IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

1537

Iterative Truncated Arithmetic Mean Filter and
Its Properties

Xudong Jiang, Senior Member, IEEE

Abstract—The arithmetic mean and the order statistical median
are two fundamental operations in signal and image processing.
They have their own merits and limitations in noise attenuation
and image structure preservation. This paper proposes an itera-
tive algorithm that truncates the extreme values of samples in the
filter window to a dynamic threshold. The resulting nonlinear filter
shows some merits of both the fundamental operations. Some dy-
namic truncation thresholds are proposed that guarantee the filter
output, starting from the mean, to approach the median of the
input samples. As a by-product, this paper unveils some statistics
of a finite data set as the upper bounds of the deviation of the me-
dian from the mean. Some stopping criteria are suggested to facili-
tate edge preservation and noise attenuation for both the long- and
short-tailed distributions. Although the proposed iterative trun-
cated mean (ITM) algorithm is not aimed at the median, it offers a
way to estimate the median by simple arithmetic computing. Some
properties of the ITM filters are analyzed and experimentally ver-
ified on synthetic data and real images.

Index Terms—Edge preservation, image noise attenuation, me-
dian approximation, median filter, nonlinear filter.

I. INTRODUCTION

HE LINEAR finite-impulse response (FIR) filter is widely
T used for various purposes in signal and image processing
due to its simplicity in realization. The output of all FIR filters is
a weighted arithmetic mean of the signal points within the filter
window. The arithmetic mean takes a central role in various FIR
filters. It is well known that the simple mean filter is optimal for
attenuating Gaussian noise, which is the most frequently occur-
ring noise in practice. However, linear filters cannot cope with
the nonlinearities of the image formation model and do not take
account of the nonlinearities of human vision. The abrupt change
in the gray level, such as edges and boundaries, carries important
information for both human and machine visual perception. All
linear filters tend to blur edges and to destroy fine image details.
Filters having good edge preservation properties are highly de-
sirable for image processing. Therefore, nonlinear techniques
with edge preservation emerged very early in image filtering and
have had a dynamic development in the past three decades.
The median filter [1], originating from the robust estima-
tion theory and well studied in the literature, is a popular non-
linear filter. Its statistical and deterministic properties have been
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thoroughly studied from a theoretical point of view [2]. Al-
though it is simple in formulation, the median filter yields good
edge preservation and impulsive noise suppression characteris-
tics that are highly desirable in image processing. This is evi-
denced by the amount of research work published [2] and the
widespread deployment of the median filter in a variety of ap-
plications. Its disadvantages, mainly the inflexibility in the filter
structure, the destruction of fine image details, and its relatively
poor performance in attenuating additive Gaussian noise and
other short-tailed noise, have led to the development of various
modifications and extensions of the fundamental median filter.

In order to provide more flexibility in the design of median
filters, the weighted median filters were introduced [3]-[5], and
a steerable weighted median filter [6] has been recently devel-
oped. The median filter was extended to various rank-order-
based filters, such as the lower—upper—middle filters [7], [8], the
fuzzy rank filters [9], [10], and the rank-conditioned rank-se-
lection filters [11]. To tackle the problem of the destruction of
image details, a lot of image detail-preserving filters were pro-
posed, such as multistage median filters [12], [13], FIR-me-
dian hybrid filters [14], truncation filters [15], and various noise
adaptive switching median filters based on some noise detection
mechanisms [16]-[18].

The poor performance of the median filter relative to the
mean filter in attenuating Gaussian noise and other short-tailed
noise leads to another important bunch of developments. Most
of them essentially make compromises between the mean and
median filters. Such filters include the L filter, the STM filter
[2], the a-trimmed mean («T) filter, [19], [20], the mean—me-
dian (MEM) filter [21], [22], and the median affine (MA) filter
[23]. Their characteristics can be tailored to the noise proba-
bility distribution. These filters form a family with properties
smoothly varying between the two limiting cases, i.e., the mean
and median filters. However, their robustness to different kinds
of images is controlled by some free parameters. Choosing the
optimal value of the parameters to make them well adaptive to
the image is not an easy task, although some efforts were made
[22]-[24]. The linear combination of the mean and median
filters (in MEM filters) may not be an optimal solution to atten-
uate noise of different degrees of impulsiveness. The aT filter
discards samples strictly relying on their rank and ignoring their
dispersion. This leads to inefficiency and loss of fidelity [23].
The modified trimmed mean (MTM) filter is very sensitive to
the small variation of samples located close to the threshold
[23]. On the other hand, the soft-limiting character of the MA
filter [23] limits the filter’s power in attenuating the strong
impulsive noise. The commonality of the aforementioned
filters is that they all require two types of operations, namely,
arithmetic computing and data sorting. In terms of computation
and realization, the data-sorting algorithm is totally different
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from and much more complex than arithmetic computing. For
multivariate signals such as color images, finding the vector
median is very time consuming, and sorting the vector data is
intractable. In contrast, the arithmetic computation can be very
easily extended to the vector space.

These observations motivate us to explore a more effective
and efficient way for noise attenuation where the optimal so-
lution is neither the mean nor the median. First, if the median
is not the optimal solution, why must the filter rely on it using
data sorting that is intractable in some applications? A simple
second mean after truncating the data samples far away from the
first mean has shown much more robustness than the first mean
for the fingerprint ridge frequency estimation [25]. Second, the
problems of the oT and MTM filters analyzed in [23] can be
circumvented by truncating the extreme values to the threshold
instead of discarding these samples. Third, in the strong impul-
sive environment, the hard truncation of all extreme values to
a small threshold is more effective than softly weighting them
according to their dispersion (in MA filters).

Instead of linearly combining the mean and the median (in
MEM filters) or sorting the data followed by averaging samples
nearest to the computed median (in «T and MTM filters) or
averaging all samples weighted according to their distances from
the median (in MA filters), this paper proposes a filter that per-
forms simple truncated arithmetic averaging iteratively. Without
sorting the samples, it approaches the median filter. Stopping
the iteration early, the proposed filter owns merits of both the
mean and median filters. Based on our findings in this paper
about the upper bounds of the deviation of the median from the
mean, proper dynamic truncation thresholds are proposed that
guarantee the filter output, starting from the mean, to approach
the median for any data distribution. Some stopping criteria are
suggested to facilitate edge preservation and noise attenuation
within just a few iterations. Although the proposed iterative
truncated mean (ITM) filter is not aimed at the median, it offers
a way to estimate the median by simple arithmetic computing.

Although the myriad (LogCauchy) filter does not require data
sorting, it is designed for a specific noise distribution, namely,
the a-stable distribution, and its performance highly depends on
the tunable “linearity parameter” [26]. Similar to the ITM filter,
the myriad filter also needs an iterative algorithm, whose com-
putational complexity is, however, much greater than the ITM
filter. In this paper, the optimal myriad (OM) filter [26] that uses
the optimal linearity parameter determined by the parameters of
the noise distribution is experimentally compared with the pro-
posed filter that does not use any prior knowledge of noise.

II. ITERATIVE TRUNCATED ARITHMETIC MEAN FILTER

In general, a filter output is the result of an operation on
a group of inputs within a filter window. Suppose the filter
window contains 7 inputs residing in a data set xg = {z;},
1 < ¢ < n. The mean and median filters, respectively, produce
outputs pp = mean(xg) and

= arg min T; — @l 1
¢ ngQ' ¢l (1)

In general, the outputs of mean filter ;29 and median filter ¢ are
different. Some merits and limitations of these two types of fil-
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ters complement each other. It is therefore desirable in many
applications that a filter owns the merits of both the mean and
median filters. In terms of computation and realization, the me-
dian filter requires some data selection or a sorting algorithm
that is totally different from and much more complex than the
arithmetic operations used in the mean filter.

Our goal is to build an iterative filter based on simple arith-
metic operations, which owns merits of both the mean and me-
dian filters. Changing the stopping criteria of the iteration, the
filter can produce an output closer to the arithmetic mean or
closer to the median. The filter output is the result of the pro-
posed ITM algorithm.

A. Outline of the Proposed ITM Algorithm

Starting from x = xg, the proposed ITM algorithm consists
of three steps.

Outline of the ITM algorithm:

1) Compute the arithmetic mean, i.e.,
2)

p = mean(x).

2) Compute dynamic threshold 7 and truncate input data set
x = {z;} by

@:{“+ﬂ foi>p+7m  icn @)
pw—r1, fo; <p—r
3) Return to step 1) if stopping criterion S is violated.
Otherwise, terminate the iteration.
#
The type-1 ITM filter output is given by
yr1 = mean(x). 4)

Letting x, = {z;||z; — p| < 7} and |x,| be the number of
elements in set X, the type-2 ITM filter output is given by

| mean(x,.),
Y2 = mean(x),

if [x,| > ¢
otherwise.

(&)

Parameter &, £ > 0, is used to avoid an unreliable mean when
too few input points remain in x,.. In general, ¢ is a portion of
n, for example, & = n/4

Unlike the aT and MTM filters that discard the samples of
extreme values, the ITM algorithm truncates them to threshold
7. This circumvents the problems of the «T and MTM filters an-
alyzed in [23] and ensures the median of the truncated data set
unchanged if a proper dynamic truncation threshold 7 is applied.
After the iteration, we may choose output 1, which is called
the ITM1 filter (4), or output 42, which is called the ITM2 filter
(5). Although the median as the output may not necessarily out-
perform the mean in all cases, it is desirable that filter outputs
y+1 and y4o approach the median of the original inputs given a
sufficient large number of iterations. By choosing proper stop-
ping criteria based on the requirement of the application, the
filter owns merits of both the mean and median filters. Thus, the
goal of the proposed ITM algorithm is to reduce the dynamic
range of the inputs iteratively so that the arithmetic mean of the
truncated inputs approaches the median.
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The most critic technique to achieve this goal is to find a
proper dynamic truncation threshold 7. One necessary condi-
tion of such a threshold is that it should be large enough to keep
the median always within the dynamic range of truncated inputs
x. This gives us the lower bound of the truncation threshold to
keep the median of x unchanging in the truncation process. An-
other necessary condition is that it should be small enough to
ensure that the ITM algorithm never idles if p # ¢ for all pos-
sible distributions of the data set. This gives us the upper bound
of the truncation threshold.

B. Finding the Dynamic Truncation Threshold

As a necessary preliminary of the study, two subsets are de-
fined as

xn 2 {zilz; € x, @y > p} (6)
X 2 {zi|lz; € x, z; < p}. 7

Let ny, ny, ptp, and gy denote, respectively, the numbers and the
means of the elements in these two subsets. Obviously, x; U
X; = X,np +n; = n and

Nppn + N =np
=npp+ nyp. (8)

If we define 6, 2 wr — poand &; 2 w— g, (8) becomes
nhéh = nlél. (9)

Now, we are able to explore the possible dynamic truncation
thresholds.

One candidate could be min[max(x; — u), max(p —x;)] as it
keeps all samples on one of the two sides of mean y unchanged.
Although this threshold is definitely larger than the lower bound,
it is also larger than the upper bound because the ITM algorithm
idles if max(z; — ) = max(pu—x;). If we choose max(6, 61),
the ITM algorithm still may idle, for example, in the case that
all z; on the corresponding side of ;4 have a constant value. As
max(dy, &) is still too large, one may think of min(éy,6;) as
the truncation threshold, which ensures the ITM algorithm no
idling if o # ¢. Unfortunately, min(8y,, 6;) is smaller than the
lower bound of the truncation threshold. It is not very difficult
to give a data set example that the distance between the median
and the mean is larger than min(éy,, 6;).

This paper proposes three possible dynamic truncation
thresholds that satisfy the two necessary conditions. They are
the average of ¢, and ¢y, i.e.,

1
L= 5(6h + 1) (10)

the sample standard deviation o, i.e.,

(1)

and the mean absolute deviation of the samples from the mean,
ie.,

(12)
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We will prove the validity of the aforementioned three simple
statistics as the dynamic truncation threshold based on our find-
ings of the following theorems and propositions, some of which
are additional by-products of this paper as they could be useful
elsewhere.

Theorem 1: The distance between the median and the mean
of any finite data set is never greater than the mean absolute
deviation of the data from the mean, i.e., letting 7 = 73, we
have

¢ —pl < 7. (13)
Proof: The absolute deviation of a data set X can be ex-
pressed as!

:L owi-m+ Y (n—w)

T=—
Ti>p z; <p

= X o = 1) + s — )]

n
1
= ;(nhéh +n107). (14)
Substituting (9) into (14) yields
T = 2@5h
n
=M, (15)
n

Let n,;, denote the number of z; larger than p+7 and n.; denote
the number of x; smaller than ;1 — 7. Obviously, for n,;, # 0,

we have
near < Y (wi—p) <Y (wi—p). (16)
T, >p+T ;>0
Since
Z (z; — ) = npby a7
Ti>p
(16) becomes
)
N < (18)
T
Substituting (15) into (18) yields
n
(This is obviously true for n,; = 0.)
According to the definition of the median, (19) means
¢ <pt. (20)

Using n,; and a way very similar to (16)—(19), we have

¢ >pu—T. 21)

Combining (20) and (21) completes our proof of inequality (13)
and, hence, Theorem 1.

7 £ 0 is assumed in the proof. Obviously, ¢ = p if 7 = 0.
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Theorem 1 guarantees the median of any finite data set x un-
changed in the truncation process of the ITM algorithm if 73 is
chosen as the dynamic truncation threshold. The following The-
orem 2 ensures that the truncation process always reduces the
dynamic range of x so that the ITM algorithm with threshold
73 never idles for any data distribution if the mean of x deviates
from its median.

Theorem 2: For any finite data set, there exists at least one
sample whose distance from the sample mean is greater than
the mean absolute deviation of the samples from the mean if
the sample median deviates from the sample mean, i.e., letting
T = T3
that |z; — p| > T, if i # ¢.

Proof: According to the definition of the median, n;, # n;
if u # ¢. Thus, from (15), we have é, # 6; and

(22)

dz;, z; € X,

7 < max(bp, 6;). (23)
From the definition of 6y, 6;, and (14), it is obvious that
dz;, z; € x, that |z; — p| > max(p,61)- (24)
Therefore, we have
dz;, z; € x, that|z; — p| > 7. (25)

This completes our proof of inequality (22) and, hence, The-
orem 2.

Now, we can explore whether 71 (10) can be also the trunca-

tion threshold. From (14) and (15), it is not difficult to see

S0+ 8) 2 75 26)
It means that inequality (13) of Theorem 1 holds true for 7 = 7.
Obviously, inequality (23) holds true for 7 = 7; and so does
inequality (22) of Theorem 2. Therefore, we can also choose 71
(10) as the truncation threshold as it meets the two necessary
conditions.

As for 75 (11), it is not difficult to see from the definition of the
standard deviation that inequality (22) of Theorem 2 holds true
for 7 = 7. In the probability theory, Chebyshev’s inequality
[27] can derive a theorem: For continuous probability distribu-
tions having an expected value and a median, the difference be-
tween the expected value and the median is never greater than
one standard deviation. This theorem about the ensemble values
of a probability distribution, however, does not mean that the
same is true about the sample mean, sample median, and sample
standard deviation of a finite data set. To find the theorem on
the finite data set analogous to that for continuous probability
distributions, we develop the following Proposition 1 about the
relation between the standard deviation and the mean absolute
deviation.

Proposition 1: For any finite data set, the sample standard
deviation is larger than or equal to the sample mean absolute
deviation of the data from their mean, i.e.,

n n

S i 2 S (e ).

=1 i=1

27)
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Proof: One of Jensen’s inequalities [28] shows
o (Zy> > > e(y:)
n n

where (-) is any concave function.
The square root /- is a concave function. Letting y; = (z; —
)2, we have

(28)

S = Xl =l
n = n '
This completes our proof of Proposition 1.
A corollary of Theorem 1 and Proposition 1 is Theorem 3.
Theorem 3: The distance between the sample median and
the sample mean of any finite data set is never greater than one
sample standard deviation, i.e.,

|p — u| < o.

Therefore, 79 (11) is also a valid truncation threshold as it
meets the two necessary conditions.

We see that the mean absolute deviation from the mean is the
tightest upper bound of the distance between the median and the
mean among the three possible quantities proposed in this paper,
namely, 73 < 71 and 73 < 79. We have not found any other arith-
metic result on a finite data set smaller than it and satisfying (13)
of Theorem 1. A smaller truncation threshold, in general, leads
to faster convergence of the ITM algorithm. Therefore, 7 = 73
is applied in this paper as the dynamic truncation threshold of
our ITM algorithm, although a larger one may lead to a slightly
better filtering performance in some cases.

The following Proposition 2 shows the decreasing truncation
threshold 7 = 73 during the ITM iteration and its upper bound.

Proposition 2: The ITM algorithm decreases truncation
threshold 7(k) (12) monotonically to zero if the mean deviates
from the median. The upper bound of (k) against the number
of iterations k is shown by the inequality

(k) < (1) (1 - i)k_l :

(29)

(30)

it # ¢,

Proof: For symbolic simplicity, index k is omitted wher-
ever no ambiguity is caused. From (15), we have

1 1 1
bn + 6 :5717'(/6) (— + —)

Nh np

= 31

n?

(32)

o 2nhm

Due to the data truncation in the previous iteration, we have
On(k) + 6i(k) > 27(k — 1), if u # ¢. Therefore

(k) = 22’;”1 (80 + 61) < 47;’;”%@ _ 1
_ (np+ ny)? — (np, —ng)? _
= (un )2 7(k—1)
2
=|1- (ﬁ) r(k—1). 33)
n

Since 1 < (An)? < n?if u # ¢, we have inequality (31), from
which it is straightforward that

it 1 # ¢,

This completes our proof of Proposition 2.

klim T(k) =0,
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C. Stopping Criteria

One possible stopping criterion Sp to ensure output ¥, close
to the median is to meet the condition

Si(e1): An 2 |nn — | < es. (34)

It is easy to see that, if criterion S; with e = 1 is met, the
truncated mean is the median for an even number of samples.
For an odd number of samples, the nearest sample on one of the
two sides of the truncated mean is the median.

However, in some specific cases, stopping criterion Sy needs
a large number of iterations to be met or even can never be met
with a finite number of iterations. One example is the image
step edge covered by the filter window where all inputs equal to
either one or the other of the two constant values. On the other
hand, in this case, ITM2 filter output % is the median of inputs
just after one iteration. Thus, we can take S; as a sufficient but
not necessary stopping condition.

A simple way to limit the number of iterations k is to set a
predefined maximum number ¢5. The stopping criterion is then

82(62) : k Z €9. (35)

In general, €5 depends on the number of input points n in the
filter window. However, it may not be a linear function of n. In
this paper, e2 = 24/n is chosen from experience.

A more efficient stopping criterion to handle the horizontal
or vertical step edge could be

(36)

However, the number of pixels on the opposite edge side of the
filter center varies from \/n to (n — \/n)/2. Obviously, the set-
ting of e3 = (n—+/n)/2 only solves the problem when the filter
center is on the edge. On the other hand, the setting of e3 = \/n
may lead to an immature stop. Therefore, an auxiliary constrain
is necessary, such as

Sy An,(k) = An.(k—1). 37

A sophisticated stopping criterion S could be some combina-
tion of the above, such as

S = 81(61) \Y 82(62) \Y 83(83) \Y [83(64) N 84] (38)

where €3 > €4, for example, e3 = (n — /n)/2 and ¢4 = \/n.

It must be mentioned that the aforementioned possible stop-
ping criteria are for general cases. It is very difficult, if not im-
possible, to find a stopping criterion optimal for all types of im-
ages and noise. There must be more efficient or effective stop-
ping criteria for some specific applications or data sets.

A
53(53) : An‘r = |n‘l’h - n‘rl| > €3.

III. PROPERTIES OF THE I'TM FILTERS

The proposed ITM filters start from the arithmetic mean and
move toward the median of inputs xy. Some of their properties
listed here are apparent, and the others are corollaries of the
theorems and propositions presented in the last section.

Property 1: TTM1 and ITM2 filter outputs y;1 and y:2 both
converge to the median of the samples in the filter window, i.e.,

lim vy = lim
pm Yt1 oot Yt2
=¢
where k is the number of iterations.

Proof: From Theorem 1, we have | — ¢| < 7. Therefore,
limg oo ¥¢1 = limyg_ oo Y42 = ¢piflimy_. o 7 = 0 because p —

(39)
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Fig. 1. Average absolute deviations over 100 000 filter outputs from the median
against the number of iterations. They are normalized by those of the mean
filters. The filter inputs are random numbers drawn from the (a) Gaussian and
(b) exponential distributions.

T < Y41, yr2 < p+7. From Proposition 2, we have limy_, oo 7 =
0if u # ¢.

For pt = ¢, y11 = = ¢. In this case, limg_, ., 7 7# 0 only if
7(k+1) = 7(k) occurs. This happens only if there is no sample
outside the truncation boundary. From the definition of 7 (12)
we see that, in this case, |z; — u| = 7 Va;, x; € X, and hence,
yr2 = yp1 = ¢ from the definition of y;2 (5). This completes the
proof of (39) and Property 1.

Fig. 1 shows the average absolute deviations over 100 000 filter
outputs y;1 and y;o from median ¢ against the number of itera-
tions. They are normalized by the average absolute deviations of
mean iy from the median. The inputs of the filters are random
numbers drawn from a Gaussian distribution and an exponential
distribution. A small filter size of n = 3 X 3 = 9and alarge size
ofn =9 x 9 = 81 aretested. Filters of size 81 in the symmetric
Gaussian environment converge slower than the other three cases
in Fig. 1 because the deviation is normalized by that of the mean.
The mean of 81 Gaussian random numbers is much closer to the
median than the other three cases in Fig. 1. With the setting of
& = n/4, the points of the curves showing the largest difference
between the ITM1 and ITM2 filters indicate the number of iter-
ations where around 75% of the samples have been truncated.

Fig. 1 just shows examples that the ITM filters converge to
the median filter. In fact, our objective is not outputting the me-
dian. As shown in the experiments later, the proposed ITM1 and
ITM2 filters with just a few iterations outperform both the mean
and median filters in many applications.
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Property 2: The ITM2 filter of size in odd number preserves
image step edges with any number of iterations.

Proof: An image step edge is defined as an intrinsic 1-D
spatial function, which is constant along one orientation (dimen-
sion) and a step function along the dimension orthogonal to the
former, called the edge profile. If the filter mask covers only one
side of the edge, the ITM2 filter does not change the constant
gray value of pixels. If the filter mask covers both sides of an
image step edge, it contains more pixels on the edge side where
the mask center resides than on the other edge side. Therefore,
all pixels on this edge side are within the truncation bound, and
those on the other side are out of it from the first iteration. Hence,
the ITM2 filter output is the average of the pixels on only one
side of the edge where the filter mask center resides. This com-
pletes the proof.

However, the ITM?2 filter output is different from that of the
median filter, although both preserve image step edges. The
former is the arithmetic average of pixels on one edge side,
whereas the latter is the median of pixels distributed on both
edge sides. Therefore, we certainly expect a better noise atten-
uation capability of the ITM2 filter than the median filter for a
noise-contaminated step edge, which is evidenced by the exper-
iments later.

Although the ITM1 filter does not own Property 2, it blurs the
step edge lighter than the mean filter with just a few iterations.
Fig. 2(a) shows a step edge profile. The filter size of n = 11 x
11 = 121 is applied. After the first iteration, the outputs of
the ITM2 filter are the same as those of the median filter. The
diamond and circle marked lines are, respectively, the outputs
of the mean filter and the ITM1 filter after only five iterations.

Although the ITM filters do not preserve other smooth edges,
they produce much lighter blur effect than the mean filter. A
smooth edge profile is modeled by a logsig function f(t) =
1/(1 4 exp(—at)), whose smoothness is controlled by a. The
profile approaches a step function if & — oo and approaches a
very flat slope function or almost a constant if & — 0. Fig. 2(b)
shows that y,; blurs the edge much lighter than the mean filter
and 5 is very close to the median filter.

In addition to edge preservation, another apparent property of
the ITM filters is that they preserve the homogeneous area of the
image. i.e., y41 = Y2 = ¢, if Vi, z; = c.

Property 3: The ITM filters are invariant to scale and bias,
ie., if z = {az; + ¢} Va;, x; € x, we have

(40)
(41)

y1(2) = ayn(x) + ¢
Yr2(2) = ayia(x) + ¢

where « and c are two constants. The proof is trivial and, hence,
omitted.
Property 4: The ITM2 filter with any number of iterations
removes impulses D; from homogeneous area Do, i.e.,
D1 U D2 = X

T = {017
C2,

(42)
where ¢; # ¢g, and |D1]| and |D5| are the numbers of elements
in sets D1 and Do, respectively.

Proof: If ID1| < n/2, |D2| > n/2, and ¢1 # co, all pixels
x; = c1 are out of the truncation bound, and all pixels x; = c2

forx; € Dy, |D1| < n/2
for z; € Do, |Da| > n/2’
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Fig. 2. Profile outputs of the median, mean, ITM1, and ITM2 filters of size
n = 11 x 11 after five iterations for the (a) step edge and (b) smooth edge.

are within it from the first iteration of the filter. Hence, ITM2
filter outputs y;2 = co from the first iteration of the filter. This
completes the proof.

IV. EXPERIMENTAL STUDIES

No parameter of the proposed filter is optimized for a specific
data set or noise distribution. The same parameters are applied
to the ITM filters throughout all experiments. The stopping cri-
terion of the ITM algorithm is fixed as S = &1 (1) V S2(24/n) vV
S3[(n — /n) /2] V [S3(\/n) A Sy] and € = n/4 is fixed for the
ITM2 filter. Better filtering performances than those shown in
this paper will be obtained if the aforementioned parameters are
adjusted for different data sets. All noise applied in this paper
has independent and identically distributed and zero mean. The
standard deviation of Gaussian noise is denoted by o,,. Six sets
of experiments are reported here.

The first two sets of experiments test the filters’ noise attenu-
ation capability in a homogeneous region, and the next two sets
test the filters” overall performance in image structure preserva-
tion and noise attenuation. The ITM filters are compared with
the mean, median, oT [19], [20], and MEM [21], [22] filters.
The mean absolute error (MAE) over 100 000 independent out-
puts is used as the performance indicator for synthetic data,
and the mean-square error (MSE) is used for real images. Al-
though some «T filters with adaptive a-values were proposed
[24], [29], none of them outperforms an a-fixed aT filter aver-
agely over the experiments. Thus, & = 0.25 is chosen as the
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Fig.3. Normalized MAE against filter size n for (a) Gaussian and (b) Laplacian
noise. The average numbers of ITM iterations are 1.5, 3.1, 5.1, and 7.3 in (a)
and 1.7, 3.5, 5.5, and 7.6 in (b), respectively, for the filter size of 9-81.

oT filter approaches the median if &« — 0.5 and approaches the
mean if  — 0.

In the last two sets of experiments, the proposed filters are
compared with three iterative-algorithm-based filters, namely,
MA [23], OM [26], and mean—LogCauchy (MLC) [21] filters.
Noise of the a-stable distribution is applied as the three filters
were proposed to tackle the problem of this noise model. The
MLC filter is a weighted sum of the mean and LogCauchy filters
to tackle the e-contaminated Gaussian noise [30]. It was sug-
gested to use the weight A equal to the prior probability of the
Gaussian noise [21], [22]. A = 0.5 is chosen in this paper and
so is for the MEM filter.

A. Single Type of Noise in a Homogeneous Region

A constant image is contaminated by noise. Fig. 3 plots
filters’ MAE normalized by that of the median filter, where
Gaussian noise is applied in Fig. 3(a) and Laplacian noise is
applied in Fig. 3(b).

It is well known that the mean filter is optimal for Gaussian
noise. It is hence not a surprise that Fig. 3(a) shows that aT,
MEM, ITM1, and ITM2 filters all perform between the mean
and median filters. Given the well-known fact that the median
filter is optimal for Laplacian noise, Fig. 3(b) surprisingly
demonstrates that the proposed ITMI filter outperforms the
median filter for all filter sizes. This probably unveils that the
median may not be optimal for a finite number of samples. The
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Fig. 4. Normalized MAE against filter size » for (a) Laplacian- and (b) impul-
sive e-contaminated Gaussian noise. The average numbers of ITM iterations are
1.6,3.3,5.2,and 7.2 in (a) and 1.5, 3.3, 5.3, and 7.4 in (b), respectively.

culprit is probably the constraint of the median to one of the
samples.

B. Mixed Types of Noise in a Homogeneous Region

The e-contaminated normal distribution [30] is a weighted
sum of two types of distributions as P. = {(1 — €)® + eH },
where ® and H are Gaussian and longer-tailed distributions, re-
spectively, € € [0 1]. We first choose the Laplacian distribution
as H with standard deviation 1.30,,. Results for ¢ = 0.5 are
plotted in Fig. 4(a). Then, an impulsive distribution H(z) =
0.56(x — 30,) + 0.56(x + 30,,) is applied. The results for
e = 0.25 are plotted in Fig. 4(b). While the ITM1 filter per-
forms slightly better than the others for Laplacian e-contam-
inated Gaussian noise, the ITM2 filter performs significantly
better than the others in impulsive noise removal.

C. Noisy Step Edge

The gray levels of a horizontal or vertical step edge are mod-
eled as the constant 1 on one edge side and — 1 on the other side.
Such an edge is contaminated by Gaussian noise of different
levels. Outputs of a filter are used for computing the MAE if
and only if the filter mask covers both sides of the edge. Fig. 5
plots filters” MAEs normalized by the mean absolute deviation
of the noise.

The almost constant MAE of the median filter over different
noise levels shows its excellent ability in edge preservation. The
mean, MEM, «T, and ITM1 filters all blur the edge. Therefore,
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Fig.5. Normalized MAE of filters of (a) size 3 X 3 and (b) size 11 X 11 against
noise level o,,. The average numbers of ITM iterations are 1.0 for the first four
and 2.4, 3.5, and 1.9 for the last three noise levels in (a) and 1.8, 1.8, 2.0, 3.2,
3.7, 6.8, and 11.8 in (b).

their MAEs are much higher than the MAE of the median filter
for low noise levels. Since they attenuate the Gaussian noise
better than the median filter, they perform about the same as
the median filter when o,, reaches 0.64. The ITM2 filter sig-
nificantly outperforms the others for the low and medium noise
levels. At the two highest noise levels, it performs similar to the
median filter. At these two noise levels, the pixel gray levels of
the two edge sides are overlapped.

D. Real Images

Three real natural images, as shown in Fig. 6, that represent
different image types and complexity levels are used to test the
six filters of size 5 x 5. The three real natural images, named
Crowd, Bank, and Girl, are of size 512 x 512, and their gray
levels range from 0 to 255.

Images are first corrupted by additive Gaussian noise of
different levels o,,. For all three images, the MSE of the median
filter increases from the minimum among the six filters to the
maximum along with the increase of o,,. Thus, for each image,
five different noise levels are chosen so that the median filter
performs best at level o, (1) and worst at level o, (5). The
other three noise levels are determined by o,(5)/0n(4) =
0n(4)/0n(3) = 0n(3)/on(2) = on(2)/on(1). To plot the
results of the three images in one graph for space saving, all
MSEs are normalized by that of the median filter for a better
visual comparison. The three columns in Fig. 7(a), respectively,
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for images Crowd, Bank, and Girl, plot the average MSE over
ten runs of the six filters at five different noise levels. The
results in Fig. 7(a) coincide with the theory that the median
filter preserves the image structure best while attenuate the
Gaussian noise worst. The proposed ITM1 filter performs best
at the noise levels between these two extreme cases.

The aforementioned Gaussian-noised images are further cor-
rupted by the exclusive impulsive noise. The probabilities of
a pixel gray level unchanged, replaced by an impulse of value
equal to the minimum of the Gaussian-noised image, and equal
to the maximum are 0.7, 0.15, and 0.15, respectively. Fig. 7(b)
plots the six filters’ average MSE over ten runs at the five dif-
ferent Gaussian noise levels for the three real images. It demon-
strates that the proposed ITM2 and the median filters perform
much better than the others in the presence of the strong impul-
sive noise.

E. Homogeneous Images Corrupted by a-Stable Noise

One of the attractive features of the a-stable distributions is
that we can adjust parameter « (0 < « < 2) to control the heav-
iness of the tails (degree of impulsiveness). The noise impulsive-
ness increases as a decreases [21]. The myriad (LogCauchy) fil-
ters are derived based on the maximum-likelihood location es-
timation from the samples of the a-stable distribution (o = 1).
The “linearity parameter” k of the OM filter [26] is computed
as

(43)

where « is the dispersion of the a-stable distribution. The it-
erative algorithm presented in [31] and [32] is applied for OM
and MLC filters. Another iterative-algorithm-based filter, i.e.,
the MA filter [23], is also included in the experiments. The fixed
number of iterations, i.e., 20, is applied to both algorithms as
more iterations do not lead to a visible performance gain. All
filters applied are in the size of 5 x 5.

A constant image is corrupted by a-stable noise with v = 10
and different « values. For each « value, 2.5 million inputs are
generated to produce 100 000 independent filter outputs. Table I
records MSEs of various filters where the results of the mean
filter help show the noise impulsiveness. For each « value, the
smallest MSE among all filters is underlined and in bold font,
and the second smallest is in bold font. Table I shows that the
OM filter performs best for an o value around 1 and the MA
filter performs best for an « value approaching 2. For a high
degree of impulsiveness (o = 0.5), the ITM2 filter performs
best, and for a moderate degree of impulsiveness (o = 1.5), the
ITML1 filter performs best. Note that the OM and MLC filters
utilize the information of noise distribution «v and k, whereas
the MA, ITM1, and ITM2 filters do not. The average numbers
of ITM iterations are 6.7, 5.1, 4.0, 3.5, and 3.2, respectively, for
o values from 0.5 to 1.8.

F. Real Image Corrupted by Gaussian and a-Stable Noise

The original image “Lena” of size 512 x 512 is corrupted by
e-contaminated (¢ = 0.5) Gaussian (02 = 100) and a-stable
(v = 10) noise. For each of the five different « values, filters
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Fig. 7. Average MSE over ten runs for the three real images at five different
levels of (a) additive Gaussian noise and (b) additive Gaussian noise and 30%
exclusive impulses. The average numbers of ITM iterations are closely around
3.3 in (a) and closely around 4.5 in (b).

TABLE I
MSES FOR A CONSTANT IMAGE CONTAMINATED BY «v-STABLE NOISE
| o [ o5 0.8 12 1.5 1.8
mean || 488.62 [ 21522 [ 73.074 [ 32.059 | 13.962
MA || 215.60 | 61.567 [ 18.605 | 11.324 | 9.1495
OM || 28.988 | 8.3031 | 10.748 | 12.484 | 11.648
MLC || 165.29 | 61.496 | 25.064 | 15.167 | 10491
ITM1 || 35.998 | 13.857 | 11470 | 10.614 | 9.9998
IT™M2 15.149 | 12.505 | 12417 | 12.169 | 11.543

TABLE II
MSES FOR A REAL IMAGE “LENA” CORRUPTED BY €-CONTAMINATED
(A =0.5) GAUSSIAN (02 = 100) AND a-STABLE (y = 10) NOISE

[ o [ o5 [ o8 [ 12 | 15 | 18 |
mean [ 167.37 | 111.51 | 78.860 [ 68240 [ 63217
MA || 83835 | 65.164 | 56.852 | 54.631 | 53.610
OM || 62.485 | 54.102 | 58.666 | 58.917 | 55.587
MLC || 96343 [ 65409 | 56.177 | 53.434 | 51.795
ITMI || 58292 | 54.655 | 51.983 | 51.246 | 50.612
ITM2 || 57.894 | 55.583 | 53.311 | 52186 | 51.491

of settings same as those in Section IV-E are applied to ten dif-
ferent noised versions of the image “Lena.” Table II records the
average MSEs over the ten noised images. The OM filter per-
forms best only for @ = 0.8, and the ITM1 filter closely fol-
lows it. For all other four values of «, both the minimum and
the second smallest MSEs are achieved by the proposed ITM
filters. The average numbers of ITM iterations are 4.3, 3.8, 3.6,
3.3, and 3.1, respectively, for « values from 0.5 to 1.8. Fig. 8
shows the original image, the noise-corrupted (« = 1.2) image,
and its filter output images.

V. CONCLUSION

The different characteristics of the mean and median filters
are well known. It is desirable to develop a filter having the
merits of both the types of filters. Comparing with the arithmetic
operation, data sorting required by the median-based filters is
a complex process and is intractable for multivariate data. The
proposed ITM filter circumvents the data-sorting process but
outputs a result approaching the median. Proper termination of
the proposed ITM algorithm enables the filters to own merits
of the both mean and median filters and, hence, to outperform
both the filters in many image denoising applications. Although
it is an iterative algorithm by nature, only a few iterations are
required for the ITM algorithm to achieve good results in all
experiments of this paper.

This paper also shows the relation between the two very often
used fundamental statistics, namely, the arithmetic mean and
the order statistical median. It unveils some simple statistics
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Fig. 8. Filtering results of the noise-corrupted image “Lena” of size 512 x 512. (a) Original image. (b) Corrupted image by e-contaminated (¢ = 0.5) Gaussian
(02 = 100) and a-stable (o = 1.2,y = 10) noise. Outputs of (c) MA, (d) OM, (e) MLC, and (f) ITM1 filters of size 5 x 5.

of a finite data set as the upper bounds of the deviation of the
median from the mean. The tightest upper bound discovered
in this paper is applied as the truncation threshold, aiming at
the smallest number of iterations, which, however, may not
deliver the best filtering performance. Some general stopping
criteria are suggested, although a better one for some specific
applications is possible. Properties of the proposed ITM1 and
ITM2 filters are theoretically analyzed and experimentally
verified.

Comprehensive simulation results with a fixed parameter set
throughout all experiments demonstrate the superiority and flex-
ibility of the proposed filters. The significant difference of the
ITM filter from the median, MEM, oT, MTM, and MA filters
is that it circumvents the data-sorting operation. Different from
the myriad and MLC filters, the ITM filters are not distribu-
tion-model specific and, hence, have greater application scope.
One possible further development is to explore some proper cri-
teria, based on which the filter can automatically switch between
ITM1 and ITM2. Better filtering performance can be certainly
expected with a proper switch mechanism because the [TM1
filter performs better in the smooth area with short-tailed and
light long-tailed noise and the ITM2 filter preserves the image
structure better and is more powerful in removing heavy impul-
sive noise.
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