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Deep Clustering with Variational Autoencoder
Kart-Leong Lim and Xudong Jiang, Senior Member, IEEE and Chenyu Yi

Abstract—An autoencoder that learns a latent space in an
unsupervised manner has many applications in signal processing.
However, the latent space of an autoencoder does not pursue the
same clustering goal as Kmeans or GMM. A recent work of Song
et al proposes to artificially re-align each point in the latent
space of an autoencoder to its nearest class neighbors during
training. The resulting new latent space is found to be much
more suitable for clustering, since clustering information is used.
Inspired by Song et al, in this paper we propose several extensions
to this technique. First, we propose a probabilistic approach to
generalize Song’s approach, such that Euclidean distance in the
latent space is now represented by KL divergence. Second, as a
consequence of this generalization we can now use probability
distributions as inputs rather than points in the latent space.
Third, we propose using Bayesian Gaussian mixture model for
clustering in the latent space. We demonstrated our proposed
method on digit recognition datasets, MNIST, USPS and SHVN
as well as scene datasets, Scene15 and MIT67 with interesting
findings.

I. INTRODUCTION

Deep clustering networks that exploit autoencoder (AE) for
clustering have been found in many recent signal processing
applications such as computer vision and pattern recognition
[1], [39], [14], [15], [3], [12], speech and audio recognition [7],
[18], [40], [17], [27], [22], wireless communication [2], [32],
[10], text classification [36], [4], [30] and etc. Deep clustering
network [37], [31] typically trains a clustering algorithm e.g.
Kmeans on the latent space of AE. However, the latent space
of an AE may not be suitable for clustering. We can view this
problem from the probabilistic perspective of the variational
autoencoder (VAE) [19]. The main difference between AE and
variational autoencoder (VAE) [19], [18] is the way the latent
space is represented. In AE, an encoded image is represented
as a point in the latent space, while in VAE an encoded
image is represented by the sample draw from a Gaussian
distribution. The latter is described by VAE’s random variable,
mean and variance associated with the image. The problem of
clustering faced by VAE is that when we have a multiclass
dataset such as MNIST, the underlying Gaussian distribution
assumption may not be sufficient to separate different classes
in the latent space. This is especially true when two different
digit classes share very similar mean and variance. There is
simply no mechanism in VAE that enforces samples from
different classes to have different mean and variance. Unless
the underlying data layout is inherently class discriminative,
there is no way AE or VAE can generate a latent space suitable
for clustering.
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In order to solve VAE’s clustering problem, at least two
groups of researchers have converged to the same idea of
using categorial distribution for VAE since the underlying
distribution is discrete [11], [25]. Fortunately, there is an easier
way to solve the problem. A recent approach by Song et
al [31] focuses on minimizing the difference between the
original latent space learnt by AE and the feature space learnt
over it by traditional machine learning (ML) techniques. In
such approach, there are two objectives to be solved in each
iteration, the network weights φ and the ML parameters
θ. The standard way to learn it is to alternate between each
optimization while fixing the other. Our work mainly follows
Song’s approach [31] which we named as autoencoder with
distance (AED). We further extend it to using VAE [19] which
we call variational autoencoder with distance (VAED).

There are some challenges faced when using AED:
i) AE may not be the most ideal tool for training

compact representation since, unlike VAE it can-
not model latent space using random variable.

ii) The distance error function of AED only takes
points in the latent space as inputs. It is not so
straightforward to extend this function to using
random variables as inputs.

iii) Kmeans assumes a spherical Gaussian distribu-
tion for each cluster. However, this is a strong
assumption for most datasets.

Novel contributions in this work include:
i) Inputs to the distance error function are now

probability distributions, rather than points in the
latent space.

ii) The second order term (variance) of network
(VAE) and ML (GMM) are now optimized by
the distance error function.

iii) Bayesian GMM [5] is used to improve the
clustering. More hidden variables and hyperpa-
rameters can better capture the latent space over
Kmeans alone.

A. Related work

AED [31] first proposes to integrate both reconstruction
error and the error between Kmeans and the encoded image
(a.k.a. distance error or L3) into a single objective. Backpropa-
gation on this objective will adjust the AE weights to minimize
the within class latent space representation of the encoded
image. Many recent works [31], [23], [34], [35], [37], [12]
including our paper follow this strategy. DCN [37] offers a
concise study of AED but both use identical L3. DC-Kmeans
[34] use the alternating directed method of multiplier to train
AED. The authors of DEC [35] proposed using a Student’s t-
distribution kernel for L3. DBC [23] combines a convolutional
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autoencoder with DEC. Instead of Euclidean distance, in Sun
et al [33], L3 is learnt using a sparse representation. Similarly,
PARTY [28] proposed a sparsity prior to L3. NSC-AGA [12]
applies the self-expressiveness model to L3. The inputs to
the L3 represented by sparse coding, NSC-AGA and PARTY
are essentially point estimates. Furthermore, when sparse
representation or self-expressiveness in L3 are negligible, we
can effectively treat L3 as Euclidean distance much like in
AED. The most related work to ours is VaDE [16]. Where the
goal of VaDE is to decode images of different classes from its
respective cluster representation in the latent space, our goal
is to minimize the difference between a VAE’s latent space
and the cluster representation learnt over it using traditional
machine learning approach. VaDE represents the relationship
between VAE and GMM using a jointly distributed proba-
bility distribution, a.k.a. the variational lower bound in [19].
However, the intuition of VaDE is not easily understood in
[16]. We offer a different perspective. The same relationship
between VAE and GMM is initially inspired by AED [31].
We then further shows that this relationship can be further
refined using a probabilistic approach, e.g. KL divergence.
We discuss why such a probabilistic approach is necessary
to correctly represent both VAE and GMM. Following that,
we show that under a condition, the KL divergence will revert
back to AED. Furthermore, we use a Bayesian GMM over the
standard GMM. More hidden variables and hyperparameters
can better capture the latent space over Kmeans alone.

II. BACKGROUND

A. Gaussian mixture model (GMM)

GMM [5] models a set of N observation z = {zn}Nn=1 ∈
RD, using a linear superposition of K Gaussian components.
The total dimension of each observed instance is denoted by
D. The GMM mean is denoted by η = {ηk}Kk=1 ∈ RD.
When assuming diagonal covariance Σk = τ−1k I , we define
GMM precision as τ = {τk}Kk=1 ∈ RD. The GMM cluster
assignment is denoted by ζ = {ζn}Nn=1 where ζn is a
1 − of − K binary vector, subjected to

∑K
k=1 ζnk = 1 and

ζnk ∈ {0, 1}. In the Bayesian approach to GMM, we treat each
hidden variable as a posterior distribution and we introduce
a prior distribution for each hidden variable. The Bayesian
GMM posterior is formulated below, where θ = {η, τ, ζ}

p(z) =
∫
p(z|θ)p(θ)dθ,

p(z | ζ, η, τ) =
∏N
n=1

∏K
k=1N

(
zn | ηk, τ−1k

)
ζnk ,

p(η, τ) =
∏K
k=1N

(
ηk | m0, λ0τ

−1
k

)
Gamma (τk | a0, b0)

(1)
Due to the intractable integral in p(z), an approximation

such as variational inference is required to perform learning
of the hidden variables θ. We will discuss this in later section
and we refer the readers to [5] for more details.

B. Autoencoder with distance (AED)

The AED error function first appeared in [31]. η∗ refers to
the nearest cluster to z in the latent space. T and y refer
to target and network output respectively. We use cluster
assignment to find out the kth cluster membership ηk belongs

to. The parameter λ3 is set to [0, 1] where a smaller λ3 reduces
the effect of distance error function on network weight updates

LAED = min
w,b
‖T − y‖2 − λ3 ‖z − η∗‖2 (2)

C. Variational autoencoder (VAE)

A standard VAE [19] has a network structure including the
encoder and decoder as defined below

hj = f1 (
∑
i wij · xi) , µ =

∑
j wjµ · hj

lnσ2 =
∑
j wjσ · hj , hk = f4 (

∑
z wzk · z)

yl = f5 (
∑
k wkl · hk)

(3)

The latent variable z generates an output from the encoder
network using z = µ + σ · ε where ε ∼ N (0, 1). For the
activations, we mainly use f() = tanh(). The error function
of VAE consists of the standard reconstruction error and KL
divergence as follows.

LV AE = ln p(x|z)−DKL (q(z|x) ‖ p(z))
= − 1

2 (T − y)
2 − 1

2

(
σ2
1 + µ2

1 − lnσ2
1 − 1

) (4)

VAE represents both encoder q(z|x) and decoder p(x|z)
using diagonal covariance Gaussian distribution. The KL
divergence above is expressed in terms of VAE’s random
variables µ, σ which are in turn expressed in terms of network
parameters w. Weight training for VAE’s error function is
performed using stochastic gradient ascent (SGA).

III. PROPOSED: VAE WITH DISTANCE (VAED)

A. Naive approach, AED

A naive way to represent the distance error function in VAE
is to use ‖z − η∗‖2 such as in [33]. The reduced complexity
is that we can exploit the reparameterization trick z = µ+σ ·ε
to represent mean and variance in VAE. However, problems
will arise:

i) The GMM variance term τ , cannot be optimized
by ‖z − η∗‖2

ii) The network gradient ∂LV AED

∂σ is essentially a
factor of ∂LV AED

∂µ weighted by the randomly
generated noise ε ∼ N (0, 1) as seen in eqn (5)

∂LAED

∂µ = z − η∗
∂LAED

∂σ = (z − η∗) ε
(5)

A severse issue is when ε → 0, the naive approach suffers
from the vanishing gradient problem. Fortunately, this problem
can be elevated by the proposed method in eqn (10) and (11).

B. Proposed approach, VAED

A VAE representation in the latent space is the mean and
variance. In a ML approach, a GMM contains K independent
Gaussian distributions that models the latent space of VAE. We
can use the KL divergence to measure the distance between
these two probability distributions. We introduce our VAED
objective as follows

LV AED = LV AE − λ3 ·DKL (p(zn | θ) ‖ q(zn | xn))
(6)
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We will show an illustration of eqn (6) in Fig 1. Also,
the validity of eqn (6) should prevail to cases where both
p(zn | θ) and q(zn | xn) are no longer Gaussian distributed.
We introduce the KL divergence term as our new distance
error which measures the distance between the distributions
of GMM and VAE encoder. We can further re-express the
GMM term as

p(zn | θ) =
K∏
k=1

N (zn | ηk, (τk)
−1

)ζnk = N (zn | η∗, (τ∗)−1)

(7)
We refer to η∗ as the optimal ηk computed by GMM’s
cluster assignment E [ζnk] shown in the next section and vice
versa for τ∗. Thus, the KL divergence for distance error now
becomes a function between two Gaussian distributions. Under
such assumption, KL divergence is well defined as follows

DKL

(
N (zn | η∗, (τ∗)−1) ‖ N (zn | µ, σ)

)
= ln τ∗ + lnσ + (τ∗)−1+(η∗−µ)2

2σ2 − 1
2

(8)

Interestingly, when we assume spherical Gaussian i.e. unit
variance, the VAED distance error reverts back to the AED
distance error

DKL (N (zn | η∗) ‖ N (zn | µ)) =
1

2
(η∗ − µ)

2 (9)

C. Optimization of VAED
The optimization of VAED is achieved by i) using

SGA to learn VAED weights wij , wjµ, wjσ, wkl, wzk and
ii) using variational inference to learn GMM parameters
E [ηk] , E [τk] , E [ζnk].

1) Weights learning: It is straightforward to obtain the
network gradient terms for eqn (8) as follows

∂LV AED

∂µ
= − (η∗ − µ)

σ2
(10)

∂LV AED

∂σ
=

1

σ
− (τ∗)

−1
+ (η∗ − µ)

2

σ3
(11)

After that, the goal is to update all the following weights for
eqn (6) using SGA where ∆ is the weight change of the hidden
layers and γ is the learning rate.

wjµ = wjµ + γ∆wjµ, wkl = wkl + γ∆wkl
wjσ = wjσ + γ∆wjσ, wzk = wzk + γ∆wzk
wij = wij + γ∆wij

(12)

2) GMM learning: The GMM parameters (or Bayesian
posteriors of the hidden variables) can be learnt in the latent
space using the variational inference. In variational inference,
the hidden variables of a mixture model are maintained as
posterior distributions. When performing iterative learning,
we update the mixture model by estimating the expected
value of each posterior per iteration. In Bayesian GMM [5],
E [τk], E [ηk], E [ζnk] are the expected value of the Bayesian
posteriors of GMM precision, mean and cluster assignment
respectively. Using the maximization-maximization algorithm
[24], closed solution for the expectations are shown below.
The hyperparameters a0, b0, λ0,m0 are treated as constants.

E [ζnk] = arg max
ζnk

{
lnE [τk]− E [τk] (zn − E [ηk])2

}
ζnk

(13)

Fig. 1. Proposed VAED: The weights of the encoder is updated via
backpropagation using the reconstruction error, VAE’s regularization error,
and the proposed VAED distance error.

E [τk] =
1
2

∑N
n=1E [ζnk] + (a0 − 1)

b0 +
∑N
n=1

E[ζnk]
2 (zn − E [ηk]) 2 + λ0

2 (E [ηk]−m0) 2

(14)

E [ηk] =

∑N
n=1 znE [ζnk] + λ0m0∑N

n=1E [ζnk] + λ0
(15)

D. Proposed algorithm for VAED

We introduce our proposed algorithm for VAED in Algo.
1. The first part of VAED trains a GMM in the latent space
of VAED. The learnt GMM parameters are in turn used to
perform VAED weight updating. Finally, the updated weights
of VAED replace the weights from the previous iteration. The
process repeats itself until enough iterations have passed. A
way to check the convergence of VAED is to run GMM
training accuracy each iteration. When normalized mutual
information (NMI) and accuracy (ACC) of GMM clustering
have converged, we can stop the training of VAED. We refer
to [6] for NMI and ACC computations.

Algorithm 1 VAED
Input: x

Output:
a) VAED weights, φ = {wij , wjµ, wjσ, wzk, wkl}
b) GMM parameters θ = {E [ηk] , E [τk] , E [ζnk]}

Initialization: φ, γ, λ3, θ

Main: Repeat till convergence

% —-This is GMM optimization—-
1) run forward pass to obtain z given the raw input

x
2) update GMM parameters using eqn (13-15)

%—-This is VAED optimization—-
3) given a random sample zn, compute E [ζn] to get

corresponding η∗ and τ∗

4) perform SGA on VAED in eqn (6) and (8)

IV. EXPERIMENTS

A. Comparison of end-to-end clustering

We compare our method with recent clustering methods
[31], [34], [35], [23], [37], [13], [38] in Table 1. The most
commonly used digit datasets are: i) USPS [8] with 7291 train
and 2007 test images, ii) MNIST [21] with 50,000 train and
10,000 test images. For USPS, we use raw image pixel as
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USPS MNIST

Method NMI ACC NMI ACC

Kmeans [34] 0.4503 0.4585 0.5163 0.5618
AED [31] 0.5449 0.6111 0.6615 0.734

DC-Kmeans [34] 0.5737 0.6442 0.7448 0.8015
DCN [37] - 0.81 0.83

DC-GMM [34] 0.6939 0.6476 0.8318 0.8555
DEC [35] 0.6191 0.6246 0.8273 0.8496
DBC [23] 0.724 0.743 0.917 0.964
VaDE [16] - - 0.945

NSC-AGA [13] 0.7727 0.7256 -
VAED (ours) 0.6233 0.7613 0.819 0.8875

TABLE I
PROPOSED METHOD VS STATE-OF-THE-ARTS (USING RAW PIXEL)

SCENE15 SVHN MIT67

Method NMI ACC NMI ACC NMI ACC

Original 0.7754 71.20 0.6397 68.15 0.6610 48.61
AED 0.8016 80.27 0.7080 73.73 0.6650 49.12
VAE 0.8150 82.41 0.7371 76.63 0.6516 48.62

VAED (ours) 0.8332 88.12 0.8111 91.53 0.67098 58.96

TABLE II
PROPOSED METHOD VS BASELINES (USING RESNET18)

SCENE15 SVHN MIT67
AED 1080 2297 7704
VAE 122 122 120

VAED 1858 3393 13200

TABLE III
COMPUTATIONAL TIME (IN SECONDS) FOR 50 ITERATIONS

feature vector, hence, the encoder network is 256-196-128.
For MNIST, we also use raw image pixel as feature vector
and the encoder network we use is 784-512-256. We rerun
our experiments at least 10 rounds and take the average result.
The GMM hyperparameters we use are a0 = 1.25, b0 = 0.25,
m0 = 1 and λ0 = 0.5. The VAED parameter is λ3 = 0.1.

On USPS in Table 1, Kmeans [34] obtained NMI=0.4503,
ACC=0.4585 on the original feature space. All deep clustering
methods outperforms Kmeans by a large margin. AED obtains
better overall result than DC-GMM and DC-Kmeans. The
ACC of DEC is the poorest amongst all deep methods. Overall,
our proposed method obtains the best ACC but our NMI
suffers. We believe this is due to VAED using randomly
initalized weights and USPS having a smaller training sample
size.

On MNIST in Table 1, Kmeans on the original space
was only able to obtain NMI=0.5163 and ACC=0.5618. In
comparison, VAED obtained better result than most methods
at NMI=0.819, ACC=0.8817 except DBC. Reason could be
that 3 layers for VAED’s encoder may not be enough for
state-of-the-art clustering on MNIST. In comparison, VaDE,
DCN, DBC and DEC use 5 layers for encoder while AED,
NSC-AGA, DC-Kmeans and DC-GMM use 4 layers.

B. More challenging datasets

Our next goal is to evaluate VAED on real datasets such
as datasets having larger classes (MIT67) and more difficult
image content such as scene categories (Scene15 and MIT67).

These datasets are rarely used by deep clustering algorithms
such as [31], [34], [35], [23]. As a result, we implemented
AED and VAE as our baselines for comparison. For the latter,
VAE is first learnt on the dataset and then Kmeans is applied
in the latent space. All methods here use ResNet18 as the
input and they have the same network dimensions as VAED.
Our VAED encoder uses a 512− 384− 256 network structure
whereby 512 refers to the output dimension of Resnet18 [9]
as our image feature extraction, 384 is the dimension of our
2nd layer and our latent space has 256 neurons.

Two scene recognition datasets are used in our experiments.
Scene15 [20] has 15 classes, 4485 images and MIT67 [29] has
67 classes, 15,620 images. We also include SVHN [26] which
is a more complex and challenging dataset than MNIST. The
images in SVHN are natural and not clean which have large
variance in illumination and distraction. For each dataset, we
start with Kmeans on the original ResNet18 feature space.
From Table 2, we see that AED is able to outperform Kmeans
by a large gain in both Scene15 and SVHN. VAE is able
to obtain minor performance gain over AED. However, both
AED and VAE do not perform any better than Kmeans on
MIT67. In fact, VAE performes worse than Kmeans on MIT67.
We suspect that the poor performance of both methods on
MIT67 is due to the large class number. Fortunately, VAED
does not suffer from this issue. The performance of VAED is
significantly much better than both AED and VAE on all three
datasets. In Table 3, we compare the complexity of VAED
with AED and VAE using CPU time. Overall, VAED is the
most expensive. In VAE, the only requirement is to perform
weight updates. It is also consistent across all datasets. In
comparison, we see that AED and VAED are much slower
due to ensuring Kmeans or GMM converged. Also, the class
number and sample size also affect Kmeans and GMM and
hence the computational time.

V. CONCLUSION

We have discussed about training an AE or VAE for
clustering. One of the main problems is how to improve the
multiclass representation in the latent space. A recent approach
known as AED attempts to solve this problem, where D refers
to the distance error function between AE and Kmeans in the
latent space. We found several issues with the original AED.
Firstly, AED suffers from the constraint of using points in the
latent space as inputs. Secondly, AED cannot be optimized
for both VAE and GMM since it does not treat variance as
useful information. Lastly, when using the reparametrization
trick for AED, the network gradient for VAE may suffer
from the vanishing gradient problem. We proposed VAED to
overcome all these problems of AED. In fact, AED is a specific
case of VAED when assuming spherical Gaussian. We showed
significant improvements using VAED over AED and VAE
on the digit and scene recognition datasets as well as on par
results or better results than recent published best methods on
deep clustering networks.
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