Supervisory Control:
Advanced Theory and Applications

Dr Rong Su
S1-B1b-59, School of EEE

Nanyang Technological University
Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

EE6226, Discrete Event Systems

Introduction to Supervisory Control Theory

EE6226, Discrete Event Systems 2

Outline

Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

Example — A Pusher-Lift System

Primary Goals of EE6226

EE6226, Discrete Event Systems

The Concept of Discrete Event Systems (DES)

* A DES 1s a structure with ‘states’ having duration in time,
‘events’ happening instantaneously and asynchronously.

— States: e.g. machine 1s 1dle, is operating, i1s broken down, 1s under repair

— Events: e.g. machine starts work, breaks down, completes work or repair

 State space discrete in time and space.

 State transitions ‘labeled’ by events.

EE6226, Discrete Event Systems 4

The Motivation of Developing Supervisory
Control Theory (SCT) for DES (till 1980)

* Control problems implicit in the literature (enforcement of
resource constraints, synchronization, ...)

But

e Emphasis on modeling, simulation, verification
« Little formalization of control synthesis

* Absence of control-theoretic 1deas

* No standard model or approach to control

EE6226, Discrete Event Systems 5

Related Areas

Programming languages for modeling & simulation
Queues, Markov chains

Petr1 nets

Boolean models

Formal languages

Process algebras (CSP, CCS)

EE6226, Discrete Event Systems

“Great” Expectations for SCT

* System model
— Discrete 1n time and (usually) space
— Asynchronous (event-driven)
— Nondeterministic

* support transitional choices

« Amenable to formal control synthesis

— exploit control concepts

« Applicable: manufacturing, traffic, logistic,...

EE6226, Discrete Event Systems

Relationship with Systems Control Concepts

 State space framework well-established:
— Controllability
— Observability
— Optimality (Quadratic, H,)

» Use of geometric constructs and partial order
— Controllability subspaces

» Supremal subspaces!

EE6226, Discrete Event Systems 8

Ramadge-Wonham SCT (1982)

« Automaton representation

— state descriptions for concrete modeling and computation

e Language representation

— 1/0 descriptions for implementation-independent concept formulation

« Simple control “technology”

EE6226, Discrete Event Systems 9

Outline

Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

Example — A Pusher-Lift System

Primary Goals of EE6226

EE6226, Discrete Event Systems

10

RW paradigm 1s based on /anguages, but implemented on finite-state automata

EE6226, Discrete Event Systems 11

Basic Concepts of Languages

* (Given an alphabetX (e.g. Z={a,b,c,d})
— A string 1s a finite sequence of events from X, e.g. s = ababa
— X" := { all strings generated from X }, 2" =37 U {¢}
e ¢ is called the empty string: se = es =s
— Given s,,8,&€%", s, is a prefix substring of's,, if (FEX") s,t=s,
* We use s, < s, to denote that s, 1s a prefix substring of s,
— Alanguage W C X" : most time we require W to be regular
— The prefix closure of a language W i1s W:={€X |(I'EW)s <5}

» W is prefix closed if W :W

EE6226, Discrete Event Systems

12

Finite-State Automaton (FSA)

. A finite-state automaton 1s a 5-tuple G = (X, Z, €, x,,, X,,), Where
— X :the state set
— X : the alphabet
— X, :the nitial state
— X, : the marker state set (or the final state set)

— & : Xx2 — X : the transition map
» & is called a partial map, if it is not defined at some pair (x,0)EXXZ.
» Otherwise, it is called a fotal map.

 Extension of the transition map: £ : XxZ* — X : (x,50)I— &(x,50) = E(E(x%,5),0)

EE6226, Discrete Event Systems 13

The Famous “Small Machine” Model

- G=(X,Z,E,%xy,X,,) a : starts work
~ X={0,1,2} b : finishes work
— 2X2={a,b,c,d} ¢ : machine fails
- %=0 d : machine is repaired
o Xm:{o}

EE6226, Discrete Event Systems 14

Connection between Language and FSA

¢ GiveaFSAG:(Xazaga)(OaXm))

— closed behavior of G:
L(G) = {s€X"[E(X,,s) is defined}

— marked behavior of G, 1.e. the language recognized by G,
L(G) = {sEL(G) | E(xp9)EX,}

* G 1s nonblocking, 1f L_(G)=L(G).

A language 1s regular, if 1t is recognizable by a FSA.

— We can use Arden’s rule to derive a language from a FSA.

EE6226, Discrete Event Systems 15

Natural Projection over Languages

« Given X and 2'CX, P:X* — X" is a natural projection if

e P(e)=¢

O 1f oex
£ if oc£E>!
e (VsoEX") P(so) = P(s)P(o)

e (VoEX) P(o) = {

 The inverse image map of P is P! : pwr(Z")—pwr(Z") with

(VACS"™) PY(A) :={sEZ*| P(s)EA}

> ={a,b,c,d} ¥ ={a d}
abcaccd ——a a d
P

EE6226, Discrete Event Systems 16

Synchronous Product over Languages

* Builds a more complex automaton

a P
A “QH "Q A,

* with more complex language
Lo(AD IL,(Ay) = PI(L(A)) N Py (LL(AY))
expressed by natural projections
P:C,UZ)"— 2 (i=1,2)

EE6226, Discrete Event Systems 17

The synchronous product 1s commutative and associative !

EE6226, Discrete Event Systems

18

Implement Synchronous Product by Automaton Operation

¢ Let Gl — (X17 21, %1, XO,I’ Xm,l) aIld G2 — (Xz, 22, %2, Xo’z, Xm,z),
e Let
G, xG, = (X xX,, Z,UZ,, §x&,, (Xo,laxo,z)» Xm,IXXm,2)

where) .
(&,(x,,0),X,) ifcEX -2,

g %G, ((X,X%,),0) =1 (X,5,(X,,0)) ifoEx, -Z,
(G(X%,,0),5,(X,,0)) 1foEX M,

* Result:
— L(G)[L(G,)=L(GxG,)
— L(G)IL(Gy)=L (G xG,)

EE6226, Discrete Event Systems 19

For Example

A, A,

o}
)

5

Automaton product implements synchronous product!

EE6226, Discrete Event Systems 20

Properties of Projection and Synchronous Product

e [Chain Rule] Given Z,, Z, and Z;, suppose 2, £ 2, C X,

— Then P,y = P,.P,,

e [Distribution Rule] Given L; € £,"and L, C 2,7, let ' C £,UX,
— Let P:(£,UX,)” —X"" be the natural projection. Then
* P(L,[| Ly S P(Ly) [| P(Ly)
« 2,N2,C¥ = P(L,||L,)=PL) | PL,

EE6226, Discrete Event Systems 21

We now talk about control ...

EE6226, Discrete Event Systems

22

The Control Architecture

> G > S/G y -3 uUs
enable/disable o
. =2 UZ
events in 2
2 :=controllable alphabet
S — 2 :=observable alphabet

* Given a plant G and a requirement SPEC, compute a supervisor S
— L_(S/G) =L_(S)||L.(G) &L _(G)|L, (SPEC)
— S should not disable the occurrence of any uncontrollable event
— S should make a move only based on observable outputs of G
— S/G 1s nonblocking

EE6226, Discrete Event Systems 23

General Control Issues

Q1 : Is there a control that enforces both safety, and liveness
(nonblocking), and which is maximally permissive ?

Q2 : If so, can 1ts design be automated ?

Q3 : If so, with acceptable computing effort ?

EE6226, Discrete Event Systems 24

Solution to Question 1

 Fundamental definition

A sublanguage K C L _(G) is controllable (w.r.t. G) if
K= NLG)CK

— “Once 1n K, you can’t skid out on an uncontrollable event.”

—————————————————————————————————

__

EE6226, Discrete Event Systems 25

Supremal Controllable Sublanguage

* Given a plant G and a specification SPEC (both over), let
AG,SPEC):={KCL _(G)NL,_(SPEC)|K is controllable w.r.t. G}
* ((G,SPEC) is a poset under set inclusion and closed under arbitrary union

— The largest element 1s called the supremal controllable sublanguage,

EE6226, Discrete Event Systems

26

Fundamental Result

* There exists a (unique) supremal controllable sublanguage
Kgp & Ly(G) N L, (SPEC)

— SPEC 1s an automaton model of a specification

* Furthermore K, can be effectively computed.

EE6226, Discrete Event Systems 27

Lattice View of Solution to Question 1

@ > (all strings)

L(G) @ @ L_(SPEC)
@ L _(G) N L_(SPEC)
synthesis
O._ Ky, (optimal)

K' @ @ K" (suboptimal)

@ O (no strings)

EE6226, Discrete Event Systems 28

Solution to Question 2

* Given G and SPEC, compute Koyp

Kp = Ln(SUPER)
SUPER = Supcon (G, SPEC)

* Given SUPER, implement K,

» G » K

sup

enable/disable
events in 2

SUPER |«

EE6226, Discrete Event Systems 29

Supervisor Reduction

SUPER

SUPER and SIMSUP is control equivalent 1f

sup

T
reduction

SIMSUP

. L(G))NL(SUPER) = L(G))NL(SIMSUP)

- L_(G))NL,(SUPER) = L_(G))NL, (SIMSUP)

sup

EE6226, Discrete Event Systems

30

Supervisor Reduction

» Controlled behavior has state size
ILn(SUPER)|| = ||L,(G)]| x [[L(SPEC)]]
* Compute reduced, control- equivalent SIMSUP, often with
ILn(SIMSUP)|| << [|L,,(SUPER)]|

 InTCT:
— CONSUPER = Condat(G,SUPER)
— SIMSUP = Supreduce(G,SUPER,CONSUPER)

EE6226, Discrete Event Systems 31

A solution to Question 3 i1s modular/distributed/hierarchical control

EE6226, Discrete Event Systems 32

Outline

Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

Example — A Pusher-Lift System

Primary Goals of EE6226

EE6226, Discrete Event Systems

33

A Pusher-Lift System

retract (push=0) «

Pusher

ascend

A

4

descend i

»extend (push = 1)

i B B

(up,down)&{0,1}x{0,1}

EE6226, Discrete Event Systems

34

Lift Model Gy,

> . controllable

---------------- » : uncontrollable

down=0,1 ~__ up=I
N
up=0,1 ™\ _ down=0

_d_eﬁ_q&?_r}_dﬁfi_,é\ up=1 ‘

4

A

N
) ascended

)

N
T down=0 ‘/{'\ up=1
| N

down=
| up=0 down=0,1 down=0
i up=0
down=1 up=0,1 >\ down=1 "\ up=0
descended

EE6226, Discrete Event Systems

35

Pusher Model G,

.. retracted -~ push=0
oy push=l oy extended
push=0 éretracted push=1 éextended

: :

EE6226, Discrete Event Systems 36

Product Model G,

EE6226, Discrete Event Systems

37

Specifications

down=0 ~ up=1 down=1 ~ up=0
(U (U
placed retracted
------------------------- O R0
)= E e E
up=1 down=0 : up=0 ~ down=1 3
H? ascended ? H? _____ descended ?
ush=1 lace=1
p E, p E,

EE6226, Discrete Event Systems 38

Monolithic Method — Supervisor Synthesis

Plant: G = Gy % Gy X Gy (use Sync in TCT (240 , 956))
Specification:

— E=E, xE, xE; xE, (64, 288)
— E = Selfloop(E,xE,xE;xE,, 2—+(Z,UX,UXZ,UZ)))

SUPER = Supcon(G , E) (636, 1369)

SUPER = Condat(G , SUPER) : controllable

SIMSUPER = Supreduce(G,SUPER,SUPER)

(99,476 ; slb=51)

EE6226, Discrete Event Systems

39

Some Remarks

e Advantages of RW SCT

— It 1s conceptually simple

— Many real systems can be modeled in this framework

* Disadvantages of RW SCT

— The computational complexity 1s very high for large systems

— The implementation issues are not explicitly addressed
« A procedure of signals—events (supervisory control)—signals is needed.

— Performance issues are not well addressed

» “Bad” behaviors are forbidden, but no specific “good” behavior 1s enforced.

EE6226, Discrete Event Systems 40

Outline

Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

Example — A Pusher-Lift System

Primary Goals of EE6226

EE6226, Discrete Event Systems

41

Goals of EE6226

* To introduce several techniques that are aimed to handle the
complexity 1ssue involved in supervisor synthesis.
— Modular control
— Distributed control
— Hierarchical control
— State-feedback control

* To deal with supervisory control under partial observations.

* To address a certain type of performance.

EE6226, Discrete Event Systems 42

Basic Functions of Supervisor Synthesis Package

Developed by R. Su

Nanyang Technological University

EE6226, Discrete Event Systems 43

Create Automata

Automaton: Bl.cfg

|automaton]
states=0,1, 2,3, 4
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),
(1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),
(1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)
marker-states = 1
initial-state = 0

EE6226, Discrete Event Systems 44

Check Size of Automaton

make get size.py

[user@host ~] $ make get size
Please input model (.cfg): Bl.cfg
Number of states: 5

Number of transitions: 9

EE6226, Discrete Event Systems

45

Automaton Product

make product.py

[user@host ~]$ make product

Please input list of your input automata (comma-seperated list of automata): Bl.cfg, B2.cfg

Please input product automaton (.cfg): B1-B2.cfg
Mon Mar 16 10:33:51 2009: Must do 1 product computations.
Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions
Mon Mar 16 10:33:51 2009: Computed product
Number of states: 17
Number of transitions: 65
Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg

(memory=9052160 bytes)
(memory=9052160 bytes)
(memory=9052160 bytes)

(memory=9076736 bytes)

EE6226, Discrete Event Systems

46

Automaton Abstraction

make abstraction.py

[user@host ~]$ make abstraction
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg
Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)
Number of states: 5

Number of transitions: 14

Mon Mar 16 10:40:54 2009: Abstraction 1s saved in B1-B2-abstraction.cfg
(memory=8409088 bytes)

EE6226, Discrete Event Systems 47

Sequential Automaton Abstraction

make sequential abstraction.py

[user@host ~]$ make sequnetial abstraction

Please input list of your input automata (comma-seperated list of automata): Bl.cfg, B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg

Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)

Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)

Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51
(memory=8278016 bytes)

Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)

Mon Mar 16 13:01:23 2009: Abstraction 1s saved in B1-B2-sequential-abstraction.cfg
(memory=8327168 bytes)

EE6226, Discrete Event Systems 48

Natural Projection

make natural projection.py

[user@host ~]$ make natural projection
Please input source automaton (.cfg): B1-B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg
Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)
Number of states: 3
Number of transitions: 3

Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg
(memory=8417280 bytes)

EE6226, Discrete Event Systems 49

Check Language Equivalence

Make language equivalence test.py

[user@host ~]$ make language equivalence test

Please input first model (.cfg): B1-B2-abstraction.cfg

Please input second model (.cfg): B1-B2-natural-projection.cfg
Language equivalence HOLDS

EE6226, Discrete Event Systems

20

Supervisor Synthesis

make supervisor.py

[user@host ~]$ make supervisor
Please input plant model (.cfg): plant.cfg
Please input specification model (.cfg): spec.cfg
Please input supervisor (.cfg): supervisor.cfg
Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)
Number of states: 140
Number of transitions: 288
Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)

EE6226, Discrete Event Systems ol

Nonconflict Check

make nonconflicting check.py

[user@host ~]$ make nonconflicting check

Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg
Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)

Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes)
ok

EE6226, Discrete Event Systems o2

Check Controllability

make controllability check.py

[user@host ~]$ make controllability check
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
States with disabled controllable events:
(1, 1): {R2-pick-B2, R3-pick-B2}
(4, 2): {R2-drop-B2}
(5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}
(10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}

(799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor 1s correct (no disabled uncontrollable events)

EE6226, Discrete Event Systems

23

Compute Feasible Supervisor

make feasible supervisor.py

[user@host ~]$ make feasible supervisor

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

Please input feasible supervisor filename (.cfg): feasible supervisor.cfg

Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)
Number of states: 82
Number of transitions: 196

Mon Mar 16 13:09:43 2009: Supervisor saved in feasible supervisor.cfg
(memory=10547200 bytes)

EE6226, Discrete Event Systems o4

Batch Operation

Batch_Operation.py

st sk st sk st sk st sk sk sk

#!/usr/bin/env python
from automata import frontend

#Compute product
frontend.make product('Bl.cfg, B2.cfg', 'B1-B2.cfg')

#Compute automaton abstraction
frontend.make abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg")

#Compute supervisor
frontend.make supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability
frontend.make controllability check('plant.cfg’, 'supervisor.cfg')

EE6226, Discrete Event Systems 05

