
EE6226, Discrete Event Systems 1

Supervisory Control:
Advanced Theory and Applications

Dr Rong Su
S1-B1b-59, School of EEE

Nanyang Technological University
Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

EE6226, Discrete Event Systems 2

Introduction to Supervisory Control Theory

EE6226, Discrete Event Systems 3

Outline

•  Introduction to Supervisory Control

•  Ramadge-Wonham Supervisory Control Theory

•  Example – A Pusher-Lift System

•  Primary Goals of EE6226

EE6226, Discrete Event Systems 4

The Concept of Discrete Event Systems (DES)

•  A DES is a structure with ‘states’ having duration in time,
‘events’ happening instantaneously and asynchronously.
–  States: e.g. machine is idle, is operating, is broken down, is under repair
–  Events: e.g. machine starts work, breaks down, completes work or repair

•  State space discrete in time and space.

•  State transitions ‘labeled’ by events.

EE6226, Discrete Event Systems 5

•  Control problems implicit in the literature (enforcement of
resource constraints, synchronization, ...)

But
•  Emphasis on modeling, simulation, verification
•  Little formalization of control synthesis
•  Absence of control-theoretic ideas
•  No standard model or approach to control

The Motivation of Developing Supervisory
Control Theory (SCT) for DES (till 1980)

EE6226, Discrete Event Systems 6

Related Areas

•  Programming languages for modeling & simulation

•  Queues, Markov chains

•  Petri nets

•  Boolean models

•  Formal languages

•  Process algebras (CSP, CCS)

EE6226, Discrete Event Systems 7

“Great” Expectations for SCT

•  System model
–  Discrete in time and (usually) space
–  Asynchronous (event-driven)
–  Nondeterministic

•  support transitional choices

•  Amenable to formal control synthesis
–  exploit control concepts

•  Applicable: manufacturing, traffic, logistic,...

EE6226, Discrete Event Systems 8

Relationship with Systems Control Concepts

•  State space framework well-established:
–  Controllability
–  Observability
–  Optimality (Quadratic, H∞)

•  Use of geometric constructs and partial order
–  Controllability subspaces

•  Supremal subspaces!

EE6226, Discrete Event Systems 9

Ramadge-Wonham SCT (1982)

•  Automaton representation
–  state descriptions for concrete modeling and computation

•  Language representation
–  i/o descriptions for implementation-independent concept formulation

•  Simple control “technology”

EE6226, Discrete Event Systems 10

Outline

•  Introduction to Supervisory Control

•  Ramadge-Wonham Supervisory Control Theory

•  Example – A Pusher-Lift System

•  Primary Goals of EE6226

EE6226, Discrete Event Systems 11

RW paradigm is based on languages, but implemented on finite-state automata

EE6226, Discrete Event Systems 12

Basic Concepts of Languages

•  Given an alphabet Σ (e.g. Σ = { a , b , c , d })

–  A string is a finite sequence of events from Σ, e.g. s = ababa

–  Σ+ := { all strings generated from Σ }, Σ* := Σ+ ∪ {ε}

•  ε is called the empty string: sε = εs = s

–  Given s1,s2∈Σ*, s1 is a prefix substring of s2, if (∃t∈Σ*) s1t=s2

•  We use s1 ≤ s2 to denote that s1 is a prefix substring of s2

–  A language W ⊆ Σ* : most time we require W to be regular

–  The prefix closure of a language W is :

•  W is prefix closed if W = W

}sW)ss(|Σs{:W * ʹ≤∈ʹ∃∈=

EE6226, Discrete Event Systems 13

Finite-State Automaton (FSA)

•  A finite-state automaton is a 5-tuple G = (X, Σ, ξ, x0, Xm), where
–  X : the state set

–  Σ : the alphabet

–  x0 : the initial state

–  Xm : the marker state set (or the final state set)

–  ξ : X×Σ → X : the transition map
•  ξ is called a partial map, if it is not defined at some pair (x,σ)∈X×Σ.

•  Otherwise, it is called a total map.

•  Extension of the transition map: ξ : X×Σ* → X : (x,sσ) → ξ(x,sσ) := ξ(ξ(x,s),σ)

EE6226, Discrete Event Systems 14

The Famous “Small Machine” Model

•  G = (X , Σ , ξ , x0 , Xm)
–  X = { 0 , 1 , 2 }
–  Σ = { a , b , c , d }
–  x0 = 0
–  Xm = { 0 }

0

1 2

a

c

d b

a : starts work
b : finishes work
c : machine fails
d : machine is repaired

Idle

Work Failure

EE6226, Discrete Event Systems 15

Connection between Language and FSA

•  Give a FSA G = (X , Σ , ξ , x0 , Xm),

–  closed behavior of G:
 L(G) := {s∈Σ*|ξ(x0,s) is defined}

–  marked behavior of G, i.e. the language recognized by G,
 Lm(G) := {s∈L(G) | ξ(x0,s)∈Xm}

•  G is nonblocking, if Lm(G) = L(G).

•  A language is regular, if it is recognizable by a FSA.
–  We can use Arden’s rule to derive a language from a FSA.

0

1 2

a

c

d b

Idle

Work Failure

EE6226, Discrete Event Systems 16

Natural Projection over Languages

•  Given Σ and Σʹ⊆Σ, P:Σ* → Σʹ* is a natural projection if

)()()()(

' if
' if

)()(

)(

* σσσ

σε
σσ

σσ

εε

PsPsPs

P

P

=Σ∈∀•

⎩
⎨
⎧

Σ∉

Σ∈
=Σ∈∀•

=•

•  The inverse image map of P is P-1 : pwr(Σʹ*)→pwr(Σ*) with

 (∀A⊆Σʹ*) P-1(A) :={s∈Σ*| P(s)∈A}

a b c a c c d Σ = {a, b, c, d} Σʹ = {a, d}

P
a a d

EE6226, Discrete Event Systems 17

Synchronous Product over Languages

•  Builds a more complex automaton

•  with more complex language

β

γ

α

γ
shared

 Lm(A1) || Lm(A2) = P1
-1

 (Lm(A1)) ∩ P2
-1 (Lm(A2))

 expressed by natural projections

 Pi: (Σ1
 ∪ Σ2)

* → Σi
* (i = 1,2)

A1 A2

EE6226, Discrete Event Systems 18

The synchronous product is commutative and associative !

EE6226, Discrete Event Systems 19

Implement Synchronous Product by Automaton Operation

•  Let G1 = (X1, Σ1, ξ1, x0,1, Xm,1) and G2 = (X2, Σ2, ξ2, x0,2, Xm,2),
•  Let
 G1×G2 = (X1×X2, Σ1∪Σ2, ξ1×ξ2, (x0,1,x0,2), Xm,1×Xm,2)
 where

•  Result:

–  L(G1)||L(G2)=L(G1×G2)
–  Lm(G1)||Lm(G2)=Lm(G1×G2)

⎪
⎩

⎪
⎨

⎧

∩∈

−∈

−∈

=×

212211

12221

21211

2121

ΣΣσ ifσ)),(xξσ),,(x(ξ
ΣΣσ ifσ)),(xξ,(x
ΣΣσ if)xσ),,(x(ξ

:σ)),x,((xξξ

EE6226, Discrete Event Systems 20

For Example

β

γ

α

γ
shared

A1 A2

β

α

α

β
 γ

A1×A2

0 1 0 1 (0,0) (1,1)

(1,0)

(0,1)

Automaton product implements synchronous product!

EE6226, Discrete Event Systems 21

Properties of Projection and Synchronous Product

•  [Chain Rule] Given Σ1, Σ2 and Σ3, suppose Σ3 ⊆ Σ2 ⊆ Σ1.

–  Let P12:Σ1
* →Σ2

* , P23:Σ2
*→Σ3

* and P13:Σ1
*→Σ3

* be natural projections

–  Then P13 = P23P12

•  [Distribution Rule] Given L1 ⊆ Σ1
* and L2 ⊆ Σ2

*, let Σʹ ⊆ Σ1∪Σ2.

–  Let P:(Σ1∪Σ2)* →Σʹ* be the natural projection. Then

•  P(L1 || L2) ⊆ P(L1) || P(L2)

•  Σ1∩Σ2 ⊆ Σʹ ⇒ P(L1 || L2) = P(L1) || P(L2)

EE6226, Discrete Event Systems 22

We now talk about control …

EE6226, Discrete Event Systems 23

The Control Architecture

•  Given a plant G and a requirement SPEC, compute a supervisor S
–  Lm(S/G) := Lm(S)||Lm(G) ⊆ Lm(G)||Lm(SPEC)
–  S should not disable the occurrence of any uncontrollable event
–  S should make a move only based on observable outputs of G
–  S/G is nonblocking

G

S

S/G
enable/disable
events in Σc

Σ = Σc ∪ Σuc
Σ = Σo ∪ Σuo
Σc:=controllable alphabet
Σo:=observable alphabet

EE6226, Discrete Event Systems 24

General Control Issues

Q1 : Is there a control that enforces both safety, and liveness
(nonblocking), and which is maximally permissive ?

Q2 : If so, can its design be automated ?

Q3 : If so, with acceptable computing effort ?

EE6226, Discrete Event Systems 25

Solution to Question 1

•  Fundamental definition
 A sublanguage K ⊆ Lm(G) is controllable (w.r.t. G) if

–  “Once in , you can’t skid out on an uncontrollable event.”

KLK uc ⊆∩Σ)G(
K

a b c

a

b

d

Σ ={a,b,c,d}
Σc ={a,c,d}
Σuc ={b}

EE6226, Discrete Event Systems 26

Supremal Controllable Sublanguage

•  Given a plant G and a specification SPEC (both over Σ), let

 C(G,SPEC):={K⊆Lm(G)∩Lm(SPEC)|K is controllable w.r.t. G}

•  C(G,SPEC) is a poset under set inclusion and closed under arbitrary union

–  The largest element is called the supremal controllable sublanguage,

EE6226, Discrete Event Systems 27

Fundamental Result

•  There exists a (unique) supremal controllable sublanguage
 Ksup ⊆ Lm(G) ∩ Lm(SPEC)

– SPEC is an automaton model of a specification

•  Furthermore Ksup can be effectively computed.

EE6226, Discrete Event Systems 28

Lattice View of Solution to Question 1

Lm(G) ∩ Lm(SPEC)

Σ* (all strings)

Lm(SPEC) Lm(G)

synthesis
Ksup (optimal)

K" (suboptimal) K'

∅ (no strings)

EE6226, Discrete Event Systems 29

Solution to Question 2

•  Given G and SPEC, compute Ksup

 Ksup = Lm(SUPER)
 SUPER = Supcon (G , SPEC)

•  Given SUPER, implement Ksup

G

SUPER

Ksup enable/disable
events in Σc

EE6226, Discrete Event Systems 30

Supervisor Reduction

G

SUPER

Ksup G

SIMSUP

Ksup

reduction

SUPER and SIMSUP is control equivalent if
•  L(G))∩L(SUPER) = L(G))∩L(SIMSUP)
•  Lm(G))∩Lm(SUPER) = Lm(G))∩Lm(SIMSUP)

EE6226, Discrete Event Systems 31

Supervisor Reduction

•  Controlled behavior has state size

 ||Lm(SUPER)|| ≤ ||Lm(G)|| × ||Lm(SPEC)||

•  Compute reduced, control- equivalent SIMSUP, often with

 ||Lm(SIMSUP)|| << ||Lm(SUPER)||

•  In TCT:
–  CONSUPER = Condat(G,SUPER)
–  SIMSUP = Supreduce(G,SUPER,CONSUPER)

EE6226, Discrete Event Systems 32

A solution to Question 3 is modular/distributed/hierarchical control

EE6226, Discrete Event Systems 33

Outline

•  Introduction to Supervisory Control

•  Ramadge-Wonham Supervisory Control Theory

•  Example – A Pusher-Lift System

•  Primary Goals of EE6226

EE6226, Discrete Event Systems 34

A Pusher-Lift System

extend (push = 1) retract (push=0)

ascend

descend

Lift Pusher place=1,0

(up,down)∈{0,1}×{0,1}

EE6226, Discrete Event Systems 35

Lift Model Glift

descended up=1 down=0 ascended

up=1 down=0,1

down=0 up=1

up=0
up=0 down=0,1

down=1 up=0,1

descended

down=0 up=0,1

down=1

up=0

down=0

down=1

: controllable
: uncontrollable

EE6226, Discrete Event Systems 36

Pusher Model Gpu

push=1 extended

push=0 extended push=1

push=0 retracted

retracted

EE6226, Discrete Event Systems 37

place=1

placed

Product Model Gpro

EE6226, Discrete Event Systems 38

Specifications

placed

down=0 up=1

up=1 down=0

retracted

down=1 up=0

up=0 down=1

ascended

push=1

descended

place=1

E1

E2

E3

E4

EE6226, Discrete Event Systems 39

Monolithic Method – Supervisor Synthesis

•  Plant: G = Glift,lo × Gpu × Gpro (use Sync in TCT (240 , 956))

•  Specification:
–  E = E1 × E2 × E3 × E4 (64 , 288)
–  E = Selfloop(E1×E2×E3×E4, Σ–(Σ1∪Σ2∪Σ3∪Σ4))

•  SUPER = Supcon(G , E) (636 , 1369)

•  SUPER = Condat(G , SUPER) : controllable

•  SIMSUPER = Supreduce(G,SUPER,SUPER) (99 , 476 ; slb=51)

EE6226, Discrete Event Systems 40

Some Remarks

•  Advantages of RW SCT
–  It is conceptually simple
–  Many real systems can be modeled in this framework

•  Disadvantages of RW SCT
–  The computational complexity is very high for large systems
–  The implementation issues are not explicitly addressed

•  A procedure of signals→events (supervisory control)→signals is needed.

–  Performance issues are not well addressed
•  “Bad” behaviors are forbidden, but no specific “good” behavior is enforced.

EE6226, Discrete Event Systems 41

Outline

•  Introduction to Supervisory Control

•  Ramadge-Wonham Supervisory Control Theory

•  Example – A Pusher-Lift System

•  Primary Goals of EE6226

EE6226, Discrete Event Systems 42

Goals of EE6226

•  To introduce several techniques that are aimed to handle the
complexity issue involved in supervisor synthesis.
–  Modular control
–  Distributed control
–  Hierarchical control
–  State-feedback control

•  To deal with supervisory control under partial observations.

•  To address a certain type of performance.

EE6226, Discrete Event Systems 43

Basic Functions of Supervisor Synthesis Package

Developed by R. Su
Nanyang Technological University

EE6226, Discrete Event Systems 44

Create Automata

Automaton: B1.cfg

[automaton]
states = 0, 1, 2, 3, 4
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),
 (1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),
 (1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)
marker-states = 1
initial-state = 0

EE6226, Discrete Event Systems 45

Check Size of Automaton

make_get_size.py

[user@host ~] $ make_get_size
Please input model (.cfg): B1.cfg
Number of states: 5
Number of transitions: 9

EE6226, Discrete Event Systems 46

Automaton Product

make_product.py

[user@host ~]$ make_product
Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg
Please input product automaton (.cfg): B1-B2.cfg
Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes)
Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions (memory=9052160 bytes)
Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes)
 Number of states: 17
 Number of transitions: 65
Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg (memory=9076736 bytes)

EE6226, Discrete Event Systems 47

Automaton Abstraction

make_abstraction.py

[user@host ~]$ make_abstraction
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg
Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)
 Number of states: 5
 Number of transitions: 14
Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg

 (memory=8409088 bytes)

EE6226, Discrete Event Systems 48

Sequential Automaton Abstraction

make_sequential_abstraction.py

[user@host ~]$ make_sequnetial_abstraction
Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg
Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)
Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)
Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51

 (memory=8278016 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)
Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg

 (memory=8327168 bytes)

EE6226, Discrete Event Systems 49

Natural Projection

make_natural_projection.py

[user@host ~]$ make_natural_projection
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg
Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)
 Number of states: 3
 Number of transitions: 3
Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg

 (memory=8417280 bytes)

EE6226, Discrete Event Systems 50

Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]$ make_language_equivalence_test
Please input first model (.cfg): B1-B2-abstraction.cfg
Please input second model (.cfg): B1-B2-natural-projection.cfg
Language equivalence HOLDS

EE6226, Discrete Event Systems 51

Supervisor Synthesis

make_supervisor.py

[user@host ~]$ make_supervisor
Please input plant model (.cfg): plant.cfg
Please input specification model (.cfg): spec.cfg
Please input supervisor (.cfg): supervisor.cfg
Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)
 Number of states: 140
 Number of transitions: 288
Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)

EE6226, Discrete Event Systems 52

Nonconflict Check

make_nonconflicting_check.py

[user@host ~]$ make_nonconflicting_check
Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg
Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)
Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919

 (memory=15073280 bytes)
Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380

 (memory=15073280 bytes)
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes)
ok

EE6226, Discrete Event Systems 53

Check Controllability

make_controllability_check.py

[user@host ~]$ make_controllability_check
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
States with disabled controllable events:
 (1, 1): {R2-pick-B2, R3-pick-B2}
 (4, 2): {R2-drop-B2}
 (5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}
 (10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}
 …………
 (799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor is correct (no disabled uncontrollable events)

EE6226, Discrete Event Systems 54

Compute Feasible Supervisor

make_feasible_supervisor.py

[user@host ~]$ make_feasible_supervisor
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg
Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)
 Number of states: 82
 Number of transitions: 196
Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg

(memory=10547200 bytes)

EE6226, Discrete Event Systems 55

Batch Operation

Batch_Operation.py

#!/usr/bin/env python
from automata import frontend

#Compute product
frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg')

#Compute automaton abstraction
frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg')

#Compute supervisor
frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability
frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')

