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Abstract— This paper proposes two sets of novel edge-texture
features, Discriminative Robust Local Binary Pattern (DRLBP)
and Ternary Pattern (DRLTP), for object recognition. By inves-
tigating the limitations of Local Binary Pattern (LBP), Local
Ternary Pattern (LTP) and Robust LBP (RLBP), DRLBP and
DRLTP are proposed as new features. They solve the problem
of discrimination between a bright object against a dark back-
ground and vice-versa inherent in LBP and LTP. DRLBP also
resolves the problem of RLBP whereby LBP codes and their
complements in the same block are mapped to the same code.
Furthermore, the proposed features retain contrast information
necessary for proper representation of object contours that LBP,
LTP, and RLBP discard. Our proposed features are tested on
seven challenging data sets: INRIA Human, Caltech Pedestrian,
UIUC Car, Caltech 101, Caltech 256, Brodatz, and KTH-TIPS2-
a. Results demonstrate that the proposed features outperform
the compared approaches on most data sets.

Index Terms— Object recognition, local binary pattern, local
ternary pattern, feature extraction, texture.

I. INTRODUCTION

CATEGORY recognition and detection are 2 parts of
object recognition. The objective of category recognition

is to classify an object into one of several predefined cate-
gories. The goal of detection is to distinguish objects from the
background. There are various object recognition challenges.
Typically, objects have to be detected against cluttered, noisy
backgrounds and other objects under different illumination
and contrast environments. Proper feature representation is a
crucial step in an object recognition system as it improves per-
formance by discriminating the object from the background or
other objects in different lightings and scenarios. Furthermore,
a good feature also simplifies the classification framework.

Object recognition features are categorized into two groups
- sparse and dense representations [7]. For sparse feature
representations, interest-point detectors are used to identify
structures such as corners and blobs on the object. A feature
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is created for the image patch around each point. Popular
feature representations include Scale-Invariant Feature Trans-
form (SIFT) [16], [30], Speeded Up Robust Feature [3], Local
Steering Kernel [49], Principal Curvature-Based Regions [9],
Region Self-Similarity features [33], [50], Sparse Color [51]
and the sparse parts-based representation [1]. A comprehensive
evaluation of sparse features can be found in [34] and [35].

Dense feature representations, which are extracted at fixed
locations densely in a detection window, are gaining pop-
ularity as they describe objects richly compared to sparse
feature representations. Various feature representations such as
Wavelet [40], Haar-like features [55], Histogram of Oriented
Gradients (HOG) [8], [56], Extended Histogram of Gradients
[44]–[46], [48], Feature Context [57], Local Binary Pattern
(LBP) [2], [22], [47], Local Ternary Pattern (LTP) [52],
Geometric-blur [59] and Local Edge Orientation Histograms
[25] have been proposed over recent years. Dense SIFT
has also been proposed to alleviate the sparse representation
problems [4], [24], [53].

LBP is the most popular texture classification feature [18],
[20], [21], [27], [38], [41], [42], [62]. It has also shown
excellent face detection performance [2], [19], [26], [52], [61].
It is robust to illumination and contrast variations as it only
considers the signs of the pixel differences. Histogramming
LBP codes makes the descriptor resistant to translations within
the histogramming neighbourhood. However, it is sensitive
to noise and small fluctuations of pixel values. To handle
this, Local Ternary Pattern (LTP) has been proposed [52].
In comparison to LBP, it has 2 thresholds which creates
3 different states as compared to 2 in LBP. It is more resistant
to noise and small pixel value variations compared to LBP.
Like LBP, it has also been used for texture classification and
face detection [13], [23], [28], [42], [52], [60].

However, for object recognition, LBP and LTP present two
issues. They differentiate a bright object against a dark back-
ground and vice versa. This increases the object intra-class
variations which is undesirable for most object recognitions.
Nguyen et al. [37] propose Robust LBP (RLBP) to map a LBP

code and its complement to the minimum of both to solve the
problem. However, in the same block, RLBP also maps to
the same value. For some different local structures, a similar
feature is obtained. Hence, it is unable to differentiate them.

Different objects have different shapes and textures. It is
therefore desirable to represent objects using both texture
and edge information. However, in order to be robust to
illumination and contrast variations, LBP, LTP and RLBP do
not differentiate between a weak contrast local pattern and
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Fig. 1. Problem of Local Binary Patterns (LBP) and Local Ternary Patterns (LTP) and their solutions by Robust LBP (RLBP) and Robust LTP (RLTP).
The similarity score between histograms is measured by histogram intersection. (a) LBP. (b) RLBP. (c) LTP. (d) RLTP.

a similar strong one. They only capture texture information.
Object contours, which also contain discriminatory informa-
tion, tend to be situated in strong contrast regions. Therefore,
by discarding contrast information, contours may not be effec-
tively represented.

In this paper, we propose two sets of novel edge-texture
features, Discriminative Robust LBP (DRLBP) and LTP. The
proposed features solve the issues of LBP, LTP and RLBP.
They alleviate the intensity reversal problem of object and
background. Furthermore, DRLBP discriminates local struc-
tures that RLBP misrepresent. In addition, the proposed
features retain the contrast information of image patterns.
They contain both edge and texture information which is
desirable for object recognition. We present comprehen-
sive experimental results on 7 data sets - INRIA Human,
Caltech Pedestrian, UIUC Car, Caltech 101, Caltech 256,
Brodatz and KTH-TIPS2-a. Results indicate that the pro-
posed features outperform LBP, LTP and RLBP and per-
form better than other approaches in comparison on data
sets.

II. DISCRIMINATIVE ROBUST LOCAL BINARY AND

TERNARY PATTERNS

A. Limitations of LBP, LTP and Robust LBP

The LBP [38] code at location (x, y) is computed as follows:

L B Px,y =
B−1∑

b=0

s(pb − pc)2b, (1)

s(z) =
{

1, z ≥ 0
0, z < 0

where pc is the pixel value at (x, y), pb is the pixel value
estimated using bilinear interpolation from neighbouring pixels
in the b-th location on the circle of radius R around pc

and B is the total number of neighbouring pixels. A 2B-bin
block histogram is computed. There are some patterns that
occur more frequently than others and the number of state

transitions between 0 and 1 for them are at most two [38].
Such patterns are called uniform patterns and the rest as non-
uniform. By giving each uniform pattern a bin and collating
all non-uniform patterns into a single bin, the bin number is
reduced. For B = 8, it is reduced from 256 to 59.

In [38], another LBP variant, rotation-invariant LBP, is
proposed for texture classification. However, our focus is on
object recognition. Different objects exhibit different shapes
that are captured by the orientation information. It is beneficial
to retain these inter-class variations to model the objects. Using
rotation-invariant features will significantly reduce the inter-
class variations and oversimplify the object models. Therefore,
in our work, rotation-invariance is not considered.

LBP is invariant to monotonic intensity changes. Hence, it
is robust to illumination and contrast variations. However, it is
sensitive to noise and small pixel value fluctuations. Therefore,
LTP [52] has been proposed to handle this situation. The LTP

code at location (x, y) is computed as follows:

LT Px,y =
B−1∑

b=0

s′(pb − pc)3
b, (2)

s′(z) =
⎧
⎨

⎩

1, z ≥ T
0, −T < z < T
−1, z ≤ −T

where T is a user-defined threshold. As defined by s′(z), LTP

has 3 states while LBP has two. A 3B-bin block histogram is
computed. For B = 8, the histogram has 6561 bins which is
very high-dimensional. Hence, in [52], the authors propose to
split the LTP code into its “upper” and “lower” LBP codes.
The “upper” code, U L B P , is computed as follows:

U L B P =
B−1∑

b=0

f (pb − pc)2b, (3)

f (z) =
{

1, z ≥ T
0, otherwise
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Fig. 2. Problem of Robust LBP (RLBP) and Robust LTP (RLTP). 6 local structures are shown in the first row. The second row shows the RLBP features for
each structure. The third row shows the RLTP features for each structure. RLBP and RLTP make the different structures in (a1) and (a2) similar as shown in
(a3) and in (a4) and different structures in (b1) and (b2) similar as shown in (b3) and (b4). A similar situation can be observed in (c).

The “lower” code, L L B P , is computed as follows:

L L B P =
B−1∑

b=0

f ′(pb − pc)2
b, (4)

f ′(z) =
{

1, z ≤ −T
0, otherwise

By doing so, the bin number is reduced from 6561 to 512.
Using uniform LBP codes, it is further reduced to 118.

An issue with LBP and LTP is that they differentiate a
bright object against a dark background and vice-versa. This
differentiation makes the object intra-class variation larger.
In Fig. 1(a) and (c), the 2 situations in a block are represented
by LBP and LTP. As seen, the LBP and LTP features for the
2 situations are different.

To solve the above mentioned problem of LBP, the authors
in [37] propose mapping a LBP code and its complement
to the minimum of the two. For instance, “1101 0101” and
its complement, “0010 1010”, become the same code “0010
1010” in the mapping. The states are changed from 0 to 1 or
1 to 0 during this mapping. By doing so, the code is robust
to the reversal in intensity between the background and the
objects. Based on this, we name this code as Robust LBP

(RLBP). RLBP is computed as follows:

RL B Px,y = min
{

L B Px,y, 2B − 1 − L B Px,y }, (5)

where L B Px,y is as defined in Eq (1) and 2B −1− L B Px,y is
the complement code. Since the mapping halves the number of
codes, the RLBP bin number is 128 for B = 8. Using uniform
codes, it is reduced to 30. Fig. 1(b) illustrates how RLBP

solves the issue of intensity reversal of object and background.
It is seen that for both situations, the RLBP feature is the same.

To solve the problem of brightness reversal of object and
background, RLBP maps all LBP codes to the minimum of
the code and its complement. However, this mapping makes it
difficult to differentiate some dissimilar local structures. It is
possible for 2 different structures to have similar or even same
features. This is illustrated in row 2 of Fig. 2. This problem is
caused by merging the complement codes in the same block.

B. The Proposed Discriminative Robust Local Binary Pattern

An object has 2 distinct cues for differentiation from other
objects - the object surface texture and the object shape
formed by its boundary. The boundary often shows much
higher contrast between the object and the background than the
surface texture. Differentiating the boundary from the surface
texture brings additional discriminatory information because
the boundary contains the shape information. However, in
order to be robust to illumination and contrast variations, LBP

does not differentiate between a weak contrast local pattern
and a strong contrast one. It mainly captures the object texture
information. The histogramming of LBP codes only considers
the frequencies of the codes i.e. the weight for each code is the
same. This makes it difficult to differentiate a weak contrast
local pattern and a strong contrast one.

To mitigate this, we propose to fuse edge and texture
information in a single representation by modifying the way
the codes are histogrammed. Instead of considering the code
frequencies, we assign a weight, ωx,y , to each code which is
then voted into the bin that represents the code. The weight we
choose is the pixel gradient magnitude which is computed as
follows. Following [8], the square root of the pixels is taken.
Then, the first order gradients are computed. The gradient
magnitude at each pixel is then computed as ωx,y =

√
I 2
x + I 2

y

where Ix and Iy are the first-order derivatives in the x and
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Fig. 3. DRLBP and DRLTP representations of local structures in Fig. 2. DRLBP and DRLTP differentiate the local structure pairs, {(a),(b)}, {(c),(d)} and
{(e),(f)} misrepresented by RLBP and RLTP.

y directions. ωx,y is then used to weigh the LBP code. The
stronger the pixel contrast, the larger the weight assigned to the
pixel LBP code. In this way, if a LBP code covers both sides
of a strong edge, its gradient magnitude will be much larger
and by voting this into the bin of the LBP code, we take into
account if the pattern in the local area is of a strong contrast.
Thus, the resulting feature will contain both edge and texture
information in a single representation. The value of the i th

weighted LBP bin of a M × N block is as follows:

hlbp(i) =
M−1∑

x=0

N−1∑

y=0

ωx,yδ(L B Px,y, i), (6)

δ(m, n) =
{

1, m = n
0, otherwise

The RLBP histogram is created from (6) as follows:

hrlbp(i) = hlbp(i) + hlbp(2B − 1 − i), 0 ≤ i < 2B−1 (7)

where hrlbp(i) is the i th RLBP bin value. To mitigate the
RLBP issue in Fig. 2, consider the absolute difference between
the bins of a LBP code and its complement to form Difference
of LBP (DLBP) histogram as follows:

hdlbp(i) = |hlbp(i) − hlbp(2B − 1 − i)|, 0 ≤ i < 2B−1 (8)

where hdlbp(i) is the i th DLBP bin value. The number of
DLBP bins is 128 for B = 8. Using uniform codes, it is
reduced to 30. For blocks that contain structures with both
LBP codes and their complements, DLBP assigns small values
to the mapped bins. It differentiates these structures from those
having no complement codes within the block.

The 2 histogram features, RLBP and DLBP, are concate-
nated to form Discriminative Robust LBP (DRLBP) as follows:

hdrlbp( j) =
{

hrlbp( j), 0 ≤ j < 2B−1

hdlbp( j − 2B−1), 2B−1 ≤ j < 2B (9)

For B = 8, the number of bins is 256 (128 + 128). Using
uniform codes, it is reduced to 60 (30 + 30).
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TABLE I

SIMILARITY SCORES FOR LOCAL STRUCTURE PAIRS IN FIG. 3

DRLBP contains both edge and texture information. Fig. 3
illustrates how DRLBP produces different features for the
structures shown in Fig. 2. Table I shows the similarity scores
between the features using histogram intersection. Hence,
DRLBP represents objects more discriminatively than RLBP.
It also resolves the issue of intensity reversal of object and
background as shown in Fig. 5.

C. The Proposed Discriminative Robust Local
Ternary Pattern

1) Robust Local Ternary Pattern: LBP is sensitive to noise
and small pixel value fluctuations [52]. LTP solves this using 2
thresholds to generate codes. It is more resistant to small pixel
value variations and noise compared to LBP. However, it also
has the same problem as LBP whereby it differentiates a bright
object against a dark background and vice-versa. RLBP [37]
solves this problem for LBP by mapping a LBP code and its
complement to the minimum of the two.

However, RLBP cannot be applied to U L B P and L L B P
of LTP. For a pair of object/background intensity inverted
patterns, their U L B P codes are not complements. Similarly,
their L L B P codes are also not complements. This is illus-
trated in Fig. 4 where 2 different cases of object/background
inverted intensity patterns are shown. In Fig. 4(a1) and (a2),
a case illustrating a neighbourhood, where all 3 LTP states
occur, is shown. From the two LTP codes, it is observed that
the 2 patterns are simply intensity inverted. However, their
corresponding U L B P codes are not complements. Similarly,
their corresponding L L B P codes are also not complements.
A similar situation is observed in (b1) and (b2) where only
2 LTP states are present. The U L B P and L L B P codes are
not complements. Hence, RLBP cannot be applied to U L B P
and L L B P to obtain a feature that is robust to the reversal in
intensity between the objects and background.

In order to alleviate this problem of LTP, we need to
analyze the 3-state LTP definition in (2): 1, 0 and −1. The state
of 0 represent regions of small variations, noise and uniform
regions. It will not change when there is an inversion of bright-
ness between the background and objects as the variations
remain the same. Therefore, for a pair of brightness inverted
object/background patterns, only the state of −1 is inverted
to 1 and vice-versa. Hence, for every LTP code, we can find
its corresponding inverted code. For instance, “−1-100 1100”
has an inverted code “1100 −1-100”. If both codes are mapped
to a same bin, a feature that is robust to the reversal in intensity
between the objects and background can be obtained.

Fig. 4. Illustration of U L B P and L L B P codes of LTP for 2 situations
where the intensities are reversed. It can be seen that the U L B P and L L B P
codes are reversed for the 2 situations.

In this paper, the maximum of a LTP code and its inverted
representation is chosen. We name it as Robust LTP (RLTP).
Mathematically, RLTP is formulated as follows:

RLT Px,y = max
{

LT Px,y,−LT Px,y } (10)

The RLTP code can then be split into “upper” and “lower” LBP

codes. The “upper” code, U RL B P , is expressed as follows:

U RL B P =
B−1∑

b=0

h(RLT Px,y,b)2b, (11)

h(z) =
{

1, z = 1
0, otherwise

where RLT Px,y,b represents the RLTP state value at the b-th
location. The “lower” code, L RL B P , is computed as follows:

L RL B P =
B−1∑

b=0

h′(RLT Px,y,b)2
b, (12)

h′(z) =
{

1, z = −1
0, otherwise

The most significant bit of L RL B P is 0 as the state at
(B−1)-th location of RLTP is either 0 or 1. Fig. 1(d) illustrates
how RLTP alleviates the brightness reversal problem of object
and background. It is observed that for the two situations, the
RLTP features are the same.

However, similar to RLBP in Section II-A, RLTP also maps
a LTP code and its inverted representation in the same block
to the same value. This is illustrated in Fig. 2 in the last row.

2) Discriminative Robust Local Ternary Patterns: LTP and
RLTP are also robust to illumination and contrast variations
and only capture texture information. Hence, the weighting
scheme in Section II-B is also used. The kth weighted LTP

bin value of a M × N image block is as follows:

hltp(k) =
M−1∑

x=0

N−1∑

y=0

ωx,yδ(LT Px,y, k), (13)
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Fig. 5. Same DRLBPs and DRLTPs are produced for the two intensity
reversed patterns in Fig. 1. The similarity values using histogram intersection
is 1 for both features.

The RLTP histogram is created from (13) as follows:

hrltp(k) =
{

hltp(k), k = 0

hltp(k) + hltp(−k), 0 < k < 3B+1
2

(14)

where hrltp(k) is the kth RLTP bin value.
The absolute difference between the bins of a LTP code and

its inverted representation is taken to form Difference of LTP

(DLTP) histogram as follows:

hdltp(k) = |hltp(k) − hltp(−k)|, 0 < k <
3B + 1

2
(15)

where hdltp(k) is the kth DLTP bin value. RLTP and DLTP

are concatenated to form Discriminative Robust LTP (DRLTP)
as follows:

hdrltp(l) =
{

hrltp(l), 0 ≤ l < 3B+1
2

hdltp(l − 3B−1
2 ), 3B+1

2 ≤ l < 3B
(16)

Using (11) and (12), the “upper” and “lower” LBP histograms
of DRLTP are computed. Similar to DRLBP, DRLTP contains
both edge and texture information. Fig. 3 illustrates how
DRLTP produces different features for the structures in Fig. 2.
Table I shows the similarity scores between the features using
histogram intersection. It also resolves the issue of brightness
reversal of object and background as shown in Fig. 5.

D. Efficient Computation of DRLTP Using
U L B P and L L B P

Using LTP to find RLTP, DLTP and DRLTP is computa-
tionally intensive and requires a large storage requirement. For
B = 8, the number of LTP codes is 6561. In order to generate
the RLTP and DLTP histograms from the LTP histogram, there
are 3280 addition and subtraction operations respectively. This
is followed by 8 addition operations for each RLTP and DLTP

code to find the “upper” LBP code and 8 addition operations
to find the “lower” LBP code. If the “upper” and “lower” LBP

codes of RLTP and DLTP can be produced directly from the
split LBP codes of LTP, the computational complexity and
storage requirements will be greatly reduced.

The behaviours of U L B P (3) and L L B P (4) for
object/background intensity inverted situations are analyzed
as follows. Suppose there is a bright object against a dark

background. Consider a neighbourhood with an object bound-
ary. Assume that the centre pixel resides in the background.
The differences between the object pixel values and the centre
pixel value are larger than the threshold, T . The differences
between the background pixel values and the centre pixel value
are in between T and −T . The U L B P bits corresponding to
the object are 1 while the rest are 0. The L L B P bits are all 0.
If the brightness is now inverted for the situation, all U L B P
bits are 0 and the L L B P bits corresponding to the object are
1 while the rest are 0. The brightness inversion turns L L B P
into U L B P and U L B P into L L B P .

Now, assume that the centre pixel does not belong to
the background or object. Instead, it has a value between
the bright object and dark background pixel values. The
absolute differences of the object and the centre pixel and the
background and the centre pixel are larger than T . The U L B P
bits corresponding to the object are 1 while the rest are 0. The
L L B P bits corresponding to the background are 1 while
the rest are 0. If the intensity is now inverted for the situation,
the U L B P bits corresponding to the background are all 1
while the rest are 0. Similarly, the L L B P bits corresponding
to the object are 1 while the rest are 0. Again, the intensity
inversion turns L L B P into U L B P and U L B P into L L B P .

From the above analysis, we find that the U L B P and
L L B P codes for object/background intensity inverted situ-
ations are exchanged. If they are rearranged such that the
“upper” and “lower” codes for both situations are the same,
RLTP is achieved. This can be done as follows. For any LTP

code, the U RL B P code is defined as follows:

U RL B P = max {U L B P, L L B P }, (17)

The L RP B P code is defined as follows:

L RL B P = min {U L B P, L L B P }, (18)

By producing U RL B P and L RL B P codes for any LTP code,
RLTP is obtained in the split LBP code representation. For
the situation where U L B P = 0 and L L B P = 0, only
1 LBP result is considered and assigned to L RL B P . In
Fig. 4(a) and (b), for each case, the LBP codes of the 2
intensity inverted LTP codes are reversed. For instance, in
Fig. 4(a1), the U L B P code is the L L B P code in (a2).
Similarly, the L L B P code is the U L B P code in (a2). By
following (17) and (18), we can obtain the U RL B P and
L RL B P easily from U L B P and L L B P for both cases.

The sth U RL B P bin value, 0 < s < 2B , is generated from
U L B P and L L B P codes as follows:

hurlbp(s) =
M−1∑

x=0

N−1∑

y=0

ωx,yδ(max(U L B P, L L B P), s), (19)

The t th L RL B P bin value, 0 ≤ t < 2B−1, is as follows:

hlrlbp(t) =
M−1∑

x=0

N−1∑

y=0

ωx,yδ(min(U L B P, L L B P), t), (20)

The split LBP histograms, U DL B P and L DL B P , of DLTP

are also generated from the U L B P and L L B P codes. For
every LTP code whose U L B P and L L B P are swapped,
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Fig. 6. Performance of DRLBP and DRLTP against LBP, LTP and RLBP

[Best viewed in colour]. DRLTP outperforms all other methods.

TABLE II

RECOGNITION ACCURACY OF DRLBP AND DRLTP AGAINST LTP, LBP

AND RLBP ON CALTECH 101 DATA SET

the corresponding U DL B P and L DL B P bin values are
decremented by ωx,y accordingly. Otherwise, the bins are
incremented by ωx,y .
The sth U DL B P bin value is as follows:

hudlbp(s) =
∣∣∣∣∣∣

M−1∑

x=0

N−1∑

y=0

ωx,yδ
′(λ(U L B P, L L B P), s)

∣∣∣∣∣∣
, (21)

λ(p, q) =
{

p, p > q
−q, p < q

δ′(m, n) =
⎧
⎨

⎩

1, m = n, m > 0
−1, |m| = n, m < 0
0, otherwise

λ(•) determines whether the U L B P and L L B P codes are
being swapped. If a swap occurs, the negative maximum code
is assigned to the result. δ′(•) checks the value output from
λ with s. If the value is positive and matches s, the sth bin
value is incremented. Otherwise, it is decremented. The t th

L DL B P bin value is as follows:

hldlbp(t) =
∣∣∣∣∣∣

M−1∑

x=0

N−1∑

y=0

ωx,yδ
′′(λ′(U L B P, L L B P), t)

∣∣∣∣∣∣
, (22)

λ′(p, q) =
{

q, p ≥ q
−p, p < q

δ′′(m, n) =
⎧
⎨

⎩

1, m = n, m ≥ 0
−1, |m| = n, m < 0
0, otherwise

Fig. 7. Performance of DRLBP and DRLTP against existing state-of-the-art
methods of dense representation [Best viewed in colour]. DRLTP outperforms
all other methods.

λ′(•) determines whether the U L B P and L L B P codes are
being swapped. If a swap occurs, the negative minimum code
is assigned to the result. δ′′(•) checks the value output from λ′
with t . If the value is zero or positive and matches t , the t th

bin value is incremented. Otherwise, it is decremented. The
U RL B P , L RL B P , U DL B P and L DL B P histograms are
then concatenated to form DRLTP.

A property of U L B P and L L B P is that any U L B P bit
that is 1 must be 0 in L L B P . Similarly, any L L B P bit that is
1 must be 0 in U L B P . This property of U L B P and L L B P
also applies to U RL B P and L RL B P . Since RLTP is obtained
from a max function, the most significant bit i.e. left-most
bit of L RL B P must be 0. Thus, the number of possible
codes of L RL B P is almost halved compared to U RL B P .
For B = 8, the U RL B P have values in the range from
1 to 255. L RL B P only have values in the range from 0 to
127. Hence, the uniform U RL B P bin number is 58 and that of
uniform L RL B P is 30 (the bin representing 0 is in L RL B P).
Hence, for a block, the total RLTP bin number using U RL B P
and L RL B P is 88. Similarly, for DLTP using U DL B P and
L DL B P , the total bin number is also 88. Overall, the DRLTP

bin number is 176.

III. EXPERIMENTAL EVALUATION

7 challenging data sets are used for evaluation. The detec-
tion performance is evaluated on 3 data sets - INRIA [8], Cal-
tech Pedestrian Benchmark Data Set [10] and UIUC Car [1].
Results are reported for the INRIA and Caltech data sets
using the per-image methodology [10]. Results are reported
for UIUC Car data set using performance at Equal Error
Rate (EER). The classification performance is evaluated on
2 data sets - Caltech 101 [11], [12] and Caltech 256 [17].
All the classification experiments for each data set are repeated
10 times with randomly selected training and test images
(15 and 30). The average of per-class recognition rates is
recorded for each run. The mean and standard deviation of
the results from individual runs is reported as the final results.
The framework of [24] is used in the classification experiments
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where the SIFT features are replaced with the proposed
features. The texture classification performance is evaluated
on 2 data sets - Brodatz [5], [39] and KTH-TIPS2-a [6].

A 8 × 8 pixels block size is used for UIUC Car data
set. For INRIA, Caltech Pedestrian, Caltech 101 and Caltech
256, a 16 × 16 pixels block size is used. A 50% overlap
of blocks is considered. The histograms are normalized using
L1-norm. The square root of the bins are then taken. Linear
SVM classifier is used for these data sets. For the classification
experiments, the linear SVM classifiers are trained using a
one-versus-all rule i.e. a classifier is trained to separate each
class from the rest and a test image is assigned the label of
the classifier with the highest response.

For the texture classification experiments, we follow the
procedures in [7] for training and testing on Brodatz and
KTH-TIPS2-a. Global features are used for Brodatz and KTH-
TIPS2-a i.e. the entire image is represented by a single his-
togram. The DRLBP and DRLTP histograms are normalized
first using L2-norm followed by L1-norm. Similar to [7], we
use a 3-nearest neighbor classifier with normalized histogram
intersection as the distance measure between features.

For all data sets, a circular neighbourhood of radius 1 (R)
and 8 (B) pixels is considered. The uniform pattern represen-
tation is used. For LTP and DRLTP in our experiments, the
threshold, T , is 3 for INRIA and Caltech Pedestrian, 9 for
UIUC Car, Caltech 101 and Caltech 256, 15 for Brodatz and
5 for KTH-TIPS2-a.

A. Performance Comparison of DRLBP and DRLTP

Against LBP, LTP and RLBP

We compare the performance of DRLBP and DRLTP

against LBP, LTP and RLBP on INRIA for detection and on
Caltech 101 for classification. The INRIA training set contains
2416 cropped positive images and 1218 uncropped negative
images. The sliding image window size is 128 × 64 pixels.
We randomly take 10 samples from each negative image to
obtain a total of 12180 negative samples for training the
linear SVM classifier. Bootstrapping is then performed across
multiple scales at a scale step of 1.05 to obtain hard negatives
which are added to the original training set for retraining.
This training procedure is exactly the same as described in
[8] and [10].

The INRIA test set consist of 288 images. The images
are scanned over multiple scales at a scale step of 1.05.
The window stride is 8 pixels in the x and y directions.
These parameters are the same as those in [10]. The miss rate
(MR) against false positives per image (FPPI) (using log-log
plots) is plotted to compare between different detectors. The
log-average miss rate (LAMR) [10] is used to summarize the
detector performance which is computed by averaging the miss
rates at nine evenly spaced FPPI rates in the range 10−2 to 100.
If any of the curves end before reaching 100, the minimum
miss rate achieved is used [10].

From Fig. 6, it is seen that our proposed features outperform
its predecessors. RLBP underperforms LBP as there is a loss
of information due to the mapping of LBP codes and their
complements to the same code. DRLBP outperforms RLBP

TABLE III

RECOGNITION ACCURACY AT EQUAL ERROR RATE ON UIUC CARS

DATA SET. THE RESULTS OF HIKSVM FOR TEST SET II IS NOT

PROVIDED IN [31]

and LBP. LTP outperforms LBP thanks to its robustness to
noise and small pixel value fluctuations. Similarly, DRLTP

outperforms LTP. Overall, DRLTP performs the best at 29%.
The two columns of Table II show the classification per-

formances of DRLBP and DRLTP against LBP, LTP and
RLBP on Caltech 101 using respective 15 and 30 training
samples per class where the number of test samples are up
to the number of training samples for each class. Again, it is
seen that our proposed features outperform its predecessors.
DRLTP has a recognition rate of 72.59% while LTP has a
recognition rate of 55.71% for the 15 training and test images
case. This shows a significant gain of 17%. Furthermore, for
30 training and test images case, the gain is 14%. Similarly,
DRLBP has a gain of 1% and approximately 3% in comparison
to RLBP and LBP for both cases. Furthermore, we also
perform another experiment using 90% of the samples per
class as training data with the remaining 10% as test data.
The third column of the table shows the results. There is a
significant improvement in performance for all features. This
is expected as there are more samples available for training
which improves classification performance. DRLTP still gives
the best performance at 93.1%.

In the subsequent sections, only DRLBP and DRLTP will
be compared against some other state-of-the-art approaches.

B. Comparisons With Other Approaches on INRIA Data Set

We compare the DRLBP and DRLTP performance
with VJ [55], SHAPELET [43], POSEINV [29], HIKSVM [31]
and HOG [8]. The results of all compared detectors are given
in [10]. These detectors are optimized, trained and tested
in [10] by their respective authors. From Fig. 7, DRLTP

achieves a LAMR of 29% which is significantly lower than
all compared state-of-the-art methods. DRLBP has a LAMR
of 36%.

C. Comparisons With Other Approaches on Caltech Data Set

The Caltech Pedestrian data set [10] contains color video
sequences and pedestrians with a wide range of scales and
scene variations. It has been created from a recorded video on
a car moving through some densely populated human areas.
It contains motion, blur and noise artifacts, and has various
stages of occlusion. The data set is divided into 11 sessions.
The first 6 sessions are designated as the training set with the
remaining 5 as the test set.
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Fig. 8. Evaluation results under six different conditions on the test set of the Caltech Pedestrian Data Set [Best viewed in colour]. (a) DRLBP and DRLBP
rank first in overall performance of all detectors on all annotated pedestrians. (b) DRLTP ranks first in performance on unoccluded pedestrians over 80 pixels
(near scale). (c) DRLBP ranks first in performance on unoccluded pedestrians between 30-80 pixels. (d) DRLTP ranks first in performance on unoccluded
pedestrians over 50 pixels tall. (e) Even under partial occlusion, DRLTP performs the best among all other methods. DRLBP ranks second. (f) DRLTP ranks
first in performance on 50-pixel or taller, unoccluded or partially occluded pedestrians (reasonable).

Results were reported in [10] using detectors trained on
other data sets like INRIA for detection on their test set.
Our results are also presented in a similar manner where
detectors are trained using the INRIA data set and tested on
the test sessions. The scale step is 1.05. The window stride is
8 pixels in the x and y directions. To detect humans at smaller
scales, the original images are upscaled. Only every 30th frame
is evaluated. The settings used are the same as [10].

The detectors compared with our implemented detectors are
the same as those in Section III-B. The results of the compared
detectors are given in [10]. These detectors are optimized,
trained and tested in [10] by their respective authors. The
performance is analyzed under six conditions [10] as shown
in Fig. 8. The results are discussed under each condition as
follows.

Overall: Fig. 8(a) plots the performance on all test sessions
for every annotated pedestrian. DRLBP and DRLTP rank first
at 86%. HOG is second at 90%. At lower FPPIs, DRLTP

performs better than DRLBP. For detection systems that
require low false positives with low MRs, DRLTP is preferred.

Scale: Fig. 8(b) plots the performance on unoccluded pedes-
trians with heights over 80 pixels. DRLTP performs the best
at 30% with DRLBP second at 38%. Fig. 8(c) plots the
performance on unoccluded pedestrians with heights between
30–80 pixels. DRLBP ranks first at 82% followed by DRLTP

at 85%. At lower FPPIs, DRLTP performs better than DRLBP.
Occlusion: Fig. 8(d) plots the performance on unoccluded

pedestrians with heights over 50 pixels. DRLTP ranks first at

TABLE IV

RECOGNITION ACCURACY ON CALTECH 101 DATA SET

56% and DRLBP ranks second at 60%. Fig. 8(e) plots the per-
formance on partially occluded (1–35% occluded) pedestrians
with heights over 50 pixels. DRLTP ranks first at 74% and
DRLBP ranks second at 81%.

Reasonable: Fig. 8(f) shows evaluation of performance on
pedestrians that are over 50 pixels tall under no or partial
occlusion (reasonable condition). DRLTP ranks first at 58%
and DRLBP ranks second at 62%.

D. Comparisons With Other Approaches on UIUC Car

The data set contains side views of cars taken with cameras.
The cars are of different resolutions and contain instances of
partial occlusion, low contrast and highly noisy and textured
background. The training set contains 550 cars and 500 non-
car images of 40 × 100 pixels.
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TABLE V

RECOGNITION ACCURACY ON CALTECH 256 DATA SET

There are 2 test sets. The first set contains 170 images with
200 cars of the same size as those in the training set i.e. single
scale. The second set contains 108 images with 139 cars of
different sizes ranging from 0.8 to 2 times the size of the cars
in the training set i.e. multi scale. During testing, the window
stride is 5 pixels horizontally and 2 pixels vertically.

Table. III presents the DRLBP and DRLTP recognition
accuracy at Equal Error Rate (EER) against some other meth-
ods for both test sets. In comparison with the other state-of-
the-art methods, DRLTP is second to [14] for multi scale test
set and to [36] for the single scale test set. In [14], hybrid fea-
tures with complex classification architecture is used. In [36],
the features are created from multiple convolutions with 8
filters (4 Gabor and 4 3-D Max filters) over 10 scales. These
are much more computationally intensive compared to our
method and yet, we achieve a comparable performance.

E. Comparisons With Other Approaches on Caltech 101

Caltech 101 contains 101 different object classes like ani-
mals, vehicles, etc. with significant variance in shape and
an additional “background” class. The number of images
per class vary from 31 to 800. The classifiers are tested on
15 and 30 random test samples per class. Table IV shows
the performance of the proposed features against some other
approaches. DRLTP outperforms all approaches for both 15
and 30 test samples.

F. Comparisons With Other Approaches on Caltech 256

Caltech 256 contains 256 different object classes with higher
intra-class variability and object location variability than Cal-
tech 101 and an additional “background” class. The number of
images per class vary from 80 to 827. The classifiers are tested
on 15 and 30 random test samples per class. Table V shows
the performance of the proposed features against some other
approaches. DRLBP and DRLTP outperform all approaches
for both 15 and 30 test samples.

G. Comparisons With Other Approaches on Brodatz

The Brodatz data set consist of 32 texture categories. Each
texture image is grayscale and 256 × 256 pixels in size. It is
divided into 16 disjoint samples of 64 × 64 pixels. Three
additional samples are generated from each sample as follows:
1) a sample rotated by 90 degrees, 2) a 64 × 64 scaled sample
obtained from the 45 × 45 pixels window centered in the
original sample, and 3) a sample that is both rotated and scaled.
Hence, the entire data set is comprised of 2,048 samples.

TABLE VI

RECOGNITION ACCURACY ON BRODATZ TEXTURES

TABLE VII

RECOGNITION ACCURACY ON KTH-TIPS2-A TEXTURES

We perform experiments with 10-fold cross validation [7].
In each round, the samples in each class are randomly divided
into 2 subsets of the same size. One is used for training and
the other for testing. The results are reported as the average
accuracy value and standard deviation over 10 runs. Table VI
shows the performance of the proposed features against some
other approaches. The performance of both proposed descrip-
tors is poorer than other state-of-the-art approaches. There are
2 reasons for this. Firstly, the problems addressed in this paper
such as the lighting reversal and the relative reversal of gray
levels between object and background do not exist in this
data set. Hence, the advantages of the proposed approaches
are not shown in this data set. Secondly, the textures have
huge rotation and scaling variances. Since our features are
neither rotation-invariant nor adept to handle scale variations,
the performance is adversely affected.

H. Comparisons With Other Approaches on KTH-TIPS2-a

The KTH-TIPS2-a database contains four physical, planar
samples of each of 11 materials under varying illumination,
pose, and scale. The images are 200 × 200 pixels in size.
Images not of this size were removed from the training and
testing [7]. The database contains images at nine scales,
under four different illumination directions, and three dif-
ferent poses. There are a total of 4395 images in the data
set.

Similar to [6], [7], only three samples are used for training
of each material, while testing is performed on all images
of the remaining samples. The experiment is repeated four
times by randomly selecting three different samples for train-
ing. The results are reported as the average value over the
four runs. Table VII shows the performance of the proposed
features against some other approaches. DRLBP and DRLTP

outperforms WLD and LBP in comparison to Brodatz because
there are neither extreme rotations nor scaling variations in this
data set. Furthermore, this data set contains textures set against
backgrounds and the lighting reversal and the relative reversal
of gray levels between object and background exists in this
data set. Hence, the performance of the descriptors are much
better than the state-of-the-art approaches.
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IV. CONCLUSION

This paper proposes 2 sets of novel edge-texture features,
Discriminative Robust Local Binary Pattern (DRLBP) and
Ternary Pattern (DRLTP), for object recognition. The limita-
tions of existing texture features, Local Binary Pattern (LBP),
Local Ternary Pattern (LTP) and Robust LBP (RLBP), for
object recognition are analyzed. LBP and LTP differentiate a
bright object against a dark background and vice-versa. This
differentiation makes the object intra-class variations larger.
RLBP solves the LBP problem by choosing the minimum
of a LBP code and its complement. However, RLBP maps
LBP codes and their complement in the same block to the
same value. This causes some structures to be misrepre-
sented. Furthermore, LBP, LTP and RLBP discard contrast
information. This is not desired as object texture and contour
both contain discriminative information. By capturing only the
texture information, the contour is not effectively represented.
The new features, DRLBP and DRLTP, are proposed by
analyzing the weaknesses of LBP, LTP and RLBP. They
alleviate the problems of LBP, LTP and RLBP by considering
both the weighted sum and absolute difference of the bins
of the LBP and LTP codes with their respective comple-
ment/inverted codes. The new features are robust to image
variations caused by the intensity inversion and are discrimi-
native to the image structures within the histogram block.

We present results of the proposed features on 7 data sets
and compare them with several methods for object recognition.
Results demonstrate that the proposed features outperform the
compared recognition approaches on most data sets.
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