
Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 1

Supervisory Control:

Advanced Theory and Applications

Su Rong

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 2

Course Information (1)

• Duration of This Course
– 22/04/2010 – 17/06/2010

• Course Schedule

– one lecture per week: Thursday 08:45 – 10:30 (6 lectures)

– one exercise session (before mid-term exam) on 11/05/2010

• Grading Policy
– home assigments (10%)

– one mid-term written exam (1.5 hour, 30%) on 20/04/2010

• Each student must pass the exam (60%) before the grade can be counted in

• A student can take a second test if he/she fails the first one

– one final project (60%) : choose your own or pick one from a given list

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 3

Course Information (2)

• Lecturers

– Dr. R. Su

• office: WH0.113

• email: r.su@tue.nl

– Dr.ir. J.M. van de Mortel-Fronczak

• office: WH0.121

• email: J.M.v.d.Montel@tue.nl

• Prerequisite

– 2IT15 - Automaten en procestheorie (aanbevolen)

– 4K420 - Supervisory machine control (aanbevolen)

– 5JJ50 - Rekennetwerken (aanbevolen)

mailto:r.su@tue.nl
mailto:J.M.v.d.Montel@tue.nl
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=2IT15&studiejaar=&language=
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=4K420&studiejaar=&language=
https://venus.tue.nl/owinfo-cgi/owi_0695.opl?vakcode=5JJ50&studiejaar=&language=

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 4

Emphasis of 4K460

• On how to use results of each supervisor synthesis approach.

• Not on why those results are correct.

I won‟t give mathematical proofs in my lectures!

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 5

Introduction to Supervisory Control Theory

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 6

Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 7

The Concept of Discrete Event Systems (DES)

• A DES is a structure with „states‟ having duration in time,

„events‟ happening instantaneously and asynchronously.
– States: e.g. machine is idle, is operating, is broken down, is under repair

– Events: e.g. machine starts work, breaks down, completes work or repair

• State space discrete in time and space.

• State transitions „labeled‟ by events.

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 8

• Control problems implicit in the literature (enforcement of

resource constraints, synchronization, ...)

But

• Emphasis on modeling, simulation, verification

• Little formalization of control synthesis

• Absence of control-theoretic ideas

• No standard model or approach to control

The Motivation of Developing Supervisory

Control Theory (SCT) for DES (till 1980)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 9

Related Areas

• Programming languages for modeling & simulation

• Queues, Markov chains

• Petri nets

• Boolean models

• Formal languages

• Process algebras (CSP, CCS)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 10

“Great” Expectations for SCT

• System model

– Discrete in time and (usually) space

– Asynchronous (event-driven)

– Nondeterministic

• support transitional choices

• Amenable to formal control synthesis

– exploit control concepts

• Applicable: manufacturing, traffic, logistic,...

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 11

Relationship with Systems Control Concepts

• State space framework well-established:

– Controllability

– Observability

– Optimality (Quadratic, H)

• Use of geometric constructs and partial order

– Controllability subspaces

• Supremal subspaces!

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 12

Ramadge-Wonham SCT (1982)

• Automaton representation

– state descriptions for concrete modeling and computation

• Language representation

– i/o descriptions for implementation-independent concept formulation

• Simple control “technology”

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 13

Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 14

RW paradigm is based on languages, but implemented on finite-state automata

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 15

Basic Concepts of Languages

• Given an alphabet  (e.g.  = { a , b , c , d })

– A string is a finite sequence of events from , e.g. s = ababa

– + := { all strings generated from  }, * := +  {}

•  is called the empty string: s = s = s

– Given s1,s2
, s1 is a prefix substring of s2, if (t) s1t=s2

• We use s1  s2 to denote that s1 is a prefix substring of s2

– A language W  * : most time we require W to be regular

– The prefix closure of a language W is :

• W is prefix closed if W = W

}sW)ss(|Σs{:W * 

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 16

Finite-State Automaton (FSA)

• A finite-state automaton is a 5-tuple G = (X, , , x0, Xm), where

– X : the state set

–  : the alphabet

– x0 : the initial state

– Xm : the marker state set (or the final state set)

–  : X  X : the transition map

•  is called a partial map, if it is not defined at some pair (x,)X.

• Otherwise, it is called a total map.

• Extension of the transition map:  : X*  X : (x,s)  (x,s) := ((x,s),)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 17

The Famous “Small Machine” Model

• G = (X ,  ,  , x0 , Xm)
– X = { 0 , 1 , 2 }

–  = { a , b , c , d }

– x0 = 0

– Xm = { 0 }

0

1 2

a

c

db

a : starts work

b : finishes work

c : machine fails

d : machine is repaired

Idle

Work Failure

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 18

Connection between Language and FSA

• Give a FSA G = (X ,  ,  , x0 , Xm),

– closed behavior of G:

L(G) := {s*|(x0,s) is defined}

– marked behavior of G, i.e. the language recognized by G,

Lm(G) := {sL(G) | (x0,s)Xm}

• G is nonblocking, if Lm(G) = L(G).

• A language is regular, if it is recognizable by a FSA.

– We can use Arden‟s rule to derive a language from a FSA.

0

1 2

a

c

db

Idle

Work Failure

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 19

Natural Projection over Languages

• Given  and , P:*  * is a natural projection if

)()()()(

' if

' if
)()(

)(

* 








PsPsPs

P

P














• The inverse image map of P is P-1 : pwr(*)pwr(*) with

(A*) P-1(A) :={s*| P(s)A}

ab c a c cd
 = {a, b, c, d}  = {a, d}

P
a a d

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 20

Synchronous Product over Languages

• Builds a more complex automaton

• with more complex language








shared

Lm(A1) || Lm(A2) = P1
-1 (Lm(A1))  P2

-1 (Lm(A2))

expressed by natural projections

Pi: (1 2)
*  i

* (i = 1,2)

A1 A2

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 21

The synchronous product is commutative and associative !

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 22

Implement Synchronous Product by Automaton Operation

• Let G1 = (X1, 1, 1, x0,1, Xm,1) and G2 = (X2, 2, 2, x0,2, Xm,2),

• Let

G1G2 = (X1X2, 12, 12, (x0,1,x0,2), Xm,1Xm,2)

where

• Result:

– L(G1)||L(G2)=L(G1G2)

– Lm(G1)||Lm(G2)=Lm(G1G2)

















212211

12221

21211

2121

ΣΣσ ifσ)),(xξσ),,(x(ξ

ΣΣσ ifσ)),(xξ,(x

ΣΣσ if)xσ),,(x(ξ

:σ)),x,((xξξ

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 23

For Example








shared

A1 A2










A1A2

0 1 0 1 (0,0) (1,1)

(1,0)

(0,1)

Automaton product implements synchronous product!

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 24

Properties of Projection and Synchronous Product

• [Chain Rule] Given 1, 2 and 3, suppose 3  2  1.

– Let P12:1
* 2

* , P23:2
*3

* and P13:1
*3

* be natural projections

– Then P13 = P23P12

• [Distribution Rule] Given L1  1
* and L2  2

*, let   12.

– Let P:(12)
* * be the natural projection. Then

• P(L1 || L2)  P(L1) || P(L2)

• 12    P(L1 || L2) = P(L1) || P(L2)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 25

We now talk about control …

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 26

The Control Architecture

• Given a plant G and a requirement SPEC, compute a supervisor S

– Lm(S/G) := Lm(S)||Lm(G)  Lm(G)||Lm(SPEC)

– S should not disable the occurrence of any uncontrollable event

– S should make a move only based on observable outputs of G

– S/G is nonblocking

G

S

S/G
enable/disable

events in c

 = c  uc

 = o  uo

c:=controllable alphabet

o:=observable alphabet

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 27

General Control Issues

Q1 : Is there a control that enforces both safety, and liveness

(nonblocking), and which is maximally permissive ?

Q2 : If so, can its design be automated ?

Q3 : If so, with acceptable computing effort ?

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 28

Solution to Question 1

• Fundamental definition

A sublanguage K  Lm(G) is controllable (w.r.t. G) if

– “Once in , you can‟t skid out on an uncontrollable event.”

KLK uc )G(
K

a b c

a

b

d

 ={a,b,c,d}

c ={a,c,d}

uc ={b}

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 29

Supremal Controllable Sublanguage

• Given a plant G and a specification SPEC (both over ), let

C(G,SPEC):={KLm(G)Lm(SPEC)|K is controllable w.r.t. G}

• C(G,SPEC) is a poset under set inclusion and closed under arbitrary union

– The largest element is called the supremal controllable sublanguage,

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 30

Fundamental Result

• There exists a (unique) supremal controllable sublanguage

Ksup  Lm(G)  Lm(SPEC)

– SPEC is an automaton model of a specification

• Furthermore Ksup can be effectively computed.

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 31

Lattice View of Solution to Question 1

Lm(G)  Lm(SPEC)

* (all strings)

Lm(SPEC)Lm(G)

synthesis

Ksup (optimal)

K" (suboptimal)K'

 (no strings)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 32

Solution to Question 2

• Given G and SPEC, compute Ksup

Ksup = Lm(SUPER)

SUPER = Supcon (G , SPEC)

• Given SUPER, implement Ksup

G

SUPER

Ksup
enable/disable

events in c

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 33

Supervisor Reduction

G

SUPER

Ksup G

SIMSUP

Ksup

reduction

SUPER and SIMSUP is control equivalent if

• L(G))L(SUPER) = L(G))L(SIMSUP)

• Lm(G))Lm(SUPER) = Lm(G))Lm(SIMSUP)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 34

Supervisor Reduction

• Controlled behavior has state size

||Lm(SUPER)||  ||Lm(G)||  ||Lm(SPEC)||

• Compute reduced, control- equivalent SIMSUP, often with

||Lm(SIMSUP)|| << ||Lm(SUPER)||

• In TCT:

– CONSUPER = Condat(G,SUPER)

– SIMSUP = Supreduce(G,SUPER,CONSUPER)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 35

A solution to Question 3 is modular/distributed/hierarchical control

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 36

Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 37

A Pusher-Lift System

extend (push = 1)retract (push=0)

ascend

descend

LiftPusher
place=1,0

(up,down){0,1}{0,1}

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 38

Lift Model Glift

descended up=1 down=0 ascended

up=1down=0,1

down=0 up=1

up=0
up=0 down=0,1

down=1 up=0,1

descended

down=0up=0,1

down=1

up=0

down=0

down=1

: controllable

: uncontrollable

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 39

Pusher Model Gpu

push=1 extended

push=0 extendedpush=1

push=0retracted

retracted

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 40

place=1

placed

Product Model Gpro

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 41

Specifications

placed

down=0 up=1

up=1 down=0

retracted

down=1 up=0

up=0 down=1

ascended

push=1

descended

place=1

E1

E2

E3

E4

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 42

Monolithic Method – Supervisor Synthesis

• Plant: G = Glift,lo  Gpu  Gpro (use Sync in TCT (240 , 956))

• Specification:

– E = E1  E2  E3  E4 (64 , 288)

– E = Selfloop(E1E2E3E4, –(1234))

• SUPER = Supcon(G , E) (636 , 1369)

• SUPER = Condat(G , SUPER) : controllable

• SIMSUPER = Supreduce(G,SUPER,SUPER) (99 , 476 ; slb=51)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 43

Some Remarks

• Advantages of RW SCT

– It is conceptually simple

– Many real systems can be modeled in this framework

• Disadvantages of RW SCT

– The computational complexity is very high for large systems

– The implementation issues are not explicitly addressed

• A procedure of signalsevents (supervisory control)signals is needed.

– Performance issues are not well addressed

• “Bad” behaviors are forbidden, but no specific “good” behavior is enforced.

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 44

Outline

• Introduction to Supervisory Control

• Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of 4K460

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 45

Goals of 4K460

• To introduce several techniques that are aimed to handle the
complexity issue involved in supervisor synthesis.

– Modular control

– Distributed control

– Hierarchical control

– State-feedback control

• To deal with supervisory control under partial observations.

• To address a certain type of performance.

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 46

Basic Functions of Supervisor Synthesis Package

Developed by A.T. Hofkamp and R. Su

Systems Engineering Group

Department of Mechanical Engineering

Eindhoven University of Technology

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 47

Create Automata

Automaton: B1.cfg

[automaton]

states = 0, 1, 2, 3, 4

alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1

controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1

observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1

transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),

(1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),

(1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)

marker-states = 1

initial-state = 0

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 48

Check Size of Automaton

make_get_size.py

[user@host ~] $ make_get_size

Please input model (.cfg): B1.cfg

Number of states: 5

Number of transitions: 9

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 49

Automaton Product

make_product.py

[user@host ~]$ make_product

Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg

Please input product automaton (.cfg): B1-B2.cfg

Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes)

Number of states: 17

Number of transitions: 65

Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg (memory=9076736 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 50

Automaton Abstraction

make_abstraction.py

[user@host ~]$ make_abstraction

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg

Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)

Number of states: 5

Number of transitions: 14

Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg
(memory=8409088 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 51

Sequential Automaton Abstraction

make_sequential_abstraction.py

[user@host ~]$ make_sequnetial_abstraction

Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg

Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)

Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)

Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)

Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51
(memory=8278016 bytes)

Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)

Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg
(memory=8327168 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 52

Natural Projection

make_natural_projection.py

[user@host ~]$ make_natural_projection

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg

Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)

Number of states: 3

Number of transitions: 3

Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg
(memory=8417280 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 53

Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]$ make_language_equivalence_test

Please input first model (.cfg): B1-B2-abstraction.cfg

Please input second model (.cfg): B1-B2-natural-projection.cfg

Language equivalence HOLDS

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 54

Supervisor Synthesis

make_supervisor.py

[user@host ~]$ make_supervisor

Please input plant model (.cfg): plant.cfg

Please input specification model (.cfg): spec.cfg

Please input supervisor (.cfg): supervisor.cfg

Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)

Number of states: 140

Number of transitions: 288

Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 55

Nonconflict Check

make_nonconflicting_check.py

[user@host ~]$ make_nonconflicting_check

Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg

Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)

Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380
(memory=15073280 bytes)

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes)

ok

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 56

Check Controllability

make_controllability_check.py

[user@host ~]$ make_controllability_check

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

States with disabled controllable events:

(1, 1): {R2-pick-B2, R3-pick-B2}

(4, 2): {R2-drop-B2}

(5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}

(10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}

…………

(799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor is correct (no disabled uncontrollable events)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 57

Compute Feasible Supervisor

make_feasible_supervisor.py

[user@host ~]$ make_feasible_supervisor

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg

Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)

Number of states: 82

Number of transitions: 196

Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg
(memory=10547200 bytes)

Systems Engineering Group, Department of Mechanical EngineeringApril 22, 2010 58

Batch Operation

Batch_Operation.py

#!/usr/bin/env python

from automata import frontend

#Compute product

frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg')

#Compute automaton abstraction

frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg')

#Compute supervisor

frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability

frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')

