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Abstract— Local binary pattern (LBP) is sensitive to noise.
Local ternary pattern (LTP) partially solves this problem. Both
LBP and LTP, however, treat the corrupted image patterns as
they are. In view of this, we propose a noise-resistant LBP
(NRLBP) to preserve the image local structures in presence of
noise. The small pixel difference is vulnerable to noise. Thus, we
encode it as an uncertain state first, and then determine its value
based on the other bits of the LBP code. It is widely accepted that
most of the image local structures are represented by uniform
codes and noise patterns most likely fall into the non-uniform
codes. Therefore, we assign the value of an uncertain bit hence
as to form possible uniform codes. Thus, we develop an error-
correction mechanism to recover the distorted image patterns.
In addition, we find that some image patterns such as lines are not
captured in uniform codes. Those line patterns may appear less
frequently than uniform codes, but they represent a set of impor-
tant local primitives for pattern recognition. Thus, we propose an
extended noise-resistant LBP (ENRLBP) to capture line patterns.
The proposed NRLBP and ENRLBP are more resistant to noise
compared with LBP, LTP, and many other variants. On various
applications, the proposed NRLBP and ENRLBP demonstrate
superior performance to LBP/LTP variants.

Index Terms— Local binary pattern, local ternary pattern,
uniform patterns, noise resistance.

I. INTRODUCTION

LOCAL binary pattern (LBP) operator transforms an
image into an array or image of integer labels describing

micro-pattern, i.e. pattern formed by a pixel and its immediate
neighbors [1]. More specifically, LBP encodes the signs of the
pixel differences between a pixel and its neighbouring pixels to
a binary code. The histogram of such codes in an image block
is commonly used for further analysis. It has been widely used
in texture classification [2]–[10], dynamic texture recogni-
tion [11]–[13], facial analysis [14]–[21], human detection [22],
[23] and many other tasks [24]–[33]. Its popularity arises
from the following advantages. Firstly, the exact intensities
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are discarded, and only the relative intensities with respect
to the center are preserved. Thus, LBP is less sensitive to
illumination variations. Secondly, by extracting the histogram
of micro-patterns in a patch, the exact location information
is discarded, and only the patch-wise location information is
preserved. Thus, LBP is robust to alignment error. Lastly, LBP
features can be extracted efficiently, which enables real-time
image analysis.

Although LBP has gained much popularity because of
its simplicity and robustness to illumination variations, its
sensitivity to noise limits its performance [19]. In [3], uniform
LBP was proposed to reduce the noise in LBP histogram. The
LBP codes are defined as uniform patterns if they have at most
two circularly bitwise transitions from 0 to 1 or vice versa, and
non-uniform patterns if otherwise. In uniform LBP mapping,
one separate histogram bin is used for each uniform pattern
and all non-uniform patterns are accumulated in a single bin.
Most LBPs in natural images are uniform patterns [3], [15].
Thus, uniform patterns are statistically more significant, and
their occurrence probabilities can be more reliably estimated.
In contrast, non-uniform patterns are statistically insignificant,
and hence noise-prone and unreliable. By grouping the non-
uniform patterns into one label, the noise in non-uniform
patterns is suppressed. The number of patterns is reduced
significantly at the same time.

In [7], [34]–[37], information in non-uniform patterns is
extracted and also used for classification. Liao et al. proposed
dominant LBP patterns that consider the most frequently
occurred patterns in a texture image [7]. Zhou et al. [34]
and Fathi et al. [35] proposed to extract information from
non-uniform patterns based on pattern uniformity measure and
the number of ones in the LBP codes. Principal Component
Analysis [36] and random subspace approach [37] were uti-
lized to extract information from the whole LBP histogram
including both uniform patterns and non-uniform patterns.
These approaches extract some useful information from non-
uniform codes. However, they tend to be sensitive to noise.

“Soft histogram” is another approach to improve the robust-
ness to noise, e.g. a fuzzy LBP (FLBP) using piecewise
linear fuzzy membership function [5], [28] and another using
Gaussian-like membership function [18]. A comprehensive
comparison between LBP and fuzzy LBP in classifying and
segmenting textures is given in [38]. Instead of hard-coding the
pixel difference, a probability measure is utilized to represent
its likelihood as 0 or 1. However, the probability is closely
related to the magnitude of the pixel difference. Thus, it is
still sensitive to noise.

1057-7149 © 2013 IEEE
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Local ternary pattern (LTP) was proposed in [19] to tackle
the image noise in uniform regions. Instead of binary code,
the pixel difference is encoded as a 3-valued code according
to a threshold t . Then, the ternary code is split into a positive
LBP and a negative LBP in order to reduce the dimensionality.
LTP was shown less sensitive to noise, especially in uniform
regions [19]. Subsequently, many LTP variants were proposed
in the literature. Nanni et al. proposed a quinary code of five
values according to two thresholds [31], and then split it into
four binary codes similarly as LTP. As LTP is not invariant
under scaling of intensity values, Liao et al. proposed Scale
Invariant Local Ternary Pattern to deal with the gray scale
intensity changes in a complex background [32]. In order to
reduce the high dimensionality of LTP, Center-Symmetric LTP
was proposed in [33]. Instead of the pixel difference between
the neighboring pixel and the center pixel, the pixel difference
between diagonal neighbors is calculated. In Local Adaptive
Ternary Patterns [20] and extended LTP [9], instead of using a
constant threshold, the threshold is calculated for each window
using some local statistics, which makes them less sensitive
to illumination variations. In Local Triplet Pattern [30], the
equality is modeled as a separate state, and a tri-state pattern
is formulated. It can be viewed as a special case of LTP [19].

LTP and its variants partially solve the noise-sensitive
problem. However, they lack a mechanism to recover the
corrupted image patterns. In this paper, we propose a Noise-
Resistant LBP (NRLBP) and an Extended Noise-Resistant
LBP (ENRLBP) to address this issue.

The signs of pixel differences used to compute LBP and its
variants are vulnerable to noise when they are small. Thus, we
propose to encode small pixel difference as an uncertain bit
first and then determine its value based on the other bits of the
LBP code. Uniform patterns are more likely to occur compared
with non-uniform patterns in natural images [3], [15]. Most
image structures are represented by uniform patterns, and non-
uniform patterns are most likely caused by noise. Thus, in
the proposed NRLBP, we assign the values of uncertain bits
so as to form uniform patterns. A non-uniform pattern is
generated only if no uniform pattern can be formed. As noise
may change an uniform pattern into an unstable non-uniform
pattern, the proposed NRLBP corrects many distorted non-
uniform patterns back to uniform patterns.

For LBP and LTP, line patterns are treated as non-uniform
patterns and grouped into the non-uniform bin. Uniform
patterns mainly represent spot, flat region, edge, edge end
and corner. A local image is a line pattern if it is a line
against the background, as shown in Fig. 5. Line patterns
may appear less frequently than uniform patterns, but they
represent an important group of local primitives for pattern
recognition. Thus, we propose an extension set of uniform
patterns corresponding to line patterns. Then, we propose
extended noise-resistant LBP (ENRLBP). During the encoding
process, we assign the values of uncertain bits so as to form
extended uniform patterns.

To evaluate our approaches, we first inject Gaussian noise
and uniform noise of different noise levels on the AR data-
base [39] for face recognition and the Outex dataset [40]
for texture recognition. The proposed approaches demonstrate

strong resistance to noise compared with LBP/LTP and its
variants. The proposed approaches are further compared with
LBP/LTP variants for face recognition on the extended Yale
database [41], [42] and the O2FN database [43], protein
cellular classification on the 2D Hela database and image
segmentation on the Outex dataset [40] and also a natural
image downloaded from the web. The proposed NRLBP and
ENRLBP consistently achieve comparable or better perfor-
mance compared with LBP/LTP and its variants.

II. NOISE-RESISTANT LBP

A. Problem Analysis of LBP and LTP

Local binary pattern encodes the pixel difference z p =
i p − ic between the neighboring pixel i p and the central

pixel ic. Let C B
P,R = −−−−−−−−−−−−−→

bB
P−1bB

P−2 . . . bB
1 bB

0 denote the LBP code
of P neighbors at the distance of R to the center pixel. A code
is also called a pattern. Let L B PP,R denote such a coding
scheme for C B

P,R . Each bit is obtained as:

bB
p =

{
1 if z p ≥ 0,

0 if z p < 0.
(1)

LBP is widely used in many applications because of its
simplicity and robustness to illumination variations. However,
LBP is sensitive to image noise. In [3], uniform LBP was
proposed to capture fundamental image structures and reduce
the noise in LBP histogram. The uniformity U is defined
as the number of circularly bitwise transitions from 0 to
1 or vice versa. A local binary pattern is u2-uniform or
simply called uniform if U ≤ 2. For example, “11110000”
is a uniform pattern as U = 2, whereas “01010111” shown
in Fig. 1(a) is a non-uniform pattern as U = 6. L B Pu2

P,R
indicates a coding and histogram mapping scheme in which
u2-uniform LBP codes of P neighbors at the distance of R
to the center pixel are utilized. Uniform patterns occur much
more frequently than non-uniform patterns in natural images.
It has been shown that L B Pu2

8,1 accounts for almost 90% of
all patterns for texture images [3] and L B Pu2

8,2 accounts for
90.6% for facial images [15]. The occurrence probabilities
of non-uniform patterns are so small that they cannot be
reliably estimated [3]. Inclusion of such noisy estimates in
the histogram would harm the classification performance. In
addition, non-uniform patterns may be caused by the image
noise. Therefore, when constructing the histogram, all non-
uniform patterns are grouped into one bin. This not only
reduces feature dimensionality, but more importantly, the noise
due to unreliable estimates of non-uniform patterns is greatly
suppressed. The number of patterns is reduced significantly
from 2P to P(P − 1) + 3. For example, L B P8,2 consists of
256 patterns whereas L B Pu2

8,2 has only 59 patterns.
Uniform LBP successfully reduces the noise in LBP his-

togram, but it is still sensitive to image noise. As shown
in Fig. 1(a), a small noise will cause the pixel difference
encoded differently. Ideally such a smooth region should be
encoded as “11111111”. Due to the image noise, it is encoded
as “01010111” instead. LTP partially solves this problem by
encoding the small pixel difference into a third state [19].
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(a) LBP encoding scheme

(b) LTP encoding scheme

Fig. 1. (a) An example of LBP encoding scheme for the smooth region with
small image noise. LBP is sensitive to image noise. (b) An example of LTP
encoding process. LTP doubles the number of patterns compared with LBP.

Instead of using binary code, each pixel difference is encoded

as a 3-valued code. Let CT
P,R = −−−−−−−−−−−−−→

bT
P−1bT

P−2 . . . bT
1 bT

0 denote the
LTP code of P neighbors at the distance of R to the center
pixel and LT PP,R denote such a coding scheme for CT

P,R .
Each bit is obtained as:

bT
p =

⎧⎪⎨
⎪⎩

1 if z p ≥ t ,

0 if |z p| < t ,

−1 if z p ≤ −t ,

(2)

where t is a pre-defined threshold.
LTP is more resistant to noise. However, the dimensionality

of LTP histogram is very large, e.g. LT P8,2 exhibits a his-
togram of 38 = 6561 bins. Thus, in [19], LTP is split into a
positive LBP and a negative LBP. Each bit of positive LBP is
obtained as:

b p
p =

{
1 if z p ≥ t ,

0 if z p < t .
(3)

Each bit of negative LBP is obtained as:

bn
p =

{
0 if z p ≤ −t ,

1 if z p > −t .
(4)

To show the commonalities and differences among LBP,
LTP and the proposed NRLBP clearly, the negative LBP
defined here is the complement of the negative LBP defined
in [19]. Effectively they achieve the same result for histogram-
based comparison. Eventually, LTP is treated as two separate
channels of LBP codes: one channel for positive LBP and the
other for negative LBP. In general, uniform LTP is used, in
which both channels are uniform LBP. This coding scheme is
denoted by LT Pu2

P,R . An example of LTP encoding process
is shown in Fig. 1(b). LTP doubles the number of patterns
compared with LBP.

The small pixel difference may be easily distorted by the
noise. Both LBP and LTP lack a mechanism to correct the
corrupted patterns. The corrupted image patterns are treated

without any attempt to recover the underlining local structures.
To address this issue, we propose a Noise-Resistant LBP and
an Extended Noise-Resistant LBP.

B. Proposed Noise-Resistant LBP

LBP is sensitive to noise. Even a small noise may change
the LBP code significantly. Thus, we propose to encode the
small pixel difference as an uncertain bit X first and then
determine X based on other certain bits of the LBP code.
For the pixel difference z p between the neighboring pixel and
the center pixel, we encode it into one of the three states
bN

p as:

bN
p =

⎧⎪⎨
⎪⎩

1 if z p ≥ t ,

X if |z p| < t ,

0 if z p ≤ −t .

(5)

States 1 and 0 represent two strong states where the
pixel difference is almost definitely positive and negative,
respectively. Noise can unlikely change them from 0 to 1 or
from 1 to 0. State X represents an uncertain state where the
pixel difference is small. A small pixel difference is vulnerable
to noise if we only take its sign. More specifically, noise can
easily change its LBP bit from 0 to 1 or vice versa. Therefore,
we encode it as an uncertain state regardless its sign.

Then, we constrain the value of the uncertain bit into
either 0 or 1, represented by a variable xi , xi ∈ {0, 1}.
Let X = (x1, x2, . . . , xn) denote the vector formed by n
variables of a code. X ∈ {0, 1}n. The uncertain code can be
represented by C(X) as:

−−−−−−−−−−−−−→
bN

P−1bN
P−2 . . . bN

1 bN
0 = C(X). (6)

Take the uncertain code “11X100X0” in Fig. 2(a) for illus-
tration. The uncertain code

−−−−−−−→
11x2100x10 can be viewed as the

function of X = {x1, x2}.
After we derive the uncertain code, we determine the

uncertain bits based on the values of the other certain bits
to form one or more codes of image local structures. Uniform
patterns represent local primitives, including spot, flat, edge,
edge end and corner. They appear much more often than non-
uniform patterns in natural images. Since uniform patterns
occur more likely than non-uniform ones, we assign the values
of uncertain bits X so as to form possible uniform LBP codes.
A non-uniform pattern is generated only if no uniform pattern
can be formed. Take Fig. 2(b) as an example. We determine
the uncertain bit of uncertain code “11X1X0X0” so as to form
only uniform patterns, e.g. “11110000” and “11111000”.

Mathematically, let �u denote the collection of all uniform
LBP codes. For L B Pu2

8,2, �u consists of 58 uniform codes.
Based on the uncertain code C(X), a set of the proposed
NRLBP codes are obtained as:

SNRLBP = {C(X)|X ∈ {0, 1}n, C(X) ∈ �u}. (7)

Now let us construct the histogram of NRLBP for a local
image patch. Let m denote the number of elements in SNRLBP.
If m > 0, the bin corresponding to each element in SNRLBP

will be added by 1/m. After all, all these patterns originate
from one uncertain code. If m = 0, the non-uniform bin will
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Fig. 2. Illustration of encoding process of NRLTP and comparison to LBP and LTP. (a), (b), (c), (d) are corresponding to m = 1, 2, 3, 4 resulting NRLBP
codes, respectively. (e) shows an example that no uniform code can be formed. The proposed NRLBP is significantly different from LBP and LTP. Threshold
t is chosen as 2 for LTP and NRLBP in this figure.

Algorithm 1 Histogram Construction of the Proposed NRLBP

be added by 1. This process is repeated for every pixel in the
patch. Algorithm 1 summarizes the process.

Now we compare the proposed NRLBP with LBP and LTP
by several examples. We consider the cases that different
number of LBP codes are derived in SNRLBP. Image patterns
in Fig. 2(a), (b), (c), (d) generate m = 1, 2, 3, 4 NRLBP codes,
respectively. Fig. 2(e) shows an example where no uniform
code can be formed for NRLBP. The corresponding LBP code
and LTP code are also given. For LTP, the positive LBP and
negative LBP are accumulated in two different histograms,
whereas for LBP and NRLBP, the codes are accumulated in
one histogram.

As noise may change a uniform image pattern into an
unstable non-uniform pattern, the proposed NRLBP corrects
such a code back to uniform code. As shown in Fig. 2(a),
the LBP code is “11010010”, which may be distorted by the
noise. The proposed NRLBP first derives the uncertain code
“11X100X0”, and then determine its uncertain bits by forming
the uniform code “11110000”. This can be viewed as an error-
correction mechanism. Note that we only attempt such an error
correction on uncertain bits. We do not attempt to correct the
non-uniform patterns that are resulted from two strong states.
Similarly, we can observe such an error-correction process in
Fig. 2(b), (c), (d). In these three cases, more than one NRLBP
code is generated.

The proposed NRLBP corrects noisy non-uniform patterns
back to uniform pattern. Fig. 3 shows the histogram of
LBP, LTP and NRLBP for the image shown in Fig. 6(c).
The threshold t is chosen as 10 for LTP and NRLBP. LTP
histogram is the concatenation of positive LBP histogram and
negative LBP histogram. The last bin of each histogram is
corresponding to non-uniform patterns, and other bins are
corresponding to uniform patterns. Clearly, compared with
LBP histogram and LTP histogram, non-uniform patterns in
NRLBP histogram are reduced significantly from about 35%
to about 10% only. The proposed NRLBP corrects a large
amount of non-uniform patterns that are corrupted by the noise
back to uniform patterns.

The proposed NRLBP is different from LBP and LTP in
many other aspects besides the capability of noise resistance
and error-correction. The LBP code is one of the NRLBP
code set if it is uniform. The only exception is that the LBP
code is non-uniform and is corrected back to uniform code in
NRLBP. Compared with LTP, the treatment of uncertain state
is totally different for NRLBP. For LTP, all uncertain bits are
set to 0 for positive half and 1 for negative half as shown in
Fig. 2, whereas for the proposed NRLBP, we do not hurry
for a decision of the uncertain bits. We treat them as if they
could be encoded as 1 and/or 0, and determine their values
based on the other bits of the code. Mathematically, for LTP,
X ∈ {0}n for positive half and X ∈ {1}n for negative half,
whereas X ∈ {0, 1}n for NRLBP. The number of histogram
bins is also different. LTP histogram consists of 118 bins,
whereas NRLBP histogram only has 59 bins.

For implementation, a look-up table from the uncertain
code to the feature vector of NRLBP histogram can be pre-
computed. Then, the feature vector of local image patch can
be easily obtained by summing up the feature vector of each
pixel in this image patch.

C. Proposed Extended Noise-Resistant LBP

The local primitives represented by uniform LBP mainly
consist of spots, flat region, edges, edge ends and corners [1],
as shown in Fig. 4. However, a large group of local primitives
are totally discarded, e.g. lines patterns, as shown in Fig. 5.
Although those patterns may not appear as frequently as
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(a) LBP histogram
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(c) NRLBP histogram

Fig. 3. The histogram of LBP, LTP and NRLBP for the image shown in Fig. 6(c). LTP histogram is the concatenation of positive LBP histogram and
negative LBP histogram. The last bin of each histogram is corresponding to non-uniform patterns. Compared with LBP histogram and LTP histogram, NRLBP
significantly reduces non-uniform patterns from about 35% to about 10%. The proposed NRLBP corrects a large amount of noisy non-uniform patterns back
to uniform patterns. (a) LBP histogram. (b) LTP histogram. (c) NRLBP histogram.

Fig. 4. Local primitives detected by L B Pu2
8,2.

Fig. 5. Samples of line patterns. Those three rows are corresponding to
horizontal, diagonal and vertical lines. The diagonal lines are rare patterns for
natural images and hence discarded. The remaining horizontal and vertical
lines are the proposed extended set of uniform patterns.

uniform patterns, they represent an important group of local
primitives that may be crucial for recognition tasks. Grouping
them with other non-uniform patterns into one bin may result
in information loss. Therefore, we introduce an extended set of
uniform patterns to preserve line patterns. Among all possible
line patterns, diagonal lines appear less frequently. In order
to keep the feature vector compact, we only choose nearly
horizontal or vertical lines.

Let α denote the angle of the line away from the horizontal
line. If α ∈ [0, 30◦) or α ∈ (150◦, 180◦], it is considered as a
horizontal line. If α ∈ [60◦, 120◦], it is considered as a vertical
line. If α ∈ [30◦, 60◦) or α ∈ (120◦, 150◦], it is considered
as a diagonal line. Fig. 5 shows some samples of horizontal,
diagonal and vertical lines.

The proposed extended set of uniform patterns consist of
48 patterns. Including 58 uniform patterns, we derive the
extended uniform patterns. Similarly as NRLBP, we can derive
the extended NRLBP (ENRLBP). Instead of forming uniform
patterns, we form extended uniform patterns as our ENRLBP
pattern. In such a way, line patterns are preserved during the

encoding process. The number of bins of ENRLBP histogram
is 107, which is smaller than LTP histogram that has 118 bins.

III. EXPERIMENTAL RESULTS

We conduct comprehensive experiments to validate the
advantages of the proposed NRLBP and ENRLBP. Table 1
summarizes the approaches compared with, the classifiers used
and the applications tested on.

The proposed approaches are compared with uniform LBP
and uniform LTP. E.g. for face recognition, L B Pu2

8,2 and
LT Pu2

8,2 are used. Let N RL B PP,R , E N RL B PP,R denote the
coding schemes for NRLBP and ENRLBP using P neighbors
at the distance of R to the center pixel, respectively. The
number of features for each patch is 59 for L B Pu2

8,2, 118 for
LT Pu2

8,2, 59 for N RL B P8,2 and 107 for E N RL B P8,2.
Dominant LBP (DLBP) [7], novel extended LBP
(NELBP) [34] and noise tolerant LBP (NTLBP) [35]
are compared as they extract information from non-uniform
bins, similarly as our approaches do. We choose the dominant
patterns that account for 80% of the total pattern occurrences,
same as in [7]. Fuzzy LBP (FLBP) [5], [28], [38] is also
compared. We implement fuzzy LBP using piece-wise linear
fuzzy membership function in [5]:

f1,d (z p) =

⎧⎪⎨
⎪⎩

0 if z p < −d ,

0.5 + 0.5z p
d if −d ≤ z p ≤ d ,

1 if z p > d .

(8)

f0,d (z p) = 1 − f1,d (z p) (9)

where f1,d and f0,d are the probability that pixel difference
z p should be encoded as 1 and 0, respectively. The parameter
d controls the amount of fuzzification.

Different classifiers are utilized in our experiments. For
face recognition, we use the nearest-neighbor (NN) classifier
with three different distance measures: Chi-square distance,
histogram intersection distance and G-statistic, as defined in
Eqn. (10), (11) and (12), respectively. For texture recognition
and protein cellular classification, linear SVM is used, and for
image segmentation, k-means clustering algorithms is used.

χ2(x, y) =
∑
i, j

(xi, j − yi, j )
2

xi, j + yi, j
, (10)
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TABLE I

SUMMARY OF THE APPROACHES COMPARED WITH, THE CLASSIFIERS USED AND THE APPLICATION TESTED ON

DH I (x, y) = −
∑
i, j

min(xi, j , yi, j ), (11)

DG(x, y) = −
∑
i, j

xi, j log yi, j , (12)

where x, y are the concatenated LBP feature vectors of two
image samples; xi, j and yi, j are j -th dimension of i -th patch.
The G-statistic is numerically unstable, as many histogram
bins may have zero elements, which easily causes DG → in f .
Thus, we modify it into a numerically stable form:

DG(x, y) = −
∑
i, j

xi, j log(xi, j + yi, j ), (13)

Only when both xi, j and yi, j are zero, we set 0 log(0) = 0.
We call this distance measure as Modified G-statistic (MG).
MG is numerically more stable and hence can better handle
the problem of too few elements in the histogram than
G-statistic.

We conduct comparison experiments for various applica-
tions. Firstly, we inject Gaussian noise and uniform noise of
various noise levels onto the images of the AR database [39]
for face recognition and the Outex-13 dataset [40] for texture
recognition. The proposed NRLBP and ENRLBP are com-
pared with various LBP/LTP variants in order to validate the
noise-resistant property of the proposed approaches. Then,
we apply the proposed approaches on real images that are
noise-prone. Illumination variation is one of big challenges
for face recognition. We conduct experiments on two challenge
face databases with large illumination variations: the extended
Yale B database [41], [42] and the O2FN database [43].
The proposed approaches are also compared with LBP/LTP
variants for protein cellular classification on the 2D Hela
database [44] and image segmentation on the image of the
Outex segmentation database [40] and one image from the
web. In order to reduce the illumination variations, the images
of the Outex-13 dataset, the extended Yale B database and
the O2FN database are pre-processed similarly as in [19]. We
utilize the source codes provided by the authors of [19] to
perform this photometric normalization.

A. Face Recognition on the AR Database

For face recognition, we adopt a challenging experimental
setting. Only one image per subject is used as the gallery
(or training) set and all others are used as the probe set.
In many real applications, we are not able to obtain multiple
images per subject and we may have only one image per
subject.

Fig. 6. The images with additive Gaussian noise of σ = 0, 0.05, 0.1, 0.15,
respectively.

On the AR database, the proposed approaches are compared
with LBP/LTP variants on images injected with noise in
order to demonstrate their noise-resistant property. The AR
database is of high resolution and high image quality, and
considered as a face database with almost no image noise.
75 subjects are chosen from the AR database, each with 14
images. For each subject, it contains images from 2 sections.
Each section contains 7 images: one neutral image, 3 images
with different facial expressions and 3 images in different
illumination conditions. We repeat experiments 6 times. For
each trial, we use Image 1, 5, 6, 8, 12, 13 of each subject as the
gallery set, respectively. The other 13 images of each subject
are used as the probe set. It is a challenging experimental
setting as face images with facial expression variations need
to be identified just based on a single face image.

1) Resistant to Additive Gaussian Noise: Gaussian noise
is one of the most common types of noise. The images are
normalized in the range of (0, 1), and then we apply additive
Gaussian noise with zero mean and standard derivation of σ .
We conduct the experiments for σ = 0.05, 0.10, 0.15. The
samples of noisy images are shown in Fig. 6. When the noise
level is high, the images are barely recognizable, and the
recognition task becomes more challenging.

For LTP, NRLBP and ENRLBP, there is one free parameter:
threshold t ∈ [0, 255]. Fuzzy LBP also has a free parameter:
fuzzification d . We vary t for LTP, NRLBP and ENRLBP, and
d for fuzzy LBP. Only the recognition rates at the optimal
setting are reported. Table 2 summarizes the average recogni-
tion rate and the standard derivation of each approach at the
optimal setting on the AR database injected with Gaussian
noise. Table 2 shows that the proposed NRLBP and ENRLBP
achieve comparable or slightly better performance compared
with FLBP, whereas consistently outperform other approaches
for all settings using different distance measures. As the
noise level increases, the performance gain of the proposed
approaches over approaches other than FLBP becomes more
significant.
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TABLE II

SUMMARY OF THE AVERAGE RECOGNITION RATE AND THE STANDARD DERIVATION OF EACH APPROACH AT THE

OPTIMAL SETTING ON THE AR DATABASE INJECTED WITH GAUSSIAN NOISE

Fig. 7. The recognition rates of LBP, LTP, DLBP, FLBP, NRLBP and ENRLBP using Chi-square distance vs. threshold t on the AR database injected with
Gaussian noise σ = 0.05, 0.10, 0.15. As the noise level increases, the optimal threshold increases.

In order to study the effect of threshold t (or fuzzification
parameter d), we plot the recognition rates vs. t (or d) for
LTP, FLBP, NRLBP, ENRLBP using Chi-square distance, as
shown in Fig. 7. LBP and DLBP are shown as dashed lines.
For the low noise level, σ = 0.05, NRLBP and ENRLBP
are slightly better than DLBP and visibly better than LBP,
LTP and FLBP. For the middle noise level, σ = 0.10,
the two proposed approaches slightly outperform FLBP and
significantly outperform LBP, LTP and BLBP. For the high
noise level, σ = 0.15, while LBP, LTP and DLBP fail to work,
FLBP, NRLBP and ENRLBP can still achieve recognition
rates over 70% if proper thresholds are applied. Fig. 7 shows
that the two proposed approaches and FLBP are the only ones
that work well for all tested noise levels.

We can also observe from Fig. 7 that the optimal threshold
increases when the noise level increases. The gradual change
of face image carries important information, and will result in
small pixel differences. A small threshold will be sufficient to
handle the small image noise. If the threshold becomes larger,
more pixel differences will be wrongly encoded as uncertain
state, and the performance will drop as shown in Fig. 7(a).
When the noise level is high, the pixel differences spread out
and the histogram becomes flat. A large threshold is needed
to handle the large image noise.

Fig. 8. The images with uniform noise of p = 0.1, 0.2, 0.4, 0.7,
respectively.

2) Resistant to Additive Uniform Noise: Uniform noise
is another common type of noise. We conduct experi-
ments on the AR database injected with additive uniform
noise in the range of (−p/2, p/2). The corresponding
standard derivation is σu = p/

√
12. We vary the noise

range for p = 0.1, 0.2, 0.4, 0.7, and respectively σu =
0.0289, 0.0577, 0.1155, 0.2021. Sample images are shown in
Fig. 8. When the noise level is high, the images are severely
distorted and barely recognizable.

The proposed approaches are compared with 6 LBP/LTP
variants on the AR database injected with uniform noise. The
average recognition rates and the standard derivation at the
optimal setting are summarized in Table 3. Both proposed
approaches achieve comparable or better performance than
other approaches. DLBP performs well for very low noise
level, but it is even more sensitive to noise than LBP and
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TABLE III

SUMMARY OF THE AVERAGE RECOGNITION RATE AND THE STANDARD DERIVATION OF EACH APPROACH AT THE

OPTIMAL SETTING ON THE AR DATABASE INJECTED WITH UNIFORM NOISE

hence performs even worse than LBP for middle and high
noise levels. FLBP is also shown resistant to noise. Except
for FLBP, as the noise level increases, the performance gain
of the proposed approaches over other approaches increases.

B. Texture Recognition on Outex-13 Dataset

Outex-13 dataset [40] consists of 68 classes of textures,
each with 20 images. To test the noise-resistant property of
the proposed approaches on the applications other than face
recognition, we inject Gaussian noise and uniform noise of
different noise levels onto the images of Outex-13 dataset, e.g.
Gaussian noise of σ = 0.05, 0.10, 0.15 and uniform noise of
p = 0.1, 0.2, 0.4. Preprocessing in [19] is useful to reduce
noise. Thus, the noisy images are preprocessed in the same
way as in [19]. Sample images and preprocessed images are
shown in the first and second row of Fig. 9, respectively. We
randomly choose 10 images from each class for training and
the rest for testing. The proposed approaches are compared
with 6 LBP/LTP variants. We extract features using 8 neigh-
bors at the radius of one. Linear SVM is used as the classifier,
which is implemented using LIBSVM package [45]. The cost
parameter C is chosen as 1. The experiments are repeated 5
times, and only the average performance is reported. Table 4
summarizes the performance comparison on the Outex-13
dataset injected with Gaussian noise and uniform noise.
The proposed NRLBP and ENRLBP consistently achieve
comparable or better performance compared with other
approaches.

C. Face Recognition on the Extended Yale B Database

The extended Yale B database [41], [42] contains 38 sub-
jects under 9 poses and 64 illumination conditions. We follow
the same database partition as in [19]. The images with most
neutral light source(“A+000E+00”) are used as the gallery
images and all other frontal images are used as the probe
images (in total 2414 images of 38 subjects). This dataset
contains large illumination variations. The sample images are

Fig. 9. Row 1 shows the sample images of Outex-13 dataset injected with
Gaussian noise of σ = 0.05, 0.10, 0.15 and uniform noise of p = 0.1, 0.2, 0.4,
respectively. Row 2 shows the respective images after the preprocessing as
in [19].

Fig. 10. The 1st row and 2nd row show the samples of geometrically
normalized and photometrically normalized images for the extended Yale B
database, respectively. The leftmost image is the gallery image, and the other
3 images taken under extreme lighting conditions are the probe images.

shown in the first row of Fig. 10. Some images are taken
under extreme lighting conditions. Even after photometric
normalization, as shown in the second row of Fig. 10, a large
amount of image noise exist in the images. The proposed
approaches are compared with 6 LBP/LTP variants using
nearest-neighbor classifier with Chi-square distance, histogram
intersection and modified G-statistic. Table 5 summarizes the
highest recognition rates at the optimal threshold for various
approaches using different distance measures. The proposed
approaches achieve a slightly better performance than LBP,
LTP, DLBP and FLBP, and much better performance than
NELBP and NTLBP.
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TABLE IV

TEXTURE RECOGNITION ON THE OUTEX-13 DATABASE INJECTED WITH GAUSSIAN NOISE AND UNIFORM NOISE

TABLE V

THE FACE RECOGNITION RATE AND THE OPTIMAL THRESHOLD ON THE

EXTENDED YALE B DATABASE

Fig. 11. The samples of geometrically normalized (Row 1) and photomet-
rically normalized (Row 2) face images of the O2FN databases.

D. Face Recognition on the O2FN Mobile Database

The O2FN mobile face database [43] is our in-house face
database. It is designed to evaluate the face recognition algo-
rithms on mobile face images, which are of low resolution and
low image quality, and significantly corrupted by the noise. It
contains 2000 face images of size 144 × 176 pixels from 50
subjects. The images are self-taken by the users. The users
are told to take roughly 20 indoor images and 20 outdoor
images with minimum facial expression variations and out-
plane rotations. Thus, the O2FN database mainly contains
in-plane rotations and illumination variations. Fig. 11 shows
some samples of geometrically normalized and photometri-
cally normalized images. The images are captured by O2 XDA
frontal camera with native phone settings and without post-
processing. The images are severely distorted by the noise,
e.g. Gaussian noise, Salt & Pepper noise and motion blur. To
reduce the noise and illumination variations, the images are
photometric normalized as in [19]. Even after the photometric
normalization, as shown in Fig. 11, the images still contain a
large amount of noise.

The proposed approaches are compared with 6 LBP/LTP
variants using nearest-neighbor classifier with 3 different

TABLE VI

PERFORMANCE COMPARISON FOR FACE RECOGNITION

ON THE O2FN DATABASE

Fig. 12. Sample images of the 2D Hela database. (a) Actin_001.
(b) DNA_001. (c) Endosome_001. (d) ER_001. (e) Golgia_001.
(f) Golgpp_001.

TABLE VII

THE PERFORMANCE COMPARISON FOR PROTEIN CELLULAR

CLASSIFICATION ON THE 2D HELA DATABASE IN TERMS OF

RECOGNITION RATE AND TIME

distance measures. The experiments are repeated 5 times.
For each trial, we randomly choose one image of each subject
as the gallery set and the rest as the probe set. We test LTP,
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Fig. 13. Example of segmentation results on a mix-texture image for LBP, LTP, dominant LBP, fuzzy LBP, the proposed NRLBP and ENRLBP.

Fig. 14. Example of segmentation results on a natural scene image for LBP, LTP, dominant LBP, fuzzy LBP, the proposed NRLBP and ENRLBP.

NRLBP and ENRLBP for different thresholds, and FLBP
for different d . Only the performance at the optimal setting
is reported. The average recognition rates and the standard
derivation at the optimal setting on the O2FN database are
summarized in Table 6. The proposed NRLBP and ENRLBP
achieve a comparable or slightly better performance compared
with LTP, DLBP and FLBP, and significantly outperform LBP,
NELBP and NTLBP using all three distance measures.

E. Protein Cellular Classification on 2D Hela Database

Protein cellular classification is useful when characterizing
newly discovered genes. 2D Hela database contains 862 single-
cell images (16-bit gray scale of size 382 × 382 pixels) [44].
There are ten classes in this database and each with more
than 70 images. Some sample images are shown in Fig. 12.

Multi-scale LBP has shown good performance on this
dataset [46]. We use {P, R} to represent the descrip-
tor extracted using P neighbors at the distance of R to
the center pixel. Then, we extract features at multiple
scales: {8, 1}, {8, 2} and {8, 3}. Then those features are
concatenated as the final feature vector for classification.
Linear SVM [45] is used for classification. The cost parameter
is the same as in [37], i.e. C = 100. We randomly choose 80%
of the database for training and 20% for testing. The exper-
iments are repeated five times and the average performance
is reported. The performance comparison of the proposed
approaches with other LBP/LTP variants are shown in Table 7.
The proposed NRLBP achieves the highest recognition rate of
95.93%. FLBP, LTP and the proposed ENRLBP also achieve
good performance on this dataset.
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F. Image Segmentation

Besides recognition tasks, we also conduct comparison
experiments for image segmentation. We extract features using
8 neighbors at the distance of one to the center. We follow the
similar setup in [38] to segment texture images. Features are
extracted in a raster-scanning way using sliding windows of
16×16 pixels with a step size of one pixel. K-means clustering
algorithm with “cityblock” distance is used to classify the
scanning windows. The number of clusters is given as input.
Qualitative segmentation results of the proposed approaches
and LBP/LTP variants are given. We choose the tenth image
of the Outex segmentation test suite [40] and one natural
scene image downloaded from the internet for illustration,
as shown in Fig. 13 and Fig. 14. The Outex image consists
of five textures. The ground-truth labeling of segments is
shown in Fig. 13(b). Apparently, the proposed NRLBP and
ENRLBP achieve better segmentation performance than LBP,
LTP, DLBP and FLBP. The natural scene image shown in
Fig. 14(a) has four texture regions: sky, far forest, nearby forest
and grassland. The proposed NRLBP and ENRLBP have much
less misclassifications, and hence achieve better performance
than other approaches.

G. Comparison of Computational Complexity

The proposed NRLBP and ENRLBP can be implemented
by a look-up table to compute the NRLBP/ENRLBP his-
togram from the uncertain code. It is very fast to compute
the contribution of an uncertain code to the histogram by
the look-up table and hence derive the feature vector of
NRLBP/ENRLBP during recognition. The average time per
image of feature extraction on the 2D Hela database for various
LBP/LTP variants is shown in Table 7. The image is of size
382 × 382 pixels. Features are extracted under the setting of
P = 8, R = 1. We use Matlab 2012b on Intel Duo CPU
3.0 GHz with 4 Gb RAM. Compared with LBP, NRLBP and
ENRLBP only introduce a small overhead. NRLBP is in fact
the second fastest approach. In contrast, it takes much more
time to compute FLBP features, e.g. 2823.7 ms, which is 32
times of NRLBP.

IV. CONCLUSION

LBP is sensitive to noise. Even a small noise may change
the LBP pattern significantly. LTP partially solves this problem
by encoding the small pixel differences into the same state.
However, both LBP and LTP treat the corrupted patterns as
they are, and lack a mechanism to recover the underlining
image local structures.

As the small pixel difference is most vulnerable to noise,
we encode it as uncertain bit first, and then determine its
value based on the other bits of the LBP code to form a
code of image local structure. Uniform patterns represent
local image primitives, and appear more frequently than non-
uniform patterns in natural images. In contrast, non-uniform
patterns are less reliable, thus are more error-prone. Therefore,
we assign the values of uncertain bits so as to form all
possible uniform LBP codes. In such a way, we correct
noisy non-uniform patterns back to uniform code. For LBP

and LTP, a large group of local primitives, i.e. line patterns,
are completely ignored. Thus, we propose extended uniform
patterns and form those patterns as our ENRLBP patterns
when determine uncertain bits.

The proposed approaches show stronger noise-resistance
compared with other approaches. We inject Gaussian noise
and uniform noise of different noise levels on the AR database
for face recognition and the Outex-13 dataset for texture
recognition. Compared with FLBP, the proposed approaches
are much faster and achieve comparable or slightly better
performance. They consistently achieve better performance
than all other approaches. We further compare the proposed
NRLBP and ENRLBP with others for face recognition on the
extended Yale B database and the O2FN database, protein
cellular classification on the 2D Hela database, as well as
image segmentation. The proposed approaches demonstrate
superior performance on these applications.
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