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Course Information (1)

• Duration of This Course
– 22/04/2010 – 17/06/2010 

• Course Schedule

– one lecture per week: Thursday 08:45 – 10:30 (6 lectures)

– one exercise session (before mid-term exam) on 11/05/2010

• Grading Policy
– home assigments (10%)

– one mid-term written exam (1.5 hour, 30%) on 20/04/2010 

• Each student must pass the exam (60%) before the grade can be counted in

• A student can take a second test if he/she fails the first one

– one final project (60%) : choose your own or pick one from a given list
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Course Information (2)

• Lecturers

– Dr. R. Su 

• office: WH0.113

• email: r.su@tue.nl

– Dr.ir. J.M. van de Mortel-Fronczak

• office: WH0.121

• email: J.M.v.d.Montel@tue.nl

• Prerequisite

– 2IT15 - Automaten en procestheorie (aanbevolen) 

– 4K420 - Supervisory machine control (aanbevolen) 

– 5JJ50 - Rekennetwerken (aanbevolen)  

mailto:r.su@tue.nl
mailto:J.M.v.d.Montel@tue.nl
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=2IT15&studiejaar=&language=
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=4K420&studiejaar=&language=
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=5JJ50&studiejaar=&language=
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Emphasis of 4K460 

• On how to use results of each supervisor synthesis approach.

• Not on why those results are correct.

I won‟t give mathematical proofs in my lectures!
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Introduction to Supervisory Control Theory
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Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460
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The Concept of Discrete Event Systems (DES)

• A DES is a structure with „states‟ having duration in time, 

„events‟ happening instantaneously and asynchronously.
– States: e.g. machine is idle, is operating, is broken down, is under repair

– Events: e.g. machine starts work, breaks down,  completes work or repair

• State space discrete in time and space.

• State transitions „labeled‟ by events.
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• Control problems implicit in the literature (enforcement of 

resource constraints, synchronization, ...)

But

• Emphasis on modeling, simulation, verification

• Little formalization of control synthesis

• Absence of control-theoretic ideas

• No standard model or approach to control

The Motivation of Developing Supervisory 

Control Theory (SCT) for DES (till 1980)
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Related Areas

• Programming languages for modeling & simulation

• Queues, Markov chains

• Petri nets

• Boolean models 

• Formal languages

• Process algebras (CSP, CCS)
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“Great” Expectations for SCT

• System model 

– Discrete in time and (usually) space

– Asynchronous (event-driven)

– Nondeterministic

• support transitional choices

• Amenable to formal control synthesis 

– exploit control concepts

• Applicable: manufacturing, traffic, logistic,...
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Relationship with Systems Control Concepts

• State space framework well-established:

– Controllability

– Observability

– Optimality (Quadratic, H)

• Use of geometric constructs and partial order

– Controllability subspaces  

• Supremal subspaces!
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Ramadge-Wonham SCT (1982)

• Automaton representation

– state descriptions for concrete modeling and computation

• Language representation

– i/o descriptions for implementation-independent concept formulation

• Simple control “technology”



Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 13

Outline

• Introduction to Supervisory Control 

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460
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RW paradigm is based on languages, but implemented on finite-state automata
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Basic Concepts of Languages

• Given an alphabet  (e.g.  = { a , b , c , d })

– A string is a finite sequence of events from , e.g. s = ababa

– + := { all strings generated from  }, * := +  {}

•  is called the empty string:  s = s = s

– Given s1,s2
*, s1 is a prefix substring of s2, if (t*) s1t=s2

• We use s1  s2 to denote that s1 is a prefix substring of s2

– A language W  * : most time we require W to be regular

– The prefix closure of a language W is : 

• W is prefix closed if W = W  

}sW)ss(|Σs{:W * 
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Finite-State Automaton (FSA)

• A finite-state automaton is a 5-tuple G = (X, , , x0, Xm), where

– X   : the state set

–  : the alphabet 

– x0 : the initial state

– Xm : the marker state set (or the final state set)

–  : X  X : the transition map

•  is called a partial map, if it is not defined at some pair (x,)X.

• Otherwise, it is called a total map. 

• Extension of the transition map:  : X*  X : (x,s)  (x,s) := ((x,s),)
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The Famous “Small Machine” Model

• G = ( X ,  ,  , x0 , Xm )
– X = { 0 , 1 , 2 }

–  = { a , b , c , d }

– x0 = 0

– Xm = { 0 }

0

1 2

a

c

db

a : starts work

b : finishes work

c : machine fails

d : machine is repaired  

Idle

Work Failure
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Connection between Language and FSA

• Give a FSA G = ( X ,  ,  , x0 , Xm ),

– closed behavior of G: 

L(G) := {s*|(x0,s) is defined}

– marked behavior of G, i.e. the language recognized by G, 

Lm(G) := {sL(G) | (x0,s)Xm} 

• G is nonblocking, if Lm(G) = L(G).

• A language is regular, if it is recognizable by a FSA.

– We can use Arden‟s rule to derive a language from a FSA.

0

1 2

a

c

db

Idle

Work Failure
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Natural Projection over Languages

• Given  and , P:*  * is a natural projection if

)()()( )( 

' if      

' if      
)( )( 

)( 

* 








PsPsPs

P

P














• The inverse image map of P is P-1 : pwr(*)pwr(*) with

(A*) P-1(A) :={s*| P(s)A}

ab c a c cd
 = {a, b, c, d}  = {a, d}

P
a a d
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Synchronous Product over Languages

• Builds a more complex automaton

• with more complex language








shared

Lm(A1) || Lm(A2)  =  P1
-1 (Lm(A1))   P2

-1 (Lm(A2))

expressed by natural projections

Pi: (1 2)
*  i

*     (i = 1,2)

A1 A2
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The synchronous product is commutative and associative !
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Implement Synchronous Product by Automaton Operation

• Let G1 = (X1, 1, 1, x0,1, Xm,1) and G2 = (X2, 2, 2, x0,2, Xm,2),

• Let 

G1G2 = (X1X2, 12, 12, (x0,1,x0,2), Xm,1Xm,2) 

where

• Result: 

– L(G1)||L(G2)=L(G1G2)

– Lm(G1)||Lm(G2)=Lm(G1G2)

















212211

12221

21211

2121

ΣΣσ ifσ)),(xξσ),,(x(ξ

ΣΣσ ifσ)),(xξ,(x

ΣΣσ if)xσ),,(x(ξ

:σ)),x,((xξξ
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For Example








shared

A1 A2










A1A2

0 1 0 1 (0,0) (1,1)

(1,0)

(0,1)

Automaton product implements synchronous product! 
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Properties of Projection and Synchronous Product

• [Chain Rule] Given 1, 2 and 3, suppose 3  2  1. 

– Let P12:1
* 2

* , P23:2
*3

* and P13:1
*3

* be natural projections

– Then P13 = P23P12

• [Distribution Rule] Given L1  1
* and L2  2

*, let   12.

– Let P:(12)
* * be the natural projection. Then

• P(L1 || L2)  P(L1) || P(L2)

• 12    P(L1 || L2) = P(L1) || P(L2)
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We now talk about control …
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The Control Architecture

• Given a plant G and a requirement SPEC, compute a supervisor S

– Lm(S/G) := Lm(S)||Lm(G)  Lm(G)||Lm(SPEC)

– S should not disable the occurrence of any uncontrollable event

– S should make a move only based on observable outputs of G

– S/G is nonblocking

G

S

S/G
enable/disable

events in c

 = c  uc

 = o  uo

c:=controllable alphabet

o:=observable alphabet
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General Control Issues

Q1 : Is there a control  that enforces both safety, and  liveness 

(nonblocking), and which is maximally permissive ?

Q2 : If so, can its design be automated ?

Q3 : If so, with acceptable computing effort ?
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Solution to Question 1

• Fundamental definition

A  sublanguage K  Lm(G)  is controllable (w.r.t. G) if                                                   

– “Once in  ,  you can‟t skid out on an uncontrollable event.”

KLK uc  )G(
K

a b c

a

b

d

 ={a,b,c,d}

c ={a,c,d}

uc ={b}
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Supremal Controllable Sublanguage

• Given a plant G and a specification SPEC (both over ), let

C(G,SPEC):={KLm(G)Lm(SPEC)|K is controllable w.r.t. G}

• C(G,SPEC) is a poset under set inclusion and closed under arbitrary union

– The largest element is called the supremal controllable sublanguage,  
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Fundamental Result

• There exists a (unique) supremal controllable sublanguage

Ksup  Lm(G)   Lm(SPEC)

– SPEC is an automaton model of a specification

• Furthermore  Ksup can be effectively computed.
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Lattice View of Solution to Question 1

Lm(G)   Lm(SPEC)

* (all strings)

Lm(SPEC)Lm(G)

synthesis

Ksup (optimal)

K" (suboptimal)K'

 (no strings)
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Solution to Question 2 

• Given G and SPEC, compute Ksup

Ksup  = Lm(SUPER)

SUPER  =  Supcon (G , SPEC)

• Given SUPER, implement  Ksup

G

SUPER

Ksup
enable/disable

events in c
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Supervisor Reduction

G

SUPER

Ksup G

SIMSUP

Ksup

reduction

SUPER and SIMSUP is control equivalent if

• L(G))L(SUPER) = L(G))L(SIMSUP)

• Lm(G))Lm(SUPER) = Lm(G))Lm(SIMSUP) 
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Supervisor Reduction

• Controlled behavior has state size

||Lm(SUPER)||  ||Lm(G)||  ||Lm(SPEC)||

• Compute reduced, control- equivalent SIMSUP, often with

||Lm(SIMSUP)||  <<  ||Lm(SUPER)||

• In TCT: 

– CONSUPER = Condat(G,SUPER)

– SIMSUP = Supreduce(G,SUPER,CONSUPER)
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A solution to Question 3 is modular/distributed/hierarchical control
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Outline

• Introduction to Supervisory Control 

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460
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A Pusher-Lift System

extend (push = 1)retract (push=0)

ascend

descend

LiftPusher
place=1,0

(up,down){0,1}{0,1}
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Lift Model Glift

descended up=1 down=0 ascended

up=1down=0,1

down=0 up=1

up=0
up=0 down=0,1

down=1 up=0,1

descended

down=0up=0,1

down=1

up=0

down=0

down=1

: controllable

: uncontrollable
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Pusher Model Gpu

push=1 extended

push=0 extendedpush=1

push=0retracted

retracted
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place=1

placed

Product Model Gpro
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Specifications 

placed

down=0 up=1

up=1 down=0

retracted

down=1 up=0

up=0 down=1

ascended

push=1

descended

place=1

E1

E2

E3

E4
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Monolithic Method – Supervisor Synthesis 

• Plant: G = Glift,lo  Gpu  Gpro                      (use Sync in TCT (240 , 956))

• Specification: 

– E = E1  E2  E3  E4 (64 , 288)

– E = Selfloop(E1E2E3E4, –(1234))

• SUPER = Supcon(G , E)                                              (636 , 1369)

• SUPER = Condat(G , SUPER)  : controllable

• SIMSUPER = Supreduce(G,SUPER,SUPER)    (99 , 476 ; slb=51)
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Some Remarks

• Advantages of RW SCT

– It is conceptually simple

– Many real systems can be modeled in this framework

• Disadvantages of RW SCT

– The computational complexity is very high for large systems

– The implementation issues are not explicitly addressed

• A procedure of signalsevents (supervisory control)signals is needed.

– Performance issues are not well addressed

• “Bad” behaviors are forbidden, but no specific “good” behavior is enforced.  
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Outline

• Introduction to Supervisory Control 

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460
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Goals of 4K460

• To introduce several techniques that are aimed to handle the 
complexity issue involved in supervisor synthesis.

– Modular control

– Distributed control

– Hierarchical control 

– State-feedback control

• To deal with supervisory control under partial observations.

• To address a certain type of performance. 
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Basic Functions of Supervisor Synthesis Package

Developed by A.T. Hofkamp and R. Su

Systems Engineering Group

Department of Mechanical Engineering

Eindhoven University of Technology
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Create Automata

Automaton: B1.cfg

[automaton]

states = 0, 1, 2, 3, 4

alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1

controllable =  R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1  

observable =  R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1

transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1), 

(1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1), 

(1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)

marker-states = 1

initial-state = 0
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Check Size of Automaton

make_get_size.py

[user@host ~] $ make_get_size

Please input model (.cfg): B1.cfg

Number of states: 5

Number of transitions: 9
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Automaton Product

make_product.py

[user@host ~]$ make_product

Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg

Please input product automaton (.cfg): B1-B2.cfg

Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions       (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes)

Number of states: 17

Number of transitions: 65

Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg (memory=9076736 bytes)
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Automaton Abstraction

make_abstraction.py

[user@host ~]$ make_abstraction

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg

Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)

Number of states: 5

Number of transitions: 14

Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg
(memory=8409088 bytes)
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Sequential Automaton Abstraction

make_sequential_abstraction.py

[user@host ~]$ make_sequnetial_abstraction

Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg

Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)

Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)

Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)

Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51
(memory=8278016 bytes)

Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)

Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg
(memory=8327168 bytes)
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Natural Projection

make_natural_projection.py

[user@host ~]$ make_natural_projection

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg

Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)

Number of states: 3

Number of transitions: 3

Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg
(memory=8417280 bytes)
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Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]$ make_language_equivalence_test

Please input first model (.cfg): B1-B2-abstraction.cfg

Please input second model (.cfg): B1-B2-natural-projection.cfg

Language equivalence HOLDS
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Supervisor Synthesis

make_supervisor.py

[user@host ~]$ make_supervisor

Please input plant model (.cfg): plant.cfg

Please input specification model (.cfg): spec.cfg

Please input supervisor (.cfg): supervisor.cfg

Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)

Number of states: 140

Number of transitions: 288

Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg    (memory=14536704 bytes)
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Nonconflict Check

make_nonconflicting_check.py

[user@host ~]$ make_nonconflicting_check

Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg

Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)

Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes)

ok
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Check Controllability

make_controllability_check.py

[user@host ~]$ make_controllability_check

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

States with disabled controllable events:

(1, 1): {R2-pick-B2, R3-pick-B2}

(4, 2): {R2-drop-B2}

(5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}

(10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}

…………

(799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor is correct (no disabled uncontrollable events)
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Compute Feasible Supervisor

make_feasible_supervisor.py

[user@host ~]$ make_feasible_supervisor

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg

Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)

Number of states: 82

Number of transitions: 196

Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg 
(memory=10547200 bytes)
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Batch Operation

Batch_Operation.py

*******************************************************************************

#!/usr/bin/env python

from automata import frontend

#Compute product

frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg')

#Compute automaton abstraction

frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg')

#Compute supervisor

frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability

frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')


