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On Orientation and Anisotropy Estimation
for Online Fingerprint Authentication

Xudong Jiang, Member, IEEE

Abstract—Local dominant orientation estimation is one of the
most important operations in almost all automatic fingerprint au-
thentication systems. Robust orientation and anisotropy estimation
improves the system’s reliability in handling low-quality finger-
prints, which is crucial for the system’s massive application such
as securing multimedia. This paper analyzes the robustness of the
orientation and anisotropy estimation methods and the effect of
the modulus normalization on the estimation performance. A two-
stage averaging framework with block-wise modulus handling is
introduced to inherit the merits of the both linear and normalized
averaging methods. We further propose to set the modulus of an
orientation vector to be its anisotropy estimate instead of unity so
that the orientation inconsistency of gradients is included in the
second stage of averaging. These two measures improve the ro-
bustness of the fingerprint local dominant orientation estimation
and lead to an anisotropy estimate that reflects the characteristics
of fingerprint more effectively. In addition, the proposed approach
is computationally efficient for online fingerprint authentication.
Extensive experiments using both synthetic images and real finger-
prints verify the feasibility of the proposed approach and demon-
strate its robustness to noise and low-quality fingerprints.

Index Terms—Anisotropy estimation, biometrics, dominant ori-
entation estimation, feature extraction, fingerprint authentication,
gradient, image analysis, noise robustness, orientation vector, pat-
tern recognition.

I. INTRODUCTION

B IOMETRIC personal authentication that exploits users’
unique physiological characteristics provides a secure so-

lution to protect intellectual property right such as multimedia
contents [1]. Fingerprint is the most widely used biometric fea-
ture because of the well-known distinctiveness (individuality)
and persistence properties of fingerprints over time [2]. To apply
fingerprint authentication techniques for the protection of media
contents that are to be distributed to massive users, we need to
increase the applicability of the authentication system. Because
a human’s finger is exposed to the outside environment of daily
life, a fingerprint sensor may not be able to cope with some
extreme skin conditions such as extremely dry and moist skin;
therefore, a fingerprint authentication system will unavoidably
encounter a certain amount of low-quality fingerprints. A large
number of applications, such as securing multimedia, require
the system to be robust to low-quality fingerprints.
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As fingerprint is essentially an oriented texture; its most im-
portant intrinsic characteristics are local dominant orientation
and anisotropy. They are of great importance in contextual filter
design [3], [4] for the optimal image enhancement and feature
extraction [5]. Furthermore, local dominant orientation itself is
an important feature for fingerprint classification [6], [7], align-
ment, and matching [8]. Anisotropy is another important mea-
surement for multiscale fingerprint processing [9], fingerprint
segmentation [10], [11], and image quality assessment [12]. It
is also often used for automatic finger detection and invalid fin-
gerprint rejection in the practical online systems. In recent years,
a large number of fingerprint authentication systems have been
developed. Although different techniques were employed in dif-
ferent systems, most techniques heavily rely on the orientation
and anisotropy estimates (from fingerprint acquisition, image
enhancement, parameter estimation and feature extraction to
fingerprint alignment, classification, and matching). As a result,
robust orientation and anisotropy estimation plays a very im-
portant key role in the reliability improvement of an automatic
fingerprint authentication system.

There are quite a lot of approaches to estimate the local
dominant orientations of an image. A well-developed and most
widely used approach is based on averaging squared gradients
or principal component analysis of the gradient covariance ma-
trix. It was introduced in [13] and [14] and was widely adopted
by a large number of researchers for edge, corner, and line
detection [15]–[17], texture analysis [18], [19], and optical flow
[20]. Most automatic fingerprint recognition systems employ
this gradient-based approach [3], [5], [9], [10], [21]–[24]. This
prevalent estimation method consists of two components: gra-
dient computation and squared-gradient averaging. While the
gradient captures the orientation information of each individual
pixel, the averaging process smooths out noise contained in the
gradient and, therefore, extracts the dominant orientation in
the neighborhood. This method also introduces an estimate of
the image local anisotropy or coherence, which indicates how
well the gradients in the neighborhood are pointing in the same
direction.

Since this approach averages the squared gradient vectors,
the stronger gradients have higher votes in the average orien-
tation than the weaker ones. It was argued that the modulus of
the gradient vector should be normalized since we are purely
interested in the orientation, and the modulus only reflects the
image contrast. Hence, gradient vectors were normalized in the
orientation diffusion proposed in [25]. Some approaches for reg-
ularizing or smoothing the fingerprint orientation field [3], [24]
equivalently average block orientation vectors with normalized
moduli. Generally speaking, the linear average is optimal only
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to smooth out Gaussian additive noise. A fingerprint is often cor-
rupted by non-Gaussian exclusive or impulsive-like noise. Some
nonlinear methods are expected to perform better noise attenu-
ation. Modulus normalization is a simple nonlinear method and
is therefore suitable for the online system. However, its effect
on noise attenuation needs to be thoroughly studied. Intuitively,
modulus normalization can either suppress or amplify noise, de-
pending on the type and level of the oriented pattern and noise. It
is therefore of interest to investigate how to handle the modulus
of an orientation vector for effective noise attenuation. Another
interesting task is to explore the effectiveness of the anisotropy
estimate in representing the fingerprint characteristics.

In this paper, we analyze the robustness of the gradient-based
orientation and anisotropy estimation methods, as well as the
effect of the modulus normalization of gradients on estimation
performance. Based on the analysis, a two-stage averaging
framework with block-wise modulus handling is introduced to
inherit the merits of the both linear and normalized averaging
methods in noise attenuation. Furthermore, we propose to
set the modulus of an orientation vector to be its anisotropy
estimate instead of unity so that the orientation inconsistency
of the gradients is included in the second stage of averaging.
These two measures enhance the noise robustness of the fin-
gerprint local dominant orientation estimation. In addition, the
proposed approach leads to an improved anisotropy estimate
that is a useful feature for fingerprint segmentation and quality
assessment. Extensive experiments using both synthetic images
and real fingerprints verify the feasibility of the proposed
approach and demonstrate its superiority to other conventional
gradient-based orientation estimation approaches.

II. GRADIENT-BASED ORIENTATION ESTIMATION

A gradient-based method to estimate the local dominant
orientations of an image was introduced in [13] and [14] and
widely adopted by a large number of researchers for edge,
corner, and line detection [16], [17], [26], texture analysis [18],
[19], optical flow [20], and fingerprint recognition [3], [5], [9],
[10], [21]–[24]. This method can be elegantly described by the
principal component analysis (PCA) of the gradient covariance
matrix.

A. Orientation and Anisotropy Estimation by PCA

Let be a bandlimited image that is differ-
entiable everywhere. The gradient image is given by

, where and
are the - and -differentials of image , respectively.
The gradient covariance matrix of a region is computed by

(1)

where is the number of gradients in the estimation region .
If the eigenvectors and of the gradient covariance ma-

trix have their corresponding eigenvalues and with
, the dominant orientation of the image in the local es-

timation region is the orientation of the eigenvector , and
the anisotropy estimate is given by

(2)

B. Averaging Under Polar Coordinate System

The above principal component analysis (PCA) of the
gradient covariance matrix provides exactly the same results as
the squared-gradient averaging method for the local dominant
orientation and anisotropy estimation [23]. To facilitate the
discussion of its noise robustness and the effect of the gradient
modulus normalization on the estimation performance, we will
express the squared-gradient averaging method under polar
coordinate system. This also helps us to conduct our proposed
approach, which improves noise robustness. For the symbolic
simplicity, we replace the pixel index with .

Let us represent the gradient by a complex variable as
. The squared gradient can be, under

the polar coordinate system, expressed as

(3)

with the modulus and angle calculated by

(4)

(5)

The average squared-gradient in the region can be ex-
pressed as

(6)

The modulus and angle of the average squared-gradient vector
can be computed as

(7)

(8)

where , , and are computed by (1).
The estimated local dominant orientation of the region is

perpendicular to , which is the same as the angle of the
eigenvector of , which corresponds to the smaller eigenvalue.
It is not difficult to obtain the anisotropy estimate as

(9)

We see from (9) that the anisotropy estimate is measured
by the modulus of the average squared-gradient divided by the
average modulus of the squared gradients. If all gradients are
pointing in exactly the same direction, reaches 1. The uni-
form distribution of gradients in all orientations or in orthogonal
orientations results in a value of 0.

From (6), both the modulus and the angle of the squared gra-
dient are incorporated in the averaging that will affect the esti-
mation result. The stronger gradients have higher votes in the
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averaging process than the weaker ones. The argument is then
if we should normalize the gradient modulus before averaging
(6). Although the anisotropy estimate (9) is normalized to
by the average modulus of gradients in the estimation region,
the stronger gradients within the estimation region still have
higher votes in the anisotropy estimate than the weaker ones.
Therefore, it is of great interest to explore the characteristics of
the orientation and anisotropy estimates with and without mod-
ulus normalization.

III. ROBUST ESTIMATION BY MODULUS HANDLING

A. Noise-Corrupted Gradient Image Modeling

We model the noise corrupted image as

with prob.
with prob.

(10)

where is the oriented pattern (signal), and and are
additive and exclusive (or called impulsive) noise, respectively.
The nonconstant variable reflects the image contrast incon-
sistency. Fig. 1 shows a portion of a real fingerprint. If the signal
pattern is modeled by the white and black lines in Fig. 1, there
is noise added to most pixels of ridges and noise (the
ridge break) replacing the signal pattern. The varying contrast

is also shown in Fig. 1.
From (10), the gradient image can be expressed as

with prob.
with prob. .

(11)

We ignore the item of the derivative of in (11) since it is
usually very small due to the slow change of .

In most practical fingerprint images, not every pixel is added
by noise , or the additive noise of some pixels are so small
that it can be ignored. The fingerprint signal pattern usu-
ally produces strong gradients on the edges between ridges and
valleys and almost zero gradients within them, especially for im-
ages obtained by solid-state (silicon) sensors, where can be
modeled by the white and black lines with corresponding con-
stant gray levels. Gradients within ridges and valleys are there-
fore contributed mainly by noise, and noise usually gives
an ignorable contribution to gradients on the edges between the
ridges and valleys. For a signal pattern that has sinusoidal
shape, the modulus of its gradient varies periodically between
the maximum and zero. Gradients are thus usually contributed
by the signal or the exclusive noise near the ridge-valley
edges and by noise and within ridges and valleys.
Therefore, we can separate the gradients of additive noise
from the the signal gradients for most practical fingerprint im-
ages. The squared gradient image can be modeled as

with prob.
with prob.
with prob.

(12)

where , and , , and are the squared
gradient amplitudes of , , and , respectively. is
the probability of the significant gradient of and . If

is a pattern of white and black lines, is the probability of
the nonzero gradient of .

Fig. 1. Portion of real fingerprint showing additive noise ����, exclusive noise
����, and the nonconstant contrast ����.

B. Problems of Linear and Normalized Averages

To explore problems of linearly averaging the squared gradi-
ents and study the pros and cons of the gradient modulus nor-
malization, we change the squared gradient average (6) into a
more general weighted average and partition the sum into three
items according to (12) as

(13)

where . The orientation estimate is

(14)

and the anisotropy estimate is given by

(15)

From (13)–(15), the orientation and anisotropy estimates with
the linear average denoted by and are obtained by

with , and those with the gradient-normal-
ized average denoted by and are obtained by
with , where is the smallest positive
floating-point number in the computer to handle the condi-
tion. Generally speaking, normalization of the gradient modulus
suppresses the larger gradients and amplifies the smaller ones.

For the oriented texture such as the fingerprint, the important
information is contained in the orientation, rather than in the
brightness and contrast values. More generally, the fingerprint
image consists of ridge- and valley-curves rather than straight
lines in the estimation region. This results in not being
a constant in the estimation region . The desired dominant
orientation estimate should capture the orientation of the curve
at the center of the region or some kind of mean of the
“signal” orientation distribution (note: not the mean of the
orientation vectors). The varying does not affect the
orientation estimation much as varies periodically, and
the estimation region usually captures four to six periods
of (two to three ridge/valley periods). However, the
nonconstant value of in (13) may result in an estimate
that deviates from the desired orientation. In this case, modulus
normalization will produce a more accurate or more reasonable
orientation estimate . Fig. 2(a) shows a noise-free oriented
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Fig. 2. Curvy oriented patterns with (a) constant and (b) varying contrasts.

Fig. 3. Two sample-oriented patterns with 10% of the pixels corrupted by
noise with gray level (a) half and (b) double of that of the “signal” pattern.

pattern of size 27 27 pixels with , , and
. The signal pattern is a portion of a sinusoidal circle

with at the
image center point. The desired orientation is 0 . Indeed, the
orientation estimation with (13) and (14) produces
and . Note that in all tests of computing the orientation
estimate in this paper, we use a 3 3 Sobel operator to produce
the gradient and set . If we add a varying contrast

in the estimation region, as shown
in Fig. 2(b), the orientation estimation with (13) and (14) leads
to and . This example clearly
shows the benefit of the modulus normalization in solving the
contrast inconsistency problem.

It is well known that the sum of two vectors points to an ori-
entation closer to the vector with a larger modulus than the one
with a smaller modulus. Based on the noise gradient model (12)
and the squared gradient average model (13), if noise gradients
are weaker than those of the signal, the normalized average am-
plifies noise gradients and, therefore, results in a larger estima-
tion error than the linear average. However, the orientation es-
timation will benefit from the normalization if noise gradients
are stronger than those of the signal. Fig. 3(a) and (b) show two
samples of oriented image of size 252 252 with 10% of the
pixels corrupted by exclusive oriented noise , ,

, and . The signal pattern consists of alter-
nate circle ridges and valleys of width 6 with respect to the con-
stant gray levels. Noise is simulated by random oriented lines
that are 1 pixel in width and 5 pixels in length. The image is
divided into 100 nonoverlapping local estimation regions. For
the noise-free pattern , and achieve the average
absolute errors of 1.0714 and 2.1871 , respectively. We see
that the linear average results in smaller estimation bias than
the normalized average. We generate 20 noisy image samples

with independent random noise and estimate their

Fig. 4. Two 27� 27 image blocks where six noise pixels with a gray value of
0 are injected in (a) a noise-free oriented pattern with gray level 223/255 and
(b) a noise pattern with gray level uniformly distributed in ���� ����.

local dominant orientations of all estimation regions (2000 es-
timates altogether). By setting the noise gray level, half of the
signals, as shown in the sample image Fig. 3(a), , and ,
result in the average absolute errors of 1.4023 and 2.2521 , re-
spectively. However, by setting the noise gray level to twice the
signal’s, as shown in the sample image Fig. 3(b), they increase to
3.3551 and 2.7686 , respectively. This example clearly shows
the pros and cons of the modulus normalization.

To study the effect of modulus normalization on the
anisotropy estimate, we first see the anisotropy estimation
results of the two examples in Fig. 2. The anisotropy estimates
computed by (13) and (15) are and
for Fig. 2(a). No remarkable difference is seen. A smaller
anisotropy estimate is expected to reflect the lower quality of
Fig. 2(a) than Fig. (b). This is true in the case of normalization
( decreases to 0.6451) but not true in the case of linear av-
erage. ( increases to 0.9139.) Indeed, may have a serious
problem in some cases as the stronger gradients have higher
votes in the average. Fig. 4(a) shows an oriented pattern of size

pixels, where only six pixels (less than 1%) are
corrupted by strong noise. If these six pixels are not corrupted,
we have . If the six corrupted pixels have a gray
level of zero and the ridge and valley of the oriented pattern
have the gray levels of 223 and 255, respectively, as shown in
Fig. 4(a), sharply decreases to 0.1117. On the other hand,
a random noise pattern with the pixel gray level uniformly
distributed between 235 and 255 plus six impulsive pixels of
gray level of zero, as shown in Fig. 4(b), achieves a very high
anisotropy estimate . This shows a serious defect
of in the anisotropy measurement of a fingerprint where
the information we want to capture should be represented by
the majority of pixels rather than that represented by a few
pixels with strong contrast. Gradient normalization leads to a
much better anisotropy estimate with for
Fig. 4(a) and (b).

These two examples show that the anisotropy estimate with
a normalized average reflects the characteristics of the oriented
texture much better than that of linear average. However, this
is not quite true for the oriented patterns in Fig. 3. The average
values of and over the 2000 image blocks are 0.7692
and 0.5155 for Fig. 3(a) and 0.5035 and 0.4596 for Fig. 3(b),
respectively. Both Fig. 3(a) and (b) have the same signal and
noise patterns, but the noise level of Fig. 3(b) is four times higher
than that of Fig. 3(a). The anisotropy estimate reflects this
difference of image quality with the anisotropy difference of
0.2657 much better than with the anisotropy difference of
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Fig. 5. Partial real fingerprint, the estimation region� (the largest square), and
the 25 blocks � (the smallest squares).

only 0.0559. Note that both and have the same maximum
and minimum values of 1 and 0.

C. Proposed Two-Stage Estimation Framework

We studied the problems and defects of the both linear and
gradient-normalized averaging methods in the local dominant
orientation and anisotropy estimation. To find the solution of
these problems, we first explore an estimation region of a typ-
ical real fingerprint image, as shown in Fig. 5. We partition the
estimation region into small blocks , where each block is
supposed to capture at least a half period of fingerprint ridge
and valley structure ( is supposed to cover at least a period
of ), as shown in Fig. 5. The size of can be determined
by a ridge density estimation algorithm such as [27] or prede-
termined based on the prevalent fingerprint ridge-valley width.

From Fig. 5, we can see some useful phenomena:

1) Each small block contains a signal pattern, and weak
noise is densely distributed in every small block, i.e.,
a large number of pixels in every small block contains
weak noise.

2) Contrast inconsistency can be ignored within the
small blocks, but it can have significantly different values
in different blocks.

3) Strong oriented noise such as stroke noise usually sparsely
occurs only in a small number of blocks.

Phenomena 1) and 2) teach us that we should linearly av-
erage the squared gradients within each block to smooth
weak noise more effectively. The linear average on produces
the dominant orientation and anisotropy estimates of block .
Based on phenomena 2) and 3), we should normalize moduli
of the dominant orientation vectors of blocks to suppress
the possible strong noise and solve the contrast inconsistency
problem before further averaging them over the set . Set

represents the same geometric window as , whereas its ele-
ments are not the pixel indexes but the block indexes . There-
fore, an improved averaging framework can be formulated as

(16)

From (7), the modulus normalization of the orientation vector
of block is implemented by setting the weights in (16) as

(17)

The resulting orientation and anisotropy estimates by (16) and
(17) are denoted by and , respectively. This average
framework consists of two stages: The first one linearly aver-
ages gradients within each small block to produce block-domi-
nant orientation vectors , and the second one averages
the normalized orientation vectors throughout all blocks to
produce the final dominant orientation vector of the estimation
region . Compared with the linear and gradient-normalized
averages, this block-wise normalization framework more effec-
tively smooths out mixed weak Gaussian-like and strong impul-
sive-like noise and solves the contrast inconsistency problem.
Keeping in mind that a heavily corrupted image block could be
due to the strong (in amplitude) and/or dense (in occurrence)
noise in that block, this block-wise normalization can also sup-
press dense noise in some blocks, whereas gradient normaliza-
tion can only suppress strong noise of some gradients.

D. Proposed Modulus Handling of the Block Orientation
Vector

The modulus normalization of the block orientation vector
brings one problem. It ignores the orientation inconsistency of
gradients within the block by setting the vector moduli of
all blocks to unity in (16) for the second stage of the average. A
nearly isotropic block caused by heavy noise, regardless of its
contrast, produces an orientation vector with a very small mod-
ulus. This very small modulus will be greatly amplified by the
normalization, which could lead to a larger error of the orienta-
tion estimate than and . In addition, the anisotropy
estimate reflects only the interblock orientation inconsis-
tency, ignoring the intrablock ones.

Recalling that we average vectors rather than scalars, noise
in a block may not only increase the modulus of the orienta-
tion vector of that block but also decrease it, depending on the
noise levels and orientations relative to those of the signal pat-
tern. In the second stage of the average, smaller caused by
lower contrast or weak or sparse noise should be amplified, but
that caused by the inconsistency of gradient orientations within

should not; for larger caused by high contrast, strong
or dense noise should be suppressed, but that caused by the
good consistency of gradient orientations within should not.
Therefore, instead of normalizing the modulus, we set it to be
the block’s anisotropy estimate for the second stage of av-
erage as

(18)

where is the number of blocks in the estimation region .
From (6) and (9), we have

(19)

and

(20)
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Fig. 6. Proposed algorithm for estimating the orientation and anisotropy fields
of a fingerprint.

where is the number of gradients in the block . We see that
in the second stage of the average, the modulus of an orientation
vector is set to be 1 only if all gradients in that block are pointing
in exactly the same direction. Orientation inconsistency of the
gradients in a block decreases the vector modulus of that block
in the second stage of the average. The orientation vector of a
block will vanish from the second stage of the average if gra-
dients in that block are distributed evenly in all orientations or
equally in orthogonal orientations. In addition, the interblock
image contrast change will not affect the orientation estimation.

Substituting (19) and (20) into (18) and comparing the result
with (16), setting the modulus of an orientation vector to be its
anisotropy estimate for the second stage of the average can
be realized by setting the weights in the second stage of the
average (16) as

(21)

Substituting (1), (3), and (21) into (16) and omitting and ,
which have no effect on the estimation, the proposed orientation
and anisotropy estimation algorithm for a fingerprint image is
summarized in Fig. 6.

The proposed algorithm in Fig. 6 is a single-step process with
a predetermined size of the estimation region (25 25 in our
experiments). The estimation regions can overlap so that we can
have a denser orientation field. As the grid of size 5 5 provides
sufficient resolution for fingerprint recognition (16 16 is com-
monly used in the fingerprint recognition system), we suggest
nonoverlapping blocks . In the high curvature area near the
core and delta points, the estimation region size of 25 25 may
be too large to catch the orientation of the region center. In this
case, we suggest using the size 3 3 blocks for the second stage
of the average. The effective size of the estimation region is re-
duced to 15 15. On the other hand, a larger estimation region
may be needed at the heavily noised fingerprint area. In this case,
we suggest applying the proposed algorithm iteratively, which
is similar to the orientation regularization [8], [10] and diffu-
sion [25] frameworks. The key issue is to determine the number
of the iteration or the size of the estimation region adaptively,
which is, however, not a well-solved problem. The commonly

Fig. 7. Average absolute errors of orientation estimation against the noise
level � , where � , � , � , and � are errors of � , � , � , and � ,
respectively. (a) 10% and (b) 50% pixels are corrupted by additive noise, and
(c) an exclusive noise stroke crosses each estimation region �.

used measurements to determine the number of the iteration or
the size of the estimation region cannot differentiate the por-
tion caused by noise from the portion caused by curvature: One
indicates a larger estimation region, and the other contrarily in-
dicates a smaller one. Therefore, we do not study further the
effects of the iterative application of the proposed algorithm be-
fore solving this problem.

The gradient modulus normalization needs additions and
divisions. The introduced block-wise modulus normalization
(17) needs additions, multiplications, and square-
root operations and divisions. The proposed approach of set-
ting the orientation vector modulus to be its anisotropy estimate,
however, needs only additions and divisions. The computa-
tional consumption of the proposed estimates and
is, although slightly higher than that of and , lower than
that of and as well as and . The computational
efficiency of the proposed estimates and is advanta-
geous to the online fingerprint authentication systems.
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Fig. 8. Sample test images with � � � used for Fig. 7(a)–(c), respectively.

For the oriented patterns in Fig. 2(a) and (b), the proposed
method results in and , respec-
tively. The estimation error for Fig. 2(b) is, although slightly
larger than that of (0.7690 ), significantly smaller than that
of (13.4574 ). The anisotropy estimate for Fig. 2(b)
(0.8164) is smaller than that (0.8521) for Fig. 2(a), compared
with values of 0.9139/0.8501 for Fig. 2(a) and (b). For the
noise-free pattern in Fig. 3, the proposed has a bias of
0.9646 , compared with 1.0714 and 2.1871 of and ,
respectively. For images in Fig. 3(a), achieves the average
absolute error of 1.3085 , compared with 1.4023 and 2.2521
of and , respectively. For images in Fig. 3(b), the error of

is 2.4980 , compared with 3.3551 and 2.7686 of and
, respectively. The anisotropy estimates for Fig. 3(a)

and (b) are 0.7590 and 0.5764, respectively, compared with the
corresponding values of 0.5155 and 0.4596. For Fig. 4(a)
and (b), is 0.8526 and 0.1036, respectively, compared with
the corresponding values of 0.1117 and 0.8643. In addition,
we noticed that the introduced has higher errors than the
proposed with 1.3897 and 3.2200 for Fig. 3(a) and (b),
respectively.

It is worth noting that the proposed orientation estimation
achieves smaller error than the both and for both

Fig. 9. Average anisotropy estimates against the noise level � of images used
for Fig. 7(a)–(c), respectively, where � , � , � , and � in the legend are
short forms of � , � , � , and � , respectively.

Fig. 3(a) and (b), as well as the noise-free pattern in Fig. 3.
This is not a surprise because the proposed framework does
not amplify weak noise (in the first stage of average) and sup-
presses not only the strong (in amplitude) noise but the dense
(in occurrence) noise (in the second stage of average) as well.
Furthermore, this new method does not lose the orientation
inconsistency of gradients within the block (setting the mod-
ulus to be the anisotropy estimate instead of unity). It should
be emphasized that the proposed orientation estimate is
not a simple compromise between the estimates and .
Extensive experiments will demonstrate that further.

IV. EXPERIMENTAL EVALUATION AND COMPARISON

In this section, we employ both synthetic images and real fin-
gerprints to test the accuracy and noise robustness of the con-
cerned orientation estimation approaches. In all experiments,
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Fig. 10. Average absolute errors of orientation estimation against the noise
occurrence probability, where� ,� ,� , and� are errors of� ,� ,� ,
and � , respectively. (a) � � �. (b) � � �.

the sizes of the estimation region and block are 25 25
and 5 5, respectively.

A. Testing With Synthetic Images

We synthesize the noise-oriented pattern as

with probability
with probability
with probability

(26)

with and . is additive noise and
exclusive noise. We simulate the additive oriented noise by
short lines (5 pixels in length and 1 pixel in width) with random
orientations. For oriented exclusive noise , we use lines of
three pixels in width crossing over at least one estimation region

with random orientations. This stroke noise appears often in
real fingerprints. Alternate circle ridges and valleys of width 6
with gray levels of and 1, respectively, are used to construct
the oriented pattern. The constructed oriented pattern has size
of 252 252 so that for each image, 100 local dominant orien-
tations are estimated with nonoverlapping estimation regions.
The average absolute estimation error is computed over all es-
timation regions of 20 images with independent noise. We test
orientation estimates , , , and , as well as the
anisotropy estimates , , , and .

By setting , images are only corrupted by additive noise
. Noise gray level is evenly distributed in . Fig. 7(a)

and (b) illustrates the average absolute errors of orientation esti-
mation against with and , respectively. They
show that except for the case of , the proposed

Fig. 11. Sample test images used for Fig. 10(a) with � � ��� and Fig. 10(b)
with � � ���, respectively.

orientation estimate outperforms the both conventional es-
timates and , where significantly outperforms
for lower noise level and significant outperforms for higher
noise level. We also see that the introduced has about the
same error as that of for a low noise level, but its error in-
creases as sharply as that of with the increase of . Fig. 8(a)
and (b) shows two sample images with : one for
and the other for .

By setting and , images are only corrupted by
exclusive noise . The noise gray level is evenly distributed
in . Each estimation region has one and only one noise
stroke crossing the region. The noise occurrence probability is
0.12. A sample image with is shown in Fig. 8(c). The
average absolute errors of the orientation estimation against
are illustrated in Fig. 7(c). We see that the proposed sig-
nificantly outperforms all other estimates, except for ,
where is slightly better than . The introduced per-
forms better than for all values and better than for

. Fig. 7 also clearly shows the pros and cons of gradient
normalization versus linear average.

Fig. 9(a)–(c) illustrates the average anisotropy estimates
against with noise conditions that are the same as those
in Fig. 7(a)–(c), respectively. While all anisotropy estimates
monotonously decrease with the increase of the noise level,



4046 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

Fig. 12. Average discriminant values against the noise occurrence probability,
where � , � , � , and � in the legend are short forms of � , � , � ,
and � , respectively. (a) � � �. (b) � � �.

is always lower, and is always higher than and
. From Fig. 9, and show a higher sensitivity to

noise levels than and . Although performs well for
the constant contrast of the "signal" pattern, its problems were
shown in Figs. 2 and 4 in the previous section.

Another test image of size 352 352 consists of an oriented
pattern in Fig. 8 of size 252 252 as foreground, located
in the center of the image and the background with a con-
stant gray level of 1. Noise stroke with length of 101
is injected into the image. Then, noise is added to the
image. Gray levels of both kinds of noise are evenly distributed
in . The stroke occurrence probability is fixed as

. Fig. 10(a) and (b) illustrates the average absolute errors
of the foreground orientation estimates against with
and , respectively. Fig. 10(a) and (b) demonstrates that
the proposed orientation estimation approach significantly out-
performs other approaches. Fig. 11(a) and (b) shows two sample
images: one for and the other for

.
One of the important applications of the anisotropy estimate

is the segmentation of the image into the oriented pattern and the
background. The capability of discriminating between oriented
and noise patterns is therefore a good indicator of how good an
anisotropy estimate is. We define the discriminant as

(27)

Fig. 13. Two real fingerprints and orientation fields, where the left and right
parts show � and � , respectively.

Fig. 14. Two real fingerprints and orientation estimates where visible
difference can be found. Unmarked lines and lines marked by circles and dots
represent � , � , and � , respectively.

where and are the mean and variance operators, re-
spectively. The employed estimation method is indicated by .

if has more pixels of the oriented pattern than those
of the background. Otherwise, . Fig. 12(a) and (b) il-
lustrates the average discriminants against of images used for
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Fig. 15. ROC curves of fingerprint verification algorithms using different orientation and anisotropy estimates for databases (a) Db1_a, (b) Db2_a, (c) Db3_a, and
(d) ��� � . Equal errors FMR � ����, 0.001, and the curve endings are marked by �, , and �, respectively, for the linear, gradient normalizing, and proposed
methods.

Fig. 10(a) and (b), respectively. They demonstrate that the pro-
posed anisotropy estimate is much better in discriminating
the oriented pattern from the noise pattern than the conventional
estimates and .

B. Testing With Sample Real Fingerprints

It is difficult to measure the estimation accuracy quantita-
tively for real fingerprints. We plot the orientation estimates by
oriented lines and superimpose them on the real fingerprint. In
this way, some large orientation estimation errors can be visible.
Fig. 13 shows good (top) and bad (bottom) fingerprints and the
orientation estimates (left) and (right).

For the good fingerprint, is better than in the high
curvature area above the core point. The "signal" orientation
in the estimation region is not constant in the high curvature
area. The desired orientation estimate in this case is usually the
mean of the gradient orientations rather than the mean of the
gradient vectors. Therefore, the proposed method usually per-
forms better than the linear average method in the high curva-
ture area. If the estimation concern is only to catch the mean of
the orientation distribution, the gradient normalization should
be slightly better than the proposed method. This was shown by
the orientation estimates of , ,
and for Fig. 2(b). For the bad fingerprint, we

can see a large number of orientation estimates visibly
better than . There are a small number of blocks where
is inferior to . This is because noise, although small in am-
plitude, densely occurs, whereas the ridge-valley structure, al-
though strong in amplitude, sparsely appears so that noise is not
well suppressed by the linear smoothing step of the proposed
method in the small blocks . The problem can be solved by
increasing the size of . Fig. 14 shows another two finger-
prints, where (unmarked lines) and (lines marked by
circles) are plotted if and only if , and

and (lines marked by dots) are plotted if and only if
. Fig. 14 demonstrates that the proposed

orientation estimate is visibly more robust to low-quality
fingerprints than the two conventional estimates and .

C. Verification Testing With Large Real Fingerprint Database

The local dominant orientation is a crucial parameter for fin-
gerprint verification algorithms. The verification performance
on the large database will objectively reflect the robustness of
the orientation estimation. The verification algorithm [4], [28]
is used in the testing, which consists of two parts, i.e., minutia
extraction and minutia matching. Four fingerprint databases
[29], [30] containing 3200 real fingerprints are used in the
experiment, two of which (FVC2002 Db1_a and Db2_a) were
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TABLE I
EQUAL ERRORS OF VARIOUS METHODS AND DATABASES/AVERAGE

ENROLL TIME IN MILLISECONDS FOR ��� �

captured by optical sensors, and the other two (FVC2002 Db3_a
and FVC2000 Db2_a, denoted by ), were captured by
capacitive sensors. The performance evaluation procedure
of FVC2002 is adopted. However, unlike FVC2002, which
allows a database-specific configuration file, the algorithm is
not optimized for specific database. Orientation is estimated
every 5 pixels along - and -coordinates with a fixed window
size of 25 25. We integrate the estimates , , , ,
and , into the algorithm and test the respective
fingerprint verification performances with the four databases.
The algorithm was executed under Windows XP Professional
O.S. on a HP xw4100 (Intel Pentium 4 at 3.0 GHz) PC.

Fig. 15 shows the receiver operating curves, and Table I
records the equal errors for the various methods and databases
and the average enroll time for Db1_a. The average matching
time of all methods is 0.62 ms for Db1_a. The enroll and
verification use the same minutia extraction algorithm so that
the verification time is the enroll time plus matching time. We
see that the proposed method increases the verification time
by only 0.6%, whereas the gradient normalization is increased
by 7.8% from that with the linear average (31.92 ms). There is
therefore no problem in applying the proposed method in an
online fast fingerprint verification system. Fig. 15 and Table I
demonstrate that the proposed orientation estimation method
consistently improves the fingerprint verification accuracy for
all operating points, although the improvement at some points
is small. As the employed verification algorithm is a very fast
algorithm that only uses minutiae in the matching, the verifica-
tion error caused by the extremely small number of minutiae
in the common area of the template and input fingerprints,
which is the major part of the verification error for the four
FVC databases based on our observation, cannot be reduced
by the proposed orientation estimation method. In addition,
some problems caused by heavy noise in a large area cannot
be well solved by the proposed method with a predetermined
smoothing window size. Some recursive orientation regulariza-
tion frameworks with adaptively enlarged window size [8], [10]
can be incorporated to solve such problems. However, using an
anisotropy estimate to determine the window size may worsen
the orientation estimation in the high curvature area, which,
similar to the noisy area, also reduces the anisotropy. Therefore,
we do not implement the recursive orientation regularization
approach in the fingerprint verification algorithm before finding
an effective way to determine the adaptive smoothing window
size.

V. CONCLUSION

Fingerprint local orientation estimation is a crucial step for
the whole recognition system. This paper analyzes the noise ro-
bustness of the gradient-based orientation estimation methods

that are widely used in the fingerprint authentication system.
The characteristics of the corresponding anisotropy estimates
are studied as well. It shows that the gradient modulus normal-
ization has both advantages and disadvantages. Its pros and cons
in the orientation and anisotropy estimation are presented. A
two-stage averaging framework with block-wise modulus han-
dling of the orientation vector is introduced to inherit the merits
of the both linear and normalized vector averaging. We further
propose to set the modulus of an orientation vector to be its
anisotropy estimate instead of unity so that the orientation in-
consistency of gradients is included in the second stage of aver-
aging. These two measures improve the noise robustness of the
fingerprint local dominant orientation estimation. Furthermore,
the proposed approach leads to an improved anisotropy esti-
mate that reflects the characteristics of the fingerprint more ef-
fectively. In addition, the approach requires fewer computation
operations than the gradient modulus normalization and even
less than the block-wise modulus normalization. This gives the
advantage to the online application of a fingerprint authentica-
tion system. Extensive experiments using both synthetic images
and real fingerprints verify the feasibility of the proposed ap-
proach and demonstrate its robustness to noise and low-quality
fingerprints. It outperforms the conventional linear and normal-
ized averaging methods as well as the block-wise modulus nor-
malization approach. The developed technique improves the ro-
bustness of a fingerprint authentication system to low-quality
fingerprints, which is crucial for the system’s massive applica-
tion, such as securing multimedia.
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