q is the set of marker states.

Write d (s ,q)! to mean thatd (s ,q) is defined and
¬d (s ,q)! to mean otherwise. The definition ofd can
be extended toS ∗×Q in the usual way as follows.

d (e ,q) = q,

(∀s ∈ S )(∀s∈ (S )∗)d (ss ,q) = d (s , d (s,q)).
The prefix-closed languageL(G) and the marked

languageLm(G) describe the behavior of automaton
G. Formally,

L(G) = {s∈ S ∗ | d (s,q0)!},

Lm(G) = {s∈ L(G) | d (s,q0) ∈ Qm}.

A stateq ∈ Q is reachable if(∃s∈ S ∗) d (s,q0) = q,
and coreachable if(∃s∈ S ∗) d (s,q) ∈ Qm. Automa-
ton G is reachable if all its states are reachable, and
is coreachable if all its states are coreachable, i.e.,
Lm(G) = L(G). If G is both reachable and coreach-
able then it is said to be trim.

2.2 Graph Basics

Following (Diestel, 2006), an undirected graphJ is
a 2-tuple(VJ,EJ), whereVJ is the set of nodes and
EJ ⊆ VJ ×VJ is the set of edges. A path from node

u ∈ VJ to nodev ∈ VJ in J is a sequence of edges in
EJ, starting at nodeu and ending at nodev:

(u,u1),(u1,u2)...(uk−1,uk)(uk,v).
Two nodesu andv are said to be connected if such

a path exists. A graph is connected if every pair of
nodes inVJ is connected.

Finally, let |P| denote the cardinality of the setP.

3 PROBLEM CONCEPTS AND
DESCRIPTION

3.1 Specification Automaton and
State-transparency

Definition 1. (Pham et al., 2010) Given a DES G=
(Q, S , d ,q0,Qm), and a regular language L such that
L = Lm(A), where automaton A= (X,F, x ,x0,Xm). If
A is said to be a specification automaton (of L for DES
G), then 1) F= S , 2) Lm(A)∩Lm(G) = L(A)∩L(G),
and 3) A is trim.

Intuitively, a specification automaton for DESG
models a (marked) sublanguage ofG over event set
S . The sublanguageLm(A)∩Lm(G) is well modeled
such that every common prefix string inL(A)∩L(G)
can be extended to a marked string inLm(A)∩Lm(G),
thereby specifying an uninhibited sequence of execu-
tions to complete some task.

Given a specification automatonA for G, a trim
automatonH such thatLm(H) = Lm(A) ∩ Lm(G) is
said to be a full automaton, in that it embodies the
a priori transitional constraints ofG, and thus repre-
sents the full nonblocking behavioral specification for
G underA. By Definition 1,H can be called a speci-
fication automaton.

Given a full specification automatonH =
(Y, S , z ,y0,Ym) for DESG= (Q, S , d ,q0,Qm), we de-
fine the following (cf. (Su and Wonham, 2004)).

Let E :Y → 2S be the set of events defined aty∈Y
such thatE(y) = { s ∈ S | z (s ,y)!}.

Let D : Y → 2S be the set of events not permitted
by the specification aty∈Y such thatD(y) = { s ∈ S |
¬z (s ,y)! and(∃s∈ S ∗)[ z (s,y0) = y and d (ss ,q0)!]}.

Let T : Y → {true, f alse} with T(y) =
true if (∃s ∈ S ∗)[ z (s,y0) = y and d (s,q0) ∈ Qm].
T(y) is true if y is reachable by a string in the marked
language ofG.

Let M : Y →{true, f alse} with M(y) = true if y∈
Ym. M(y) is true if y is a marker state.

We say two states in a full specification automa-
ton H are specification compatible with each other if
their associated event permission and nonpermission
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in a DESG as well as their markings are consistent,
formally defined as follows.
Definition 2. Given a full specification automaton
H = (Y, S , z ,y0,Ym) for a DES G, let C⊆ Y ×Y be
the set of pairs of specification compatible states of H
on G. Then:

For y,y′ ∈Y, (y,y′) ∈C iff

1. E(y)∩D(y′) = E(y′)∩D(y) = /0;
2. T(y) = T(y′)⇒ M(y) = M(y′).

Condition 1 states that for(y,y′) ∈ C, an event
permitted aty should not be denied permission at
y′ and vice versa. According to Condition 2, states
y,y′ ∈ Y of H such that(y,y′) ∈ C are consistently
marked true or f alse if both states are reachable
by some strings in the marked language ofG (i.e.,
whenT(y) = T(y′) = true), or if neither is reachable
by a string in the marked language ofG (i.e., when
T(y) = T(y′) = f alse).

In what follows, a procedure called 13 is devel-
oped to check if a state pair is specification compati-
ble. Lemma 1 is immediate.

Procedure: ChkI f InC(y,y′).
Input : Two statesy,y′ ∈Y of H = (Y, S , z ,y0,Ym);
Output : true if (y,y′) ∈C; f alse, otherwise;

1 begin
2 if (E(y)∩D(y′))∪ (E(y′)∩D(y)) = /0 then
3 if T(y) = T(y′) then
4 if M(y) = M(y′) then
5 return true;
6 end
7 end
8 else
9 return true;

10 end
11 end
12 return f alse;
13 end

Lemma 1. Let C be the set of pairs of specification
compatible states of a full specification automaton
H = (Y, S , z ,y0,Ym) for a DES G. Then for a pair of
input states y,y′ ∈Y, Procedure 13(y,y′) returns true
iff (y,y′) ∈C.

A cover of a setY is a family of subsets ofY whose
union isY. Each element of a cover is called a cell. A
cover is a partition if its cells are pairwise disjoint.

We now define what is called a specification-
equivalent partitionP over the state set of a full spec-
ification automatonH.
Definition 3. Let C be the set of pairs of specifica-
tion compatible states of a full specification automa-
ton H = (Y, S , z ,y0,Ym) for a DES G. For an index
set X, a partition P= {Yx ⊆Y | x∈ X} is said to be a
specification-equivalent partition of H if

1. (∀x∈ X)(∀y,y′ ∈Yx)(y,y′) ∈C;

2. (∀x ∈ X)(∀s ∈ S )(∃x′ ∈ X)[(∀y ∈ Yx)z (s ,y)! ⇒
z (s ,y) ∈Yx′ ].

For an index setX and a statey∈Y, we denote the
cell of P= {Yx ⊆ Y | x ∈ X} containingy as[y], i.e.,
for y∈Yx, we have[y] =Yx.

Condition 1 of Definition 3 states that all pairs
of states within the same cell must be specification
compatible. Condition 2 asserts that, for two arbitrary
cellsYx andYx′ of P, the states reachable via the same
event from states of the same cellYx must all belong
to the same cellYx′ .

According to Definition 3, two statesy,y′ ∈ Y
are to be placed together in a cell of a specification-
equivalent partition if the state pair is specifiation
compatible and all the state pairs reachable by iden-
tical strings fromy andy′ are also specification com-
patible. Any two statesy andy′ that can be placed
within a cell as such are said to be pairable. It follows
that all state pairs reachable by identical strings from
pairabley andy′ are also pairable. State pairability is
formally defined as follows.

Definition 4. Let C be the set of pairs of specification
compatible states of a full specification automaton
H = (Y, S , z ,y0,Ym) for a DES G. Two states y,y′ ∈Y
are said to be pairable if

1. (y,y′) ∈C

2. (∀s ∈ S ∗)[ z (s,y)! and z (s,y′)! ⇒
(z (s,y), z (s,y′)) ∈C]

In what follows, we present a procedure (cf.
(Su and Wonham, 2004)) called :PTran that
computes and returns an induced automatonA =
(X, S , x ,x0,Xm) from a given specification-equivalent
partitionP= {Yx⊆Y | x∈X} defined on a full specifi-
cation automatonH = (Y, S , z ,y0,Ym), such that each
statex∈ X of A uniquely corresponds to cellYx of P.
The initial state ofA corresponds to the cell contain-
ing the initial state ofH. A state ofA is marked if the
corresponding cell contains any marked state ofH. In
A, a transition of events ∈ S from a statex to a state
x′ is defined if there is a transition of the same event
in H, from a state inYx to a state inYx′ . The procedure
has a worst case complexity ofO(|Y|| S |).
Theorem 1. Given a full specification automaton H
for a DES G and a specification-equivalent parti-
tion P of H. Then under G, A= PTran(H,P) is a
specification automaton modeling Lm(H) such that
Lm(H) = Lm(A)∩Lm(G).

Remark 1. A specification-equivalent partition (of
Definition 3), though mathematically similar, is con-
ceptually different from a control congruence (Su and
Wonham, 2004). For a different purpose as will be
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discussed in Section 6, the latter notion requires H
to be controllable; and we note that for a control con-
gruence Pc defined on a controllable H, PTran(H,Pc)
becomes a procedure that returns a nonblocking and
possibly state-reduced supervisor (Su and Wonham,
2004) realizing Lm(H) for DES G. Exposing this tech-
nical correspondence, it is not unexpected that cer-
tain definitions in this paper have some similarity with
those in (Su and Wonham, 2004).

Procedure: PTran(H,P).
Input : A full specification automatonH = (Y, S , z ,y0,Ym)

and a specification-equivalent partition
P= {Yx ⊆Y | x∈ X} of H;

Output : An induced specification automatonA such that
each state ofA uniquely represents a cell ofP;

1 begin
2 x0 = x∈ X such thaty0 ∈Yx;
3 Xm = {x∈ X |Yx∩Ym 6= /0};
4 x : S ×X → X(pfn) with x ( s ,x) = x′ for (x,x′ ∈ X) and

( s ∈ S ), such that(∃y∈Yx) z ( s ,y) ∈Yx′ ;
5 return A= (X, S , x ,x0,Xm);
6 end

Given an automatonH = (Y, S , z ,y0,Ym) and a
subsetY′ ⊆ Y of states, an undirected graph de-
noted byI(H,Y′) can be induced such thatI(H,Y′) =
(Y′,E′) with E′ = {(y,y′) | (y,y′ ∈ Y′) and (∃s ∈
S )[ z (s ,y) = y′]}.

For a partitionP of the state setY of H, we say
a cell p∈ P is intraconnected if the states it contains
are all “graphically connected” in the automaton via
only the states within the cell, i.e., the induced graph
I(H, p) is connected.

For any given input cell p ∈ P, Procedure
CheckI fConnectedconducts a breadth-first search on
the graphI(H, p) and returnstrue if I(H, p) is con-
nected. The procedure starts by adding a random
node ofI(H, p) to a listcon nodelist. The procedure
then adds tocon nodelist all nodes inp that share
an edge with the selected node. This step is repeated
for each node that is added tocon nodelist. Once af-
ter all nodes incon nodelistare considered and there
are no further nodes to be added tocon nodelist, if
con nodelistequalsp, thenI(H, p) is connected. The
procedure has a complexity ofO(|p|| S |).

In what follows is the important definition of a
state-transparent partition over a full specification au-
tomaton.

Definition 5. Let X be an index set. Given a full spec-
ification automaton H= (Y, S , z ,y0,Ym) for a DES G,
a state-transparent partition of H is a specification-
equivalent partition P= {Yx ⊆ Y|x ∈ X} of H with
the following cell intraconnectivity property:(∀x ∈
X)[I(H,Yx) is connected].

Procedure: CheckI fConnected(p).
Input : A cell p of a partition on the state set of an

automatonH;
Output : true, if p is intraconnected;f alse, otherwise;

1 begin
2 (p,E′) = I(H, p);
3 Select anyy′′ ∈ p;
4 Add y′′ to a queueu;
5 con nodelist:= {y′′};
6 while u is not emptydo
7 Dequeuey from u;
8 foreach (y1,y2) ∈ E′ such that y∈ {y1,y2} do
9 Let y′ = {y1,y2}−{y};

10 if y′ /∈ con nodelistthen
11 con nodelist:= con nodelist∪{y′};
12 Add y′ to u;
13 end
14 end
15 end
16 if p= con nodelist then
17 return true;
18 end
19 else
20 return f alse;
21 end
22 end

According to Definition 5, a state-transparent par-
tition is a specification-equivalent partition contain-
ing only intraconnected cells over a full specification
automaton. We postulate that these cells can be ab-
stracted to reveal well-defined specification-relevant
epochs, in what is defined as a state-transparent spec-
ification automaton.

Definition 6. Given a full specification automaton H
for a DES G. LetP be the set of all state-transparent
partitions on H. Then for P∈ P , a specification au-
tomaton A= PTran(H,P) (for DES G) is said to be a
P-transparent specification automaton of H.

A P-transparent specification automaton formal-
izes a state-transparent specification. Intuitively, un-
der DESG, aP-transparent specification automatonA
is an abstract representation of a full specificationH,
and each state ofA is a specification epoch abstract-
ing a cell of the state-transparent partitionP of H. By
Theorem 1,A possesses the same restrictiveness onG
asH.

We postulate that the most (or maximally) state-
transparent specification automatonA should express
the control requirement using the least number of
specification epochs, i.e., the state-transparent parti-
tion P should be of minimal cardinality.

3.2 Problem Statement

The problem of finding a maximally state-transparent
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specification automatonA for a full specification au-
tomatonH on DESG can now be formally stated.

Problem 1. Given a full specification automaton H
for a DES G. LetP be the set of all state-transparent
partitions on H. Construct a P-transparent specifi-
cation automaton A= PTran(H,P) of H such that
(∀P′ ∈ P )|P′| ≥ |P|.

Theorem 2. Problem 1 is NP-hard.

4 PROCEDURES AND SOLUTION
ALGORITHM

Since the state-transparency maximization problem is
NP-hard, a polynomial-time algorithm that can al-
ways return a specification automaton of maximal
state-transparency is not expected. In this section,
a polynomial-time algorithm that cannot guarantee
maximal state-transparency, but can often produce
maximal solution in individual cases is proposed.

By Theorem 1 and Definition 6, a state-
transparent partition induces a state-transparent spec-
ification automaton. A procedure to compute a state-
transparent partition is, therefore, essential for com-
puting a state-transparent specification automaton.
Such a procedure, :GetSTPartition, is presented in
Section 4.3. The procedure utilizes another procedure
(Section 4.1) to check for state pairability and yet an-
other procedure (Section 4.2) for checking the cell in-
traconnectivity property. In Section 4.4, a solution
algorithm for Problem 1 is then presented.

4.1 Checking of State Pairability

For two statesy,y′ ∈Y of a full specification automa-
ton H = (Y, S , z ,y0,Ym), Procedure :ChkI f Pairable
checks if the input statesy andy′ are pairable. For
this, initially, the procedure checks if the input state
pair is specification compatible (Condition 1 of Defi-
nition 4) by invoking Procedure 13 and thereafter re-
cursively checks if all state pairs reachable by iden-
tical strings from the input state pair are also specifi-
cation compatible (Condition 2 of Definition 4). The
procedure returnstrue if all the state pairs considered
are specification compatible; andf alse, otherwise. A
list waitlist (that is initialized to the empty set/0 when-
ever Procedure :ChkI f Pairableis invoked by Proce-
dure :GetSTPartition) is updated with each state pair
that is considered. The procedure has a complexity of
O(|Y|2)

Procedure: ChkI f Pairable(y,y′,waitlist).
Input : Two statesy,y′ of input specification automatonH, a

list waitlist of states pairs considered so far;
Output : true, if y andy′ are pairable;f alse, otherwise;

with waitlist updated;
1 begin
2 Let W(y) = {y′′ | {(y,y′′),(y′′,y)}∩waitlist 6= /0};
3 foreach y1 ∈ [y]∪

⋃
y′1∈W(y)[y

′
1] do

4 foreach y2 ∈ [y′]∪
⋃

y′2∈W(y′)[y
′
2] do

5 if {(y1,y2),(y2,y1)}∩waitlist =
/0 and [y1] 6= [y2] then

6 if ChkI f InC(y1,y2) = f alsethen
7 return f alse;
8 end
9 waitlist := waitlist ∪{(y1,y2)};

10 foreach
s ∈ S such thatz ( s ,y1)! and z ( s ,y2)!
do

11 f lag =ChkI f Pairable( z ( s ,y1),
z ( s ,y2),waitlist);

12 if f lag= f alsethen
13 return f alse;
14 end
15 end
16 end
17 end
18 end
19 return true;
20 end

Procedure: GetCnctPartition(waitlist,P).
Input : A list waitlist of pairable state pairs and a

state-transparent partitionP;
Output : A partition P′ that augmentsP such that the states

paired inwaitlist are placed within same cells,
wheneverP′ has only intraconnected cells;P,
otherwise;

1 begin
2 Let W(y) = {y′′ | {(y,y′′),(y′′,y)}∩waitlist 6= /0};
3 P′ = {[y]∪

⋃
y′∈W(y)[y

′] | [y], [y′ ] ∈ P};

4 foreach p∈ P′ do
5 f lag=CheckI fConnected(p);
6 if f lag= f alsethen
7 return P;
8 end
9 end

10 return P′;
11 end

4.2 Checking of Cell Intraconnectivity

For a listwaitlist of pairable state pairs and a state-
transparent partitionP, Procedure :GetCnctPartition
augmentsP to a partition of states ofH such that the
state pairs inwaitlist are placed within same cells
of the partition. Each cell of the newly computed
partition is checked for intraconnectivity by invoking
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Procedure :CheckI fConnected. If each of its cells
is intraconnected, the newly computed partition is a
state-transparent partition and is returned by Proce-
dure : GetCnctPartition. Otherwise, the input state-
transparent partition is returned without any modifi-
cation. The procedure has a complexity ofO(|Y|2).

Procedure: GetSTPartition(H,G).
Input : A full specification automatonH = (Y, S , z ,y0,Ym)

on DESG;
Output : A state-transparent partitionP of H;

1 begin
2 P= {[y] | [y] = {y} for y∈Y};
3 foreach y∈Y do
4 foreach s ∈ S do
5 if z ( s ,y)! then
6 Let y′ = z ( s ,y);
7 waitlist := /0;
8 f lag=ChkI f Pairable(y,y′ ,waitlist);
9 if f lag= true then

10 P= GetCnctPartition(waitlist,P);
11 end
12 end
13 end
14 end
15 return P;
16 end

4.3 Computation of a State-transparent
Partition

For an input full specification automatonH on DES
G, Procedure : GetSTPartitioncomputes a state-
transparent partitionP of H. Initially, the proce-
dure definesP such that each state belongs to a dis-
tinct cell. Then, for each pair of states that are con-
nected inH by a transition, the procedure invokes
ProcedureChkI f Pairable to check if the state pair
is pairable. Procedure :ChkI f Pairablereturnstrue
if its input state pair is pairable, withwaitlist hav-
ing a list of state pairs that are reachable by iden-
tical strings from the input state pair. Whenever,
Procedure :ChkI f Pairablereturnstrue, Procedure
: GetCnctPartitionis invoked. As explained in the
preceding subsection, Procedure :GetCnctPartition
updatesP by placing within same cells those states
that are paired inwaitlist, provided the cell intracon-
nectivity property is satisfied. Otherwise, the state-
transparent partition is not updated. The procedure
terminates after it has considered all pairs of states in
H connected by a transition. The complexity of the
procedure isO(|Y|3| S |)

4.4 Solution Algorithm

For an input full specification automatonH on DES

Algorithm 1: Computation of a state-transparent
specification automaton.

Input : A full specification automatonH on DESG;
Output : A state-transparent specification automatonA of

H;
1 begin
2 P= GetSTPartition(H,G);
3 A= PTran(H,P);
4 return A;
5 end

G, Algorithm 1 computes a state-transparent specifi-
cation automatonA of H. Procedure :GetSTPartition
computes and returns a state-transparent partition
P of H. The algorithm returns automatonA =
PTran(H,P), which by Definition 6, is a P-
transparent specification automaton ofH. The com-
plexity of Algorithm 1 isO(|Y|3| S |). The complexity
of Algorithm 1 is the sum of complexities of proce-
dures :GetSTPartitionand :PTran, i.e.,O(|Y|3| S |+
|Y|| S |)≈ O(|Y|3| S |).
Theorem 3. For a full specification automaton H
on DES G, Algorithm 1 returns a state-transparent
specification automaton A of H such that Lm(H) =
Lm(A)∩Lm(G).

I/OX I/OYM1 M2
1loadX

1releaseX 2loadX

1releaseY

2releaseX

R

2loadY
2releaseY1loadY

Figure 1: FMS layout.

5 ILLUSTRATIVE EXAMPLE

In this section, we illustrate the concept of state-
transparency using an example of a flexible manufac-
turing system (FMS) adapted from (Uzam, 2004). As
shown in Fig. 1, the FMS consists of two machines
M1 andM2, and a robotR, all capable of handling
parts of two different typesX andY. Parts of type
X enter and leave the FMS through an infinite-size
buffer I/OX and those of typeY through an infinite-
size bufferI/OY. Each machine can process only one
part at a time, and the robot can hold only one part at
a time. The production cycles for part typesX andY
are as follows.

X : M1→ R→ M2

Y : M2→ R→ M1

In the former cycle, a part of typeX is first loaded into
machineM1 for initial-stage processing, before robot
R takes and loads it into machineM2 for final-stage
processing. In the latter cycle, a part of typeY is first
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(a) MachineM1

2loadX

mI
2

mX
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mY
2

2releaseX

2loadY

2releaseY

(b) MachineM2
2releaseY

rIrY rX

1loadY

1releaseX

2loadX

(c) RobotR

Figure 2: FMS models.

loaded into machineM2 for initial-stage processing,
before robotR takes and loads into machineM1 for
final-stage processing.

As depicted in Figs. 2(a) and 2(b), machines M1
and M2 transit among states idling (m1

I , m2
I ), process-

ing X (m1
X, m2

X) and processingY (m1
Y, m2

Y), respec-
tively. The robotR transits among states idling (rI ),
holdingX (rX) and holdingY (rY), as depicted in Fig.
2(c). Note that in the directed graph representation
of an automaton, a state is represented by a node,
and a state-to-state transition by a directed edge la-
beled with an event. The initial state is represented
by a node with an entering arrow, and a marker state
by a node drawn as a double-concentric circle. For
i ∈ {1,2}, event iloadX represents the loading ofX
into Mi for processing and event ireleaseX represents
the release ofX by Mi after processing. Similarly,
event iloadY represents the loading ofY into Mi and
event ireleaseY represents the release ofY by Mi.

The DESG for the FMS is formed by the syn-
chronous product (Cassandras and Lafortune, 2008)
of M1, M2 andR. A control requirement forG is
that, once the processing of a part of typeX starts,
the processing of a part of typeY cannot start un-
til the processing of the part of typeX is completed,
and vice versa. The full specification automatonH
of this requirement forG is shown in both Figs. 3(a)
and 4(a). It is derived from some specification au-
tomatonB prescribed by a system designer such that
Lm(B)∩Lm(G) = Lm(H)⊆ Lm(G).

Fig. 3 shows a specification-equivalent partition
of minimal cardinality [Fig. 3(a)] overH that induces
a minimal-state specification automatonMIN [Fig.
3(b)] ofH. It has been pointed out in (Wonham, 2003)
that the control requirement prescribed inMIN is
not easy to comprehend. The specification-equivalent
partition in Fig. 3(a) used to constructMIN is not a
state-transparent partition. Notice that the cell that in-
duces state 1 ofMIN does not satisfy the cell intracon-
nectivity property; intuitively, it means the cell con-
tains states in clearly different phases of execution,
such asm1

XrI m2
I that occurs when a part of typeX is

processed, andm1
I rI m2

Y that occurs when a part of type
Y is processed. Due to this, both the events 1loadX

mX
1
rImI

2
mI
1
rImY

2
mI
1
rXmI

2

mI
1
rImX

2

mX
1
rXmI

2
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1
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2
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2
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2

1releaseY
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(a) Minimal specification-equivalent partition over the full specification au-

tomatonH

0

2 1 3

1loadX, 2loadY

1releaseX 2releaseY

2loadY1loadX

2loadX 1loadY

1releaseY

2loadX, 2releaseX,

1loadY, 1releaseY

2releaseX

2releaseX,

1releaseY

(b) The resultant minimal state specification automatonMIN

Figure 3: Specification state minimization.

and 2loadY, that initiate respectively the processing
of parts of typeX andY, lead to state 1 inMIN. As a
result, this state does not form a meaningful specifica-
tion epoch inMIN as it represents either “type-X part
processing” or “type-Y part processing”. This is am-
biguous, in that type-X part processing could be con-
fused with executing event 1loadX followed by event
2releaseY, when the latter event should be executed
only following a type-Y part processing.

Algorithm 1 returns a state-transparent specifica-
tion automatonA (which incidentally is maximal)
overH, as shown in Fig. 4(b). The state-transparent
partition computed onH is shown in Fig. 4(a). Each
state of A abstracts a cell of the computed state-
transparent partition ofH. As will be explained, each
such cell has states in the same phase of execution.
Note in Fig. 4(a) that when event 1loadX brings the
system from the initial statem1

I rI m2
I of H to state

m1
XrI m2

I , it means that the system has started process-
ing a part of typeX. To help better understand speci-
ficationH, in conformance with Definition 5, our al-
gorithm aggregates the statem1

XrI m2
I with other states

in H, forming a cell of pairable and intraconnected
states, to distill a well-defined specification epoch
meaningfully interpreted as “ProcessingX”. Other
specification epochs that result can also be interpreted
meaningfully. Effectively, the output state-transparent
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Figure 4: Specification state-transparency maximization.

specification automatonA ‘summarizes’ state infor-
mation inH as specification epochs, highlighting only
the essential restrictions on the DES. The specifica-
tion automatonA is easier to comprehend, since the
temporal essence of the specification - that once the
processing of a part of typeX starts, the processing of
a part of typeY cannot start until the processing of the
part of typeX is completed, and vice versa - is clearly
depicted inA.

6 RELATED WORK

Within the DES control community, design compre-
hensibility is receiving increasing attention and recog-
nition. Current efforts focus primarily on clarifying
supervisor design, whereas our work focuses on clar-
ifying given specifications:

• In the former line of research, state reduction of
synthesized supervisors has been proposed as a
technique that might render the control actions
due to a specification more readily comprehensi-
ble to designers (e.g., (Su and Wonham, 2004)).

Over a controllable specification automaton gen-
erating a sublanguage of the DES, the supervisor
reduction algorithm in (Su and Wonham, 2004)
constructs a control congruence, which essentially
is a partition of states of the input automaton, and
uses it to compute a state-reduced supervisor au-
tomaton. By “virtually setting” all events as con-
trollable, one could adapt the algorithm to achieve
state size reduction for a full specification automa-
ton. In some cases a state-reduced automaton con-
structed may be easier to understand, but the out-
put of such a state reduction procedure (Su and
Wonham, 2004) is usually not appealing to human
engineers (Wonham, 2003). The reason is that
the output often also abstracts away those a pri-
ori DES constraints essential for interpreting the
specification. The fact of the matter is that the
main aim in (Su and Wonham, 2004) is to con-
struct a supervisor automaton to achieve economy
of implementation, using the least possible num-
ber of control states by removing constraints al-
ready enforced by the DES. Also related is the re-
search (Miremadi et al., 2008) that generates and
attaches propositional formulae called guards to a
given supervisor to aid in design clarity.

• In this paper, along our latter and complementary
line of research, state-transparency is introduced
and developed. Our aim is to re-express a speci-
fication automaton using the minimum number of
specification relevant states manifesting as speci-
fication epochs, so as to aid in clarifying if it spec-
ifies the intended requirement.

Finally, the concept of state-transparency provides a
different language perspective to clarifying specifica-
tions from that of event-transparency introduced in
(Pham et al., 2010). This is manifested by two main
differences as follows. First, in the case of maxi-
mal state-transparency, a specification is recast us-
ing the least possible number of specification rele-
vant states, with each state representing some unique
specification epoch. In the case of maximal event-
transparency, the precedence ordering among a mini-
mal set of events deemed relevant to the specification
is highlighted. Second, states in a state-transparent
specification automaton correspond to a state parti-
tion of a full specification, but are not so for an
event-transparent specification automaton. The event-
transparency maximization algorithm developed in
(Pham et al., 2010) allows unrestricted state splitting,
causing in some cases, an event that is not permit-
ted and therefore undefined in a state of a given in-
put full specification automaton to be undefined at
several states of the output event-transparent automa-
ton. This could result in a cluttered state structure
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of the automaton. In other words, event-transparency
tends to facilitate clarity in event ordering informa-
tion, whereas state-transparency facilitates clarity in
temporal state information.

7 CONCLUSIONS

The study of informatics for the clarification of
discrete-event control specifications in automata is
motivated, and the informatics notion of state-
transparency is developed. A state-transparent speci-
fication automaton is formally defined and a solution
algorithm to construct a specification automaton of
significant state-transparency is proposed. An illus-
trative example is given to highlight how such an au-
tomaton can enhance the intuitive understanding of a
specification in automata.

To enhance specification comprehensibility, our
future work will incorporate temporal logic to ex-
tend our state-transparency specification framework
to a dual-language framework. Temporal logic is a
natural language readable and expressive formalism
for writing specifications (Manna and Pnueli, 1992).
An algorithm is proposed in (Seow, 2007) to trans-
late a state-based (finitary) temporal logic specifica-
tion for a DESG to a full specification automaton
H. An algorithm that directly translates such a tem-
poral logic specification to a state-transparent spec-
ification automatonA for which Lm(H) = Lm(A) ∩
Lm(G) should be of great practical utility to design-
ers prescribing specification for DES’s. Such a dual-
language framework can give designers added confi-
dence in ascertaining whether a prescribed specifica-
tion is as intended by rendering the control require-
ment of the translated specification automaton eas-
ier to understand from the integrated perspective of
automaton state-transparency clarified with readable
temporal state information.
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