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Key Concepts of RW Supervisory Control Theory (SCT) 

•  Controllability 

•  Observability 

•  Nonblockingness  

–  Checking nonblockingness is computationally intensive 
 

•  Let Lm(S/G) = Lm(G1) || … || Lm(Gn) || Lm(S1) || … || Lm(Sr)  

•  Let L(S/G) = L(G1) || … || L(Gn) || L(S1) || … || L(Sr)  

•  Check whether or not Lm(S/G) = L(S/G)  

             We have the state-space explosion issue here! 
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A Few Attempts to Deal with Nonblockingness 

•  State-feedback Control and Symbolic Computation, e.g. 
–  supervisory control of state tree structures (STS) 

•  Abstraction-Based Synthesis, e.g. 
–  coordinated modular supervisory control (MSC)  
–  hierarchical supervisory control (HSC)  

•  Synthesis based on Structural Decoupling, e.g.  
–  interface-based supervisory control (IBSC)  
  



EE6226 Discrete Event Systems 5 

Problems Associated with These Attempts 

•  STS is centralized, not suitable for very large systems 

•  Current hierarchical and modular approaches need observers 
–  The observer property is too strong! 

•  Interfaces are very difficult to design  

•  Σ = {11,12,14,21,22,24,27} 
•  Σʹ = {11,21} and Σʹ ⊆ Σʹʹ 
•  To make P:Σ*→Σʹʹ* an Lm(G)-observer 

•  we need Σʹʹ = Σ 
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Our Goal 

•  To define an abstraction  κ over (nondeterministic) FSAs, 
 

–  It has the following property similar to what an observer has, namely 
 

                    for any G and an S whose alphabet is the same as κ(G),  
                 G×S is nonblocking if (and only if) κ(G)×S is nonblocking  
 

–  It has no special requirement on a target alphabet as an observer does 
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Nondeterministic Finite-State Automaton 

•  A finite-state automaton G=(X, Σ, ξ, x0, Xm) is nondeterministic if 

                                             ξ: X×Σ → 2X 
–  i.e a state may have more than one transition with the same event label 

•  From now on we assume all automata are nondeterministic 
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Automaton Product 

•  Let Gi=(Xi,Σi,ξi,x0,i,Xm,i)∈φ(Σi) with i=1,2.  

•  The product of G1 and G2, written as G1×G2, is an automaton  

                   G1×G2=(X1×X2, Σ1∪Σ2, ξ1×ξ2, (x0,1,x0,2),Xm,1×Xm,2)         
 

    where ξ1×ξ2:X1×X2×(Σ1∪Σ2)→2X1×X2 is defined as follows, 
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The Concept of Equivalence Relation 

•  Given a set X, let R be a binary relation on X, namely R ⊆ X×X 
–  For any (x,x)∈R, we write xRx. 

•  We say R is an equivalence relation on X, if 
–  R is reflexive, i.e. (∀x∈X) xRx 
–  R is symmetric, i.e. (∀x,y∈X) xRy ⇒ yRx   
–  R is transitive, i.e. (∀x,y,z∈X) xRy ∧ yRz ⇒ xRz  

•  Let E(X) be the collection of all equivalence relations on X 
–  E(X) is a complete lattice  
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The Concept of Marking Weak Bisimilarity 

•  Given G=(X,Σ,ξ,x0,Xm), let Σʹ⊆Σ, R ⊆ X × X be an equivalence relation.  
 

•  R is a marking weak bisimulation relation over X with respect to Σʹ if  
–  R ⊆ Xm×Xm  ∪ (X – Xm)×(X – Xm) 
–  For all (x,xʹ)∈R and s∈Σ*, if ξ(x,s)≠∅ then there exists sʹ∈Σ* such that  
 

              ξ(xʹ,sʹ)≠∅ ∧ P(s)=P(sʹ) ∧ (∀y∈ξ(x,s))(∃yʹ∈ξ(xʹ,sʹ)) (y,yʹ)∈R 
 

     where P : Σ* → Σʹ* is the natural projection  

•  The largest marking weak bisimulation is marking weak bisimilarity, 
written as  ≈Σʹ 
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Automaton Abstraction 

•  Let G=(X,Σ,ξ,x0,Xm) and Σʹ⊆Σ 

•  For each x∈X let [x] := {xʹ∈X | (x,xʹ)∈≈Σʹ}, and X/≈Σʹ := {[x] | x∈X}.  

•  G/≈Σʹ = (Xʹ,Σʹ,ξʹ,x0ʹ,Xmʹ) is an automaton abstraction of G w.r.t.  ≈Σʹ if  

–  Xʹ = X/≈Σʹ  ,  Xmʹ = {[x]∈Xʹ | [x] ∩ Xm ≠ ∅}  ,  x0ʹ = [x0]∈Xʹ 

–  ξʹ:Xʹ×Σʹ → 2Xʹ, where for any [x]∈Xʹ and σ∈Σʹ, 

        ξʹ([x],σ):={[xʹ]∈Xʹ|(∃y∈[x],yʹ∈[xʹ])(∃u,uʹ∈(Σ-Σʹ)*) yʹ∈ξ(y,uσuʹ)} 
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Example 
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Effect of Silence Paths  
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•  Abstraction may create unwanted behaviours. 

•  To avoid this, we introduce the concept of standardized automata. 
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The Standardized Automata 

•  Suppose G = (X,Σ,ξ,x0,Xm). Bring in a new event symbol τ. 

–  τ will be treated as uncontrollable and unobservable. 

•   An automaton G = (X,Σ∪{τ},ξ,x0,Xm) is standardized if  

–  x0 ∉Xm 

–  (∀x∈X) ξ(x,τ) ≠ ∅ ⇔ x = x0 

–  (∀σ∈Σ) ξ(x0,σ) = ∅ 

–  (∀x∈X)(∀σ∈Σ∪{τ}) x0∉ξ(x,σ) 

•  Let  φ(Σ) be the collection of all standardized automata over Σ. 
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Example of a Standardized Automaton 
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Marking Awareness 

•  G∈φ(Σ) is marking aware with respect to Σʹ⊆Σ, if 

               (∀x∈X-Xm)(∀s∈Σ*) ξ(x,s)∩Xm≠∅ ⇒ P(s)≠ ε 
 

    where P:Σ* → Σʹ* is the natural projection. 
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Automaton Abstraction vs Natural Projection 

•  Let B(G) ={s∈Σ* | (∃x∈ξ(x0,s))(∀sʹ∈Σ*) ξ(x,sʹ) ∩ Xm = ∅}.  

•  Let NG(x) ={s∈Σ* | ξ(x,sʹ) ∩ Xm ≠ ∅}.  In particular, N(G):= NG(x0). 

•  Proposition 1 
    Let G∈φ(Σ), Σʹ⊆Σ, and P:Σ*→Σʹ* be the natural projection. Then  
 

–  P(B(G)) ⊆ B(G/≈Σʹ) and P(N(G))=N(G/≈Σʹ) 

     i.e. automaton abstraction may potentially create more blocking behaviours 

–  If G is marking aware with respect to Σ', then P(B(G)) = B(G/≈Σʹ)  
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Nonblocking Preservation and Equivalence 

•  Let G1, G2∈φ(Σ).  

•  G1 is nonblocking preserving w.r.t. G2, denoted as G1⊑G2, if   

–  B(G1)⊆B(G2) and N(G1)=N(G2) 

–  For any s∈N(G1), and x1∈ξ1(x1,0,s), there exists x2∈ξ2(x2,0,s) such that 
•  NG2(x2) ⊆ NG1(x1)  
•  x1∈X1,m ⇔ x2∈X2,m 

•  G1 is nonblocking equivalent to G2, denoted as G1 ≅ G2, if  

–  G1 ⊑ G2 and G2 ⊑ G1 
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•  Proposition 2 (Nonblocking Invariance under product) 

    For any Σʹ⊆Σ, G1,G2∈φ(Σ) and G3∈φ(Σʹ),  

–  if G1 ⊑ G2 then G1×G3 ⊑ G2×G3 

–  if G1 ≅ G2 then G1×G3 ≅ G2×G3 
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•  Proposition 3 (Nonblocking Invariance under abstraction) 

    For any Σʹ⊆Σ and G1,G2∈φ(Σ),  
 

–  if G1 ⊑ G2 then G1/≈Σʹ ⊑ G2/≈Σʹ 

–  if G1 ≅ G2 then G1/≈Σʹ ≅ G2/≈Σʹ 
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•  Proposition 4 (Chain Rule of Automaton Abstraction) 

    Suppose Σʹʹ⊆Σʹ⊆Σ and G∈φ(Σ). Then (G/≈Σʹ)/≈Σʺ ≅ G/≈Σʺ.  
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•  Proposition 5 (Distribution of Abstraction over Product) 
 

    Let Gi∈φ(Σi), where i=1,2, and Σʹ⊆Σ1∪Σ2. 
 

–  If Σ1∩Σ2⊆Σʹ, then (G1×G2)/≈Σʹ ⊑ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ).  

–  If Σ1∩Σ2⊆Σʹ  and Gi (i=1,2) is marking aware w.r.t. Σi∩Σʹ, then  

                        (G1×G2)/≈Σʹ ≅ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ) 
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Example 1 
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Example 1 (cont.) 
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Example 1 (cont.) 

•  Clearly, (G1×G2)/≈Σʹ ≅ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ) 

•  Thus, the condition of marking awareness is only sufficient. 
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Example 2 
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Example 2 (cont.) 
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Example 2 (cont.) 
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•  Clearly, (G1×G2)/≈Σʹ ≅ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ)  
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Example 3 
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Example 3 (cont.) 
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Example 3 (cont.) 
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•  Clearly, (G1×G2)/≈Σʹ ⊑ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ) 

•  But,  it is not true that (G1×G2)/≈Σʹ  ≅ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ) 



Example 3 (revisit) 
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•  We can check that, (G1×G2)/≈Σʹ  ≅ (G1/≈Σ1∩Σʹ)×(G2/≈Σ2∩Σʹ) 
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Main Result 

•  Theorem: Given Σ and Σʹ⊆Σ, let G∈φ(Σ) and S∈φ(Σʹ). Then 

–  B((G/≈Σʹ)×S)= ∅ ⇒ B(G×S)=∅ 

–  G is marking aware w.r.t. Σʹ ⇒ [B((G/≈Σʹ)×S)= ∅ ⇔ B(G×S)=∅] 
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A Computational Challenge 

•  Let {Σi|i∈I={1,2,…,n}} be a collection of local alphabets. 

•  For any J⊆I, let ΣJ:=∪j∈JΣj.  

•  Let Gi∈φ(Σi) for each i∈I, and Σʹ⊆ΣI.  

•  We want to compute (×i∈IGi)/≈Σʹ efficiently. 
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Sequential Abstraction over Product (SAP) 

•  For k=1,2,…,n, 

–  J(k) := {1,2,…,k} and T(k) := ΣJk∩(ΣI-Jk∪Σʹ) 

–  If k=1 then W1:=G1/≈T(1) 

–  If k>1 then Wk:=(Wk-1×Gk)/≈T(k) 
 

•  Proposition 6 
 

    Suppose Wn is computed by SAP. Then (×i∈IGi)/≈Σʹ ⊑	Wn. 
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Conclusions 

•  Advantages of this approach 

–  It possesses the good aspects of an observer 

–  It does not have the bad aspects of an observer  

 

•  Potential disadvantages of this approach 
–  Abstraction creates more transitions, which might complicate synthesis  

–  The marking awareness condition is sufficient but not necessary 


