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Abstract—The iterative truncated arithmetic mean (ITM) filter
was proposed recently. It offers a way to estimate the sample me-
dian by simple arithmetic computing instead of the time consuming
data sorting. In this paper, a rich class of filters named weighted
ITM (WITM) filters are proposed. By iteratively truncating the
extreme samples, the output of the WITM filter converges to the
weighted median. Proper stopping criterion makes the WITM fil-
ters own merits of both the weighted mean and median filters and
hence outperforms the both in some applications. Three structures
are designed to enable the WITM filters being low-, band- and
high-pass filters. Properties of these filters are presented and ana-
lyzed. Experimental evaluations are carried out on both synthesis
and real data to verify some properties of the WITM filters.

Index Terms—ITM filter, weighted median filter, noise suppres-
sion, nonlinear filter, band-pass filter, high-pass filter.

I. INTRODUCTION

T HE linear filters are widely used in digital signal/image
processing because of their rigorous mathematical foun-

dation and their efficiency in attenuating additive Gaussian
noise [1]. The sample mean is the optimal solution for sup-
pressing additive Gaussian noise in the sense of mean square
error (MSE) if all samples have the same variance, and so is
the weighted mean if the variances are not identical. However,
none of the mean and weighted mean filters is the optimal if the
long-tailed noise, such as Laplacian noise, presents. Moreover,
in some applications of image processing, the linear filters are
undesirable because they blur the image structures and cannot
suppress the impulse noise effectively. Therefore, nonlinear
filters which can preserve signal structures and effectively
suppress long-tailed noise were developed.
The median filter [2] is the most widely applied one among

the nonlinear filters. It provides a powerful tool for signal/image
processing because of its good property in impulsive noise sup-
pression and edge preservation. However, it destructs fine signal
details, and has poor performance in attenuating Gaussian and
other short-tailed noise. It loses as much as 40% efficiency over
the mean filter in suppressing Gaussian noise [3]. In order to
preserve signal details, many detail preserving filters were de-
veloped, including truncation filters [4], multistage median fil-
ters [5], [6], FIR-median hybrid filters [7] and various adaptive
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noise switching median filters [8]–[11]. Effort was devoted to
improve the performance of the median filter in suppressing
short-tailed noise by making compromises between the mean
and median filters. Such filters include the L filter [12], the STM
filter [12], the -trimmed mean filter [13], [14], the modi-
fied trimmed mean (MTM) filter [15], the mean-median (MEM)
filter [3], [16] and the median affine (MA) filter [17]. The out-
puts of these filters move smoothly between the sample mean
and median by adjusting some free parameters. However, it is
not an easy task to choose the optimal parameters to make these
filters adaptive to signal types [3], [17], [18].
Similar to the mean filter, the median filter is inefficient if the

variances of different samples are not the same. The weighted
median filters with positive weights were proposed to deal with
the non-identical distributed Laplacian noise. Such filters are
used in many applications, e.g., speech signal processing, im-
ages filtering [19] and waveform prediction [20]. However, they
cannot achieve the acceptable results in some applications, such
as equalization, beamforming and system identification, which
require band- or high-pass characteristics. To overcome the
above limitations, the general weighted median (GWM) filters
admitting both positive and negative weights were proposed
in [21]. The GWM filters can be designed as band-pass and
high-pass filters. They are applied in various applications, such
as sigma-delta modulation encoding [22], denoising [23]–[25],
image sharpeners [26], edge detection [27], edge enhancement
[28], system identification [29], [30] and multichannel signal
processing [31]. The GWM filters have been extended to admit
complex value of weights [32]. Designing the weights is a
critical part and great effort was devoted in it [21], [33], [34].
Both the median and weighted median filters have some lim-

itations. First, these filters are not as effective as the mean and
weighted mean filters in suppressing the short-tailed Gaussian
noise. Second, they are not the optimal ones even for the long-
tailed Laplacian noise [35], [36]. Moreover, the median and
weighted median filters are built on data sorting. It has high
computational complexity compared to arithmetic computing
and its implementation is also complicated [37].
Filters which can outperform the median filter in suppressing

both the short- and long-tailed noise while do not require data
sorting are desirable. Themyriad filters [38]–[43] were designed
for the -stable distributed noise model. Its performance highly
depends on the tunable “linearity parameter” [42], [44] com-
puted from the prior knowledge of the noise distribution. The
iterative truncated arithmetic mean (ITM) filter [35] employs a
simple truncating algorithm to iteratively truncate the extreme
samples. Its output approaches the median by increasing the
number of iterations. Proper stopping criterion enables the ITM
filter outperforms themedian filter in suppressing both Gaussian
and Laplacian noise. Edge preservation and noise suppression
can be achieved within just a few iterations. It also provides an
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approach to estimate the median by a simple arithmetic com-
puting algorithm. Its implementation given in [36] is faster than
the median and myriad filters.
The merits of the ITM filter inspire us to extend it into a rich

class of filters. Although the ITM filter outperforms the me-
dian filter in suppressing the identical distributed Gaussian and
Laplacian noise, analogous to the non-weighted mean and me-
dian filters, its performance drops dramatically in dealing with
the non-identical distributed noise. Furthermore, the ITM filter
cannot be used in applications which require band- or high-pass
characteristics. In this paper, we propose a rich class of filters
named weighted ITM (WITM) filters, of which the ITM filter
is a special case with all weights being equal. The truncating
procedure of the ITM filter is extended to the WITM filters. By
iteratively truncating the samples, the output of the WITM filter
starts from the weighted mean and approaches the weighted me-
dian. A stopping criterion is proposed to terminate the iteration
so that theWITM filters can outperform both the weightedmean
and median filters in some applications. Three structures are uti-
lized to enable the WITM filters with negative weights being
low-, band- and high-pass filters. The superiority of the pro-
posed WITM filters is verified in the experiments.

II. WEIGHTED ITM FILTERS WITH POSITIVE WEIGHTS

The weighted ITM filters are proposed following necessary
reviews of the weighted mean and median filters and the ITM
filter [35]. A stopping criterion is proposed and the filter prop-
erties are discussed.

A. Weighted Mean and Median Filters

The weighted mean is the maximum likelihood (ML) es-
timate of location for data sets with Gaussian distribution.
Assume a filter window contains independent Gaussian
distributed samples as with unknown
constant mean . The variance of the th sample is . The
ML estimate of location is to find the value of , which
maximizes the likelihood function

(1)

It is equivalent to minimizing the squares sum

(2)

The value of minimizing (2) is the weighted mean

(3)

where . is the optimal estimate of because its
variance equals to the Cramer-Rao lower bound (CRLB) [45].

Similarly, the ML estimate of location under Laplacian
distribution is equivalent to minimizing

(4)

The value of that minimizes (4) is the weighted median

(5)

where and is the replication operator defined by

(6)

In fact, the weighted median is searched in the following way to
avoid expanding the data and cope with the non-integer weights
[21]:
1) Calculate the threshold .
2) Sort the samples .
3) Sum the magnitude of the weights of the sorted samples
from the maximum continuing down in order.

4) The output is the sample whose weight magnitude causes
the sum to become larger than or equal to .

The median is a special case of the weighted median in which
all weights are the same. As the mean square error (MSE) of the
median is larger than the CRLB under Laplacian distribution,
it does not achieve the minimum MSE though it is the ML es-
timate [36]. The ITM filter [35] outperforms the median filter
in suppressing both Gaussian and Laplacian noise and does not
require data sorting.

B. Iterative Truncated Arithmetic Mean Filter

Different from the mean filter that averages all samples and
the median filter that chooses one sample as the output, the it-
erative truncated arithmetic mean (ITM) filter [35] iteratively
truncates the extreme samples and uses the truncated mean as
the filter output. Starting from , it truncates samples in
to a dynamic threshold as shown by Algorithm 1.
The type I output of the ITM filter [35] is

(7)

Theoretical analysis in [35] shows that the ITM output starts
from the mean and approaches the median by increasing the
number of iterations. The stopping criterion given in [35],
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which terminates the iteration automatically, enables the ITM
filter outperforms themedian filter in suppressing both Gaussian
and Laplacian noise. The implementation given in [36] is faster
than the median filter.

C. The Proposed Weighted ITM Filter With Positive Weights

The weighted ITM (WITM) filter is proposed based on the
following theorems.
Theorem 1: For any finite data set

and weight set with all weights being
nonnegative rational numbers, the difference between the
weighted mean and weighted median is never great than
the weighted mean absolute deviation . The corresponding
formula is

(8)

Proof: Let

(9)

be the expanded data set of where is a constant making
integer for all . Let and
be the mean, median and mean absolute deviation of , respec-
tively. Based on the Theorem 1 given in [35],

(10)

It is easy to see that and . This
completes the proof of Theorem 1.
Theorem 1 guarantees that the weighted median is never

changed if we use the weighted dynamic threshold to
truncate the extreme samples of . The following theorem
ensures that the truncating process never idles for any data
distribution if the weighted mean of deviates from its
weighted median .
Theorem 2: For any finite data set and weight set , there

exists at least one sample whose distance from the weighted
mean is greater than the weighted mean absolute deviation
if the weighted mean deviates from the weighted median
, i.e.,

(11)

Proof: From the Theorem 2 given in [35] we have

(12)

This means that at least one sample in is far away from
by a distance larger than . As
and , (11) is proven.
Theorems 1 and 2 ensure that the extreme samples in can

be iteratively truncated by using the dynamic threshold while
keeping the weighted median un-changed. These theorems in-
spire the proposed WITM filter shown in Algorithm 2. The fol-
lowing Proposition 1 guarantees that the truncated samples ap-
proach the weighted median.
Proposition 1: The dynamic threshold of the WITM

algorithm monotonically decreases to zero by increasing the

number of iterations if the weighted mean deviates from
the weighted median , i.e.,

(13)

(14)

The proof of this proposition can be achieved by expanding
with the weight set and following the Proposition 2 given

in [35].
The output of theWITM filter is defined as the weightedmean

of the truncated by Algorithm 2

(15)

By using the weighted mean of the truncated data set as the
filter output, the WITM filter is expected to own merits of both
the weighted mean and median filters.

D. Stopping Criterion

The output of theWITM filter moves from the weightedmean
towards the weighted median by increasing the number of iter-
ations. Since for many applications, neither weighted mean nor
weighted median is the optimal solution, proper stopping crite-
rion may enable the WITM filter outperforming the both.
In order to facilitate the following analysis, we separate the

data set into two subsets by the truncated weighted mean
as

(16)

(17)

Let and denote the sum of weights of and , respec-
tively. One possible stopping criterion to ensure close to
the weighted median is to meet the condition

(18)

For real data, in general there is no more than one sample having
the value equal to the weighted median. The following lemmas
analyze the choice of in this general case. Although the
WITM filter does not need data sorting, we use the ascending
sorted data set to facilitate the anal-
ysis. The corresponding weight set is .
Let denote the weighted median . The following
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lemma gives the condition that ensures falls in the interval
.

Lemma 1: Let be the nearest sample to the weighted
mean in the subset that has the larger sum weight. is the
weighted median if and only if

(19)

Proof: If

(20)

From (19) we have . Therefore

(21)

(20) and (21) show by the definition of weighted
median. Similarly, it is straightforward to see that if ,
(19) holds. The proof for the case is analogous.
We see that (19) is the sufficient and necessary conditions

for close to . The next
lemma gives further conditions that and

. Let and
. Without loss of generality, we assume

.
Lemma 2: If falls in

(22)

Otherwise, if falls in

(23)

Proof: If is in , we have

(24)

From (19) and (24), (22) is proven. If is in ,
we have

(25)

This completes the proof of Lemma 2.
As is smaller for if falls in

than in , (23) is in general
a better stopping criterion than (19). The following lemma
proves that the condition (23) can always be met. A necessary
proposition is given here to facilitate the proof of the following
Lemma 3.
Proposition 2: Samples, once being truncated in an iteration

of the WITM algorithm, must be truncated in all subsequent
iterations.
The proof can be achieved by expanding with the weight

set and following the Proposition 1 in [36].
Lemma 3: Assume . There is an iteration

in which the weighted truncated mean falls in the interval
, i.e.,

(26)

Proof: As the dynamic threshold monotonically de-
creases to zero, all samples except the weighted median
will be truncated to the lower bound or upper bound after
some iterations. Only three different sample values exist in the
truncated and with the weights and

. If is in the interval , we will prove that it
will move into the interval in a finite number of iter-
ations.
For symbolic simplicity of the proof, let and

. This will not lose the generality of the proof.
So we have

(27)

If . Therefore,

(28)

Both and are truncated to the new lower bound
and high bound in the next iteration based on

Proposition 2. As

(29)

and , we have

(30)

The inequality in (30) comes from (28) and .
This yields

(31)

where . Therefore, if in the
th iteration,

(32)

As , there exists an iteration in which
. It leads to in the th iteration. This

completes the proof of Lemma 3.
Lemmas 1, 2 and 3 imply that can be used as a

stopping criterion to ensure close to . To avoid searching
for , a loosened condition is utilized in this

paper, where is the maximum value in the weight set .
In some extreme cases, there could exist multiple samples

having the same weighted median value. In this case, the stop-
ping criterion may never be met. The second stopping crite-
rion uses a predefined to limit the maximum number of iter-
ations , defined as

(33)
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The we chose in this paper is the same as in [35], which is
.

The stopping criterion we used in this work to stop the
WITM algorithm is a combination of and , i.e.,

(34)

The above stopping criterion ensures that the filter output rea-
sonably approaches the weighted median and that it never fails
to stop the iteration for any kind of data. In fact, it is very dif-
ficult if not impossible to find a stopping criterion optimal for
all types of signals and noise. The above stopping criterion is
designed for general cases. For the noise types whose optimal
location estimator is neither weighted mean nor weighted me-
dian, as shown in the experiments, the proposed WITM filter
that stops the iteration by the above criterion will outperform
the weighted mean and weighted median. However, this stop-
ping criterion is by no means optimal for all types of noise. For
particular application, specific stopping criterion could be de-
signed to make the WITM filter closer to the weighted mean
or closer to the weighted median filters and hence to achieve a
better performance.

E. Properties of the WITM Filter With Positive Weights

Property 1: The WITM filter output converges to the
weighted median by increasing the number of iterations , i.e.,

(35)

Proof: As shown in Theorem 1, the truncating algorithm
does not change the weighted median of the input data set.
Moreover, Proposition 1 shows that the dynamic threshold con-
verges to zero. Therefore, the output of the WITM filter con-
verges to the weighted median.
Property 2: The WITM filter output is invariant to scale and

shift, i.e., if , we have

(36)

where and are two constants. The proof is trivial and hence
omitted.
Property 3: The distribution of the WITM filter output

is symmetric if the samples of the input data set
are drawn from the random variables
, all of which have symmetric distribu-

tions around the symmetry center .
Proof: If is symmetrically distributed around
has the same distribution as . According to Property 2,

. Thus, the distribution of
is symmetric around .

Property 4: The WITM filter output is an unbiased
estimate of the symmetry center if the samples in

are drawn from the random variables
, all of which have symmetric distributions

around .
Proof: According to Property 3, is symmet-

rically distributed around . Therefore,
. This completes the proof of Property 4.

III. WEIGHTED ITM FILTER ADMITTING NEGATIVE WEIGHTS

Similar to the weighted mean and median filters, the WITM
filter admitting only positive weights can only be a low-pass
filter. In this section, two structures of the WITM filter admit-
ting both positive and negative weights, named GWITM and
LCWITM filters, are designed following the structures of the
general weighted median (GWM) filter [21] and the linear com-
bination of weighted median (LCWM) filter [46]. A new struc-
ture, named dual WITM (DWITM) filter, is proposed. The three
structures enable the WITM filter being designed as low-, band-
and high-pass filters.

A. General WITM Filter With Negative Weights

The GWM filter [21] admitting negative weights is

(37)

where if and otherwise.
By uncoupling the weight sign from the weight magnitude and
merging it with the sample values, the GWM filter can be im-
plemented by the algorithm of weighted median filter with only
positive weights. The general WITM (GWITM) filter is analo-
gous to that of the GWM filter. It is

(38)

where
and . The

GWITM filter with negative weights turns to that with only
positive weights which can be implemented by Algorithm 2.

B. Linear Combined WITM Filter With Negative Weights

Although the GWM filter has been widely used in many
applications [23], [28], it has limitation in suppressing
the DC component of the signal. Take a random data
set and their cor-
responding weight set
as an example. The observation set is Laplacian noise
with the offset value 10. The “signed” data set is

. Although the
input data has a small variance, the “signed” data has a large
variance and there is a large gap between the positive and the
negative samples due to the large offset of the input samples.
As the GWM filter selects one of the “signed” samples as the
output, it cannot suppress the DC component effectively. This
problem is still not well solved though in [44] the output of
the GWM filter is modified to be the average of the weighted
median and the next smaller “signed” sample in the sorted
data. This phenomenon can be seen by comparing the filter
outputs in Fig. 1(b) and (c). Fig. 1(a)-top shows a chirp signal
with zero mean. The linear FIR, GWM and GWITM filters are
designed as band-pass filters with pass band . The
setting of these filters is detailed in the experiment section.
The output of the linear FIR filter shown in Fig. 1(a)-bottom
is used as a reference. The outputs of the GWM and GWITM
filters are depicted in Fig. 1(b)-top and -bottom, respectively.
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Fig. 1. Frequency selective filter outputs on chirp signal. (a)-top: Chirp signal,
(a)-bottom: linear FIR filter output. Output of (b)-top GWM filter, (b)-bottom
GWITM filter on the chirp signal. Output of (c)-top GWM filter, (c)-bottom
GWITM filter on the chirp signal with a constant offset 1.

All of them have the frequency selection characteristic. Then,
we add a constant value 1 to the chirp signal. Both the chirp
signal with a constant offset and the corresponding linear FIR
filter output are not plotted because they have a quite similar
shape to those in Fig. 1(a). The corresponding outputs of the
GWM and GWITM filters are shown in Fig. 1(c)-top and
-bottom, respectively. It is seen that the GWM filter fails to
select the frequency. The output of the GWITM filter has some
distortions though it is much better than that of the GWM
filter. In order to alleviate this problem, we propose the linear
combined WITM (LCWITM) filter. It is based on the LCWM
filter [46] that utilizes a combination of low-pass weighted
median sub-filters to design band- and high-pass filters. The
LCWM filter is defined by

(39)

where is the th weighted median sub-filter with
the weight set . is designed using the algorithm in [46]
with the help of the combination matric [46] where
is the number of nonzero elements of each sub-filter. The

weighting coefficient of the th sub-filter is calculated based
on the coefficients of a prototype FIR filter designed by any of
the standard FIR design tool [46].

The structure of the LCWITM filter is set to be the same as
that of the LCWM filter. By directly replacing the weighted me-
dian filter with the WITM filter, the resulting LCWITM filter is

(40)

In this paper, both and are designed following the method
given in [46].

C. The Proposed Dual WITM Filter With Negative Weights

As distinct low-pass weighted median filters are countable
[47], it is not available to achieve arbitrary frequency response
by only using two such sub-filters [46]. Therefore, the LCWM
filter employs sub-filters to alleviate this problem. The sub-
filter structure leads to a high computational complexity for the
LCWITM filter because it needs truncate the data independently
for each sub-WITM filter. Moreover, the LCWM filter employs
small-size sub-filters to make its output close to the linear filter.
This, however, reduces the filter’s capability in suppressing im-
pulsive noise. This also makes the WITM filter stop too early
to suppress the impulsive noise. This observation motivates the
proposed dual WITM (DWITM) filter.
According to the sign of the weights, the weight set
can be separated into two subsets: positive subset

and negative subset
containing all the positive and negative

weights, respectively. The output of the weighted mean filter
can be represented as

(41)

where and are the weighted means of the samples cor-
responding to the positive and negative weights, respectively.
Equation (41) shows that is the weighted difference between

and . It means that the output of a band- or high-pass
filter is the difference between two low-pass filters. Unlike the
weighted median filter, the distinct WITM filters are uncount-
able because they use a truncated averaging instead of a se-
lecting algorithm. Therefore, it is reasonable to design band- or
high-pass filter with two low-pass WITM filters. The proposed
DWITM filter is formulated as

(42)
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where and are the subsets of corresponding to
and , respectively.

IV. EXPERIMENTS

The first experiment tests the WITM filters in suppressing
Gaussian and Laplacian noise. Frequency selective WITM fil-
ters are evaluated in the second experiment. High-pass WITM
filters are tested in the third experiment. The forth experiment
evaluates the filters on real image data. For the proposedWITM,
GWITM, LCWITM, and DWITM filters, the same stopping cri-
terion parameters and are fixed over
all experiments in this paper. Better filtering performances than
those shown in this paper will be obtained if the aforementioned
parameters are adjusted for different data sets. Similarly, for the
weighted myriad filter, the default setting provided in
the source code [44] is used over all experiments. To show the
good performance of the weighted myriad filter, a larger number
of iterations [35] is applied in all experiments though
it is shown that the weighted myriad filter well converges in 10
iterations [40].

A. Attenuation of the Short- and Long-Tailed Noise

The performance of the WITM filters is tested on a
constant signal contaminated by Gaussian and Laplacian
noise with non-identical distribution. For the input data set

, we assume the corresponding stan-
dard deviation of the noise be . The
can be chosen as an arbitrary positive value. In this paper,
we restrict by setting . The rest are set by

. As the optimal esti-
mator under Gaussian noise is the weighted mean with weight
set , all weighted estimators
under Gaussian noise use the weight set . Similarly, the
ML estimator under Laplacian noise is the weighted median
with weight set . Therefore, in
dealing with Laplacian noise, all weighted estimators employ
the weight set . For each experiment, the mean absolute
error (MAE) over independent input data sets is used as
the performance indicator.
Fig. 2 shows the normalized mean absolute error (MAE)

of filters’ outputs in suppressing the non-identical distributed
Gaussian noise. The MAE is normalized by that of the weighted
median filter. We first investigate the WITM filter’s perfor-
mance against the number of iterations without applying the
proposed stopping criterion. Fig. 2(a) depicts the normalized
MAEs of the ITM and WITM filters against the number of
iterations. MAEs of the myriad filter with fixed 20 iterations
and other noniterative filters are illustrated by horizontal lines
for a better visual comparison with the ITM and WITM filters.
The filter size is . As the weighted mean filter is the
optimal in suppressing Gaussian noise, it has the lowest MAE.
The MAE of the WITM filter increases against the number of
iterations. It equals to that of the weighted mean filter when
the number of iterations equals to zero, and approaches to that
of the weighted median filter when the number of iterations
is large enough. Fig. 2(b) shows the normalized MAE of the
WITM filter with the proposed stopping criterion (34) against
the filter size. The ITM filter employs the stopping criterion in
[35]. Fig. 2(b) demonstrates that the performance of the WITM
filter is significantly better than the weighted median filter and

Fig. 2. Mean absolute error (MAE) normalized by that of the weighted me-
dian filter in suppressing non-identical distributed Gaussian noise against (a)
the number of iterations with fixed filter size , and (b) the filter size .
The average numbers of iterations for the ITM filter are 1.71, 3.44, 5.42, 7.50
for the filter size from 9 to 81, respectively, and those for the WITM filter are
1.69, 2.51, 3.82, 5.40.

all un-weighted filters. The WITM filter achieves a comparable
MAE to the weighted myriad filter. The normalized MAE of
the WITM filter is smaller than that of the weighted myriad
filter when the filter size .
Fig. 3 is generated from Fig. 2 by replacing Gaussian noise

with Laplacian noise. Except for different noise types and
weight sets, other experimental settings of Fig. 3 are the same
as Fig. 2. Fig. 3(a) shows that the MAE of the WITM filter
is smaller than that of the weighted median filter after only 3
iterations. Fig. 3(b) shows the weighted myriad filter achieves a
comparable performance to that of the weighted median filter.
The proposed WITM filter outperforms all other filters against
all filter sizes. We also plot the MAE of the WITM filter with
the fixed number of iterations that minimizes the filter’s MAE
shown as FWITM in Fig. 3(b). The numbers of iterations found
by search in the training are 7, 12, 17 and 22 for the filter size 9,
25, 49 and 81, respectively. It shows that the WITM filter with
the specific designed number of iterations can achieve even
smaller MAE than that using the general stopping criterion
though the WITM filter with the general stopping criterion
already outperforms the weighted median filter that is the ML
location estimator for the Laplacian noise.
We compare the running time of the WITM filter with other

filters under the Window 7 system with the Intel Core i5 CPU
3.2 GHz and RAM 4 GB. All the filters are implemented by
the C programming language. The running time of these filters
in suppressing the Gaussian and Laplacian noise is depicted in
Fig. 4. Although this paper applies iterations to the
weighted myriad filter for better performance, the running time
of the weighted myriad filter with iterations, which was
reported in [40], is also plotted for a fair comparison. It is shown
that theWITM filter is faster than both the weighted median and
weighted myriad filters over all filter sizes in Fig. 4.

B. Frequency Selective WITM Filters

A quadratic swept-frequency chirp signal spanning instanta-
neous angular frequency ranging from 0 to is used to test
the WITM filters in frequency selection. The weights setting for
different filters are analogous to those in [21]. A 31-tap linear
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Fig. 3. Mean absolute error (MAE) normalized by that of the weighted median
filter in suppressing non-identical distributed Laplacian noise against (a) the
number of iterations with fixed filter size , and (b) the filter size . The
average numbers of iterations for the ITM filter are 2.01, 3.98, 6.05, 8.17 for
the filter size from 9 to 81, respectively, and those for the WITM filter are 2.27,
3.99, 5.96, 8.04. The MAE of the mean filter is drastically larger than those of
other filters and hence not plotted. “F WITM” represents the WITM filter with
fixed numbers of iterations of 7, 12, 17, 22 for the filter size from 9 to 81.

Fig. 4. Normalized running time against filter size . The running time is nor-
malized by that of the weighted median filter. The -axis is in log scale. The
weighted myriad filters with and iterations are both plotted.

FIR filter with band-pass is designed by
Matlab’s fir1 function. The weights of the GWM [21], weighted
myriad, GWITM and DWITM filters are set to be the same as
those of the linear FIR filter. The LCWM filter is designed to be
a symmetric LCWM filter with following the algorithm in
[46]. The weights of the LCWITM filter are set to be identical
to those of the LCWM filter.
Fig. 5(a)-top shows the chirp test signal. The output of

the linear FIR filter depicted in Fig. 5(a)-bottom is used as
a reference. The results of the GWM and GWITM filters
are depicted in Fig. 5(b)-top and -bottom, respectively. It
is seen that the GWITM filter has better performance than
the GWM filter in suppressing the low and high frequency
components. Fig. 5(c) shows that the output of the LCWITM
filter (Fig. 5(c)-bottom) has smaller distortion than that of the
LCWM filter (Fig. 5(c)-top). It is seen that both the DWITM

Fig. 5. Frequency selective filter outputs. (a)-top: Chirp test signal, (a)-bottom:
linear FIR filter output. (b)-top: GWM filter output, (b)-bottom: GWITM filter
output. (c)-top: LCWM filter output, (c)-bottom: LCWITM filter output. (d):
DWITM filter output. (e): weighted myriad filter output. The average number
of iterations for the GWITM filter is 3.21, and those for each sub-filter of the
LCWITM and DWITM filters are 1.01 and 2.08, respectively.

filter (Fig. 5(d)) and the weighted myriad filter (Fig. 5(e)) pro-
duce small distortions compared to other nonlinear filters. The
DWITM filter achieves drastically better performance than the
median based filters. It achieves the comparable performance
to the weighted myriad filter.
The chirp signal contaminated by the additive -stable noise

( and ) is shown in Fig. 6(a)-top. The output of
the linear FIR filter is depicted in Fig. 6(a)-bottom. It is seen that
the linear filter cannot remove the long-tailed noise effectively.
The responses of the GWM and GWITM filters are shown in
Fig. 6(b)-top and -bottom, respectively. The performance of the
GWITM filter is better than that of the GWM filter. The param-
eter setting of the LCWM filter makes it contain 3-tap sub-fil-
ters. The small filter size reduces its capability in suppressing
impulse noise, which can be seen from Fig. 6(c)-top. This struc-
ture also makes the LCWITM filter inefficient in suppressing
impulse noise. In the LCWITM filter, the number of iterations
for the 3-tap sub-filter is 1 because the stopping criterion is
met in the first iteration. As the extreme samples are not suffi-
ciently truncated, the performance of the LCWITM filter shown
in Fig. 6(c)-bottom is poorer than that of the LCWM filter shown
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Fig. 6. Frequency selective filter outputs in noise. (a)-top: Chirp test signal in
-stable noise with and , (a)-bottom: linear FIR filter output.
(b)-top: GWM filter output, (b)-bottom: GWITM filter output. (c)-top: LCWM
filter output, (c)-bottom: LCWITM filter output. (d): DWITM filter output. (e):
weighted myriad filter output. The average number of iterations for the GWITM
filter is 3.32, and those for each sub-filter of the LCWITM and DWITM filters
are 1.06 and 2.87, respectively.

in Fig. 6(c)-top. The output of the DWITM filter (Fig. 6(d)) and
that of the weighted myriad filter (Fig. 6(e)) show the best per-
formance among all filters.

C. Design of High-Pass WITM Filters

High-pass filters are tested on a two-tune signal with angular
frequency and shown in Fig. 7(a)-top. Weights of
different filters are set analogously to those in [21]. A 31-tap
linear high-pass filter with a cut-off angular frequency is
designed byMatlab’s fir1 function. The output of the linear filter
is shown in Fig. 7(a)-bottom. Instead of applying the weights of
the linear FIR filter to all other filters, which may achieve the
suboptimal results [21], the fast LMA algorithm [21] is used to

optimize the GWM and GWITM filters with 31 taps for the ap-
plication at hand. For the DWITM filter, as it has two sub-filters,
its update function is modified from that in [21] to (43), shown
at the bottom of the page, where is the de-
sired signal, is the time and is the update step size. The step
size used in all adaptive optimization experiments is .
For the weighted myriad filter, the adaptive weighted myriad
filter algorithm [41] is adopted to train the weights. The LCWM
and LCWITM filters are set the same as those in Section IV.B.
The output of the GWM filter shown in Fig. 7(b)-top indicates
that it still contains low frequency component. Besides, there
are small distortions due to the “selection-type” behavior of the
GWM filter. The performance of the GWITM filter depicted in
Fig. 7(b)-bottom is better than the GWM filter. The LCWITM
filter (Fig. 7(c)-bottom) generates smaller distortions than the
LCWM filter (Fig. 7(c)-top). Fig. 7 shows that the outputs of
the DWITM and weighted myriad filters are the closest to the
linear filter.
The -stable noise with and different values is

added to the two-tune signal. The MAE over filter out-
puts is used as an indicator to evaluate the filters. The exper-
imental results for 4 different values are shown in Table I.
For each value, the smallest MAE among all filters is un-
derlined and in bold font, and the second smallest is in bold
font. While the weighted myriad filter outperforms others for

and , the DWITM filter achieves the best per-
formance for and . For the case of noise free,
it is not a surprise that the linear FIR filter gets the minimum
MAE. The outputs of different filters on the two-tune signal in
stable noise is shown in Fig. 8. This

figure demonstrates that the linear filter cannot deal with the
long tailed noise effectively. The GWM filter output has dis-
tortion though it can remove the long-tailed noise. Similar to
the results in Section IV.B, Fig. 8(c) shows that the LCWM
and LCWITM filters cannot effectively suppress the impulsive
noise. The DWITM filter and the weighted myriad filter achieve
similar results and outperform other filters.
We further test the high-pass filters’ performances for dif-

ferent noise levels. The parameter settings for the filters are the
same as before. -contaminated normal distributed
noise with the distribution [48] is
added on the two tune-signal, where and are Gaussian and
-stable noise, respectively. The standard deviation
of Gaussian noise is set the same as the dispersion param-

eter of the -stable noise, i.e., . Among the linear FIR,
GWM, GWITM, DWITM and weighted myriad filters, the per-
formance of the linear FIR filter turns from the worst to the best
by increasing the signal to noise ratio (SNR). Thus, we choose
the range of SNR so that the linear FIR filter performs from the
worst to the best. Experimental results of the 5 weighted filters,
linear FIR, GWM, GWITM, DWITM and weighted myriad fil-
ters are shown in Fig. 9. As the performances of the LCWM and
LCWITM filters are much poorer than other filters, they are not

(43)
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Fig. 7. Frequency selective filter outputs. (a)-top: two-tune signal, (a)-bottom:
linear FIR filter output. (b)-top: GWM filter output, (b)-bottom: GWITM filter
output. (c)-top: LCWM filter output, (c)-bottom: LCWITM filter output. (d):
DWITM filter output. (e): weighted myriad filter output. The average number
of iterations for the GWITM filter is 1.09, and those for each sub-filter of the
LCWITM and DWITM filters are 1.00 and 2.18, respectively.

shown in this figure. It is seen that the GWITM filter has a better
performance than the GWM filter. The DWITM filter achieves
the best performance among these 4 nonlinear filters.

D. Image Denoising

The original image “Lena” of size 512 512 is corrupted
by -contaminated Gaussian and
-stable noise. Noisy pixels which are out
of the range [0, 255] are truncated. The filter size is 5 5.
For the weighted mean, weighted median and WITM filters,
the fast LMA algorithm [21] is used to train the weights. For
the weighted myriad filter, the algorithm in [38] for training
the weighted myriad smoother is used to design the weights.
Analogous to that in [23], the 60 60 image region of the
bottom left part of the noisy “Lena” is used as the training data.
The whole image is used to test the filters. For the switching
bilateral filter (SBF) [8], [49], as there are several parameters
needed to design carefully, the default setting provided by the
authors is used.
The MAE, MSE and PSNR over 10 runs of the noise contam-

inated images are shown in Table II. It shows that the weighted

Fig. 8. Frequency selective filter outputs in noise. (a)-top: two-tune signal
in -stable noise , (a)-bottom: linear FIR filter output.
(b)-top: GWM filter output, (b)-bottom: GWITM filter output. (c)-top: LCWM
filter output, (c)-bottom: LCWITM filter output. (d): DWITM filter output.
(e): weighted myriad filter output. The average number of iterations for the
GWITM filter is 1.36, and those for each sub-filter of the LCWITM and
DWITM filters are 1.02 and 1.89, respectively.

TABLE I
MAES FOR THE FILTERED TWO-TUNE SIGNAL CONTAMINATED BY

-STABLE NOISE

filters outperform the corresponding un-weighted filters and the
WITM filter gets the best performance for all three indicators:
MAE, MSE and PSNR. The average numbers of iterations for
the ITM and WITM filters are 3.6 and 3.7, respectively. The
weighted myriad filter prefers the most repeated values of the
samples [38], [42], which reduces its ability in preserving the
image details. This adversely affects its performance in image
denoising. The performance of the SBF filter is better than those
of the weighted myriad and weighted mean filters, but poorer
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Fig. 9. Normalized mean absolute error (MAE) against the signal to noise ratio
(SNR) of input signal. The MAE is normalized by that of the weighted median
filter. The MAEs of the LCWM and LCWITM filters are drastically larger than
those of other filters and hence not plotted.

Fig. 10. PSNR of the filtered image against the noise level of input image.

than those of the weighted median and WITM filters in sup-
pressing the mixed Gaussian and -stable noise. This experi-
ment is expanded with different levels of noise with changing

from 1 to 20. Results are shown in Fig. 10. It is seen
that, for all the values in Fig. 10, the WITM filter has the
best performance in this image denosing experiment. Besides
“Lena”, other standard images “Peppers” and “Baboon” are also
applied in the test. Their results are omitted as the relative per-
formances of the filters are very similar to those of “Lena” re-
ported in Table II and Fig. 10.
We compare the running time of the WITM filter with other

nonlinear filters under the Window 7 system with the Intel Core
i5 CPU 3.2 GHz and RAM 4 GB. All the filters are imple-
mented by the C programming language. The running time of
these filters in filtering the “Lena” image is given in Table II. It
is shown that both the ITM andWITM filters are, though signif-
icantly slower than the mean and weighted mean filters, faster
than other nonlinear filters in Table II.

TABLE II
MAES, MSES, PSNRS AND RUNNING TIME OF THE NOISE CONTAMINATED
“LENA” IMAGE. FOR THE MYRIAD AND WEIGHTED MYRIAD FILTERS, THE

RUNNING TIME WITH ITERATIONS IS SHOWN IN BRACKETS

V. CONCLUSION

A rich class of filters named weighted ITM (WITM) filters
are proposed in this paper. Different from the weighted me-
dian filters which rely on the time-consuming data sorting, the
WITM filters employ an iteratively arithmetic computing al-
gorithm to approximate the weighted median. By iteratively
truncating the extreme samples, the output of the WITM filter
moves from the weighted mean towards the weighted median.
The proposed stopping criterion enables the WITM filters being
terminated within a few iterations in all experiments of this
paper. The WITM filters outperform both the weighted mean
and weighted median filters in many de-noising applications.
By employing the structures of the GWM and LCWM filters,
the corresponding GWITM and LCWITM filters can be de-
signed as band-pass and high-pass filters. Due to the limitation
of the GWM filter structure, the GWITM filter cannot suppress
the DC component effectively. The LCWM filter structure re-
duces its capability in suppressing impulsive noise. This struc-
ture also makes the LCWITM filter has poorer performance in
suppressing impulsive noise. In order to alleviate these prob-
lems, the DWITM filter is proposed by utilizing the difference
of two low-pass WITM filters to design band- and high-pass
filters. The superiority of the proposed filters is demonstrated
by the comprehensive simulation results. In the future, further
efforts will be made to design the proper weights and the stop-
ping criterion for particular data-type. In addition, WITM filters
in multi-dimensions are also desirable.
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