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Further Properties and a Fast Realization of the
Iterative Truncated Arithmetic Mean Filter

Zhenwei Miao, Student Member, IEEE, and Xudong Jiang, Senior Member, IEEE

Abstract—The iterative truncated arithmetic mean (ITM) filter
has been recently proposed. It possesses merits of both the mean
and median filters. In this brief, the Cramer—Rao lower bound is
employed to further analyze the ITM filter. It shows that this filter
outperforms the median filter in attenuating not only the short-
tailed Gaussian noise but also the long-tailed Laplacian noise. A
fast realization of the ITM filter is proposed. Its computational
complexity is studied. Experimental results demonstrate that the
proposed algorithm is faster than the standard median filter.

Index Terms—Computational complexity, iterative truncated
arithmetic mean (ITM) filter, median filter, noise suppression,
nonlinear filter.

I. INTRODUCTION

OMPARED with the mean or weighted mean filters [1],

the median filter [2] has better performance in impulsive
noise suppression and edge preservation. However, it destructs
image details and cannot effectively suppress Gaussian noise.
To tackle the problem of the detail destruction, multistage
median filters [3], truncation filters [4], and various noise
adaptive median filters were proposed. Effort was also devoted
to attenuate both long- and short-tailed noise with edge preser-
vation. Most of them, such as the mean—median filter and the
a-trimmed mean («T) filter [5], make a compromise between
the mean and median filters by using both the arithmetic
computing and the time-consuming data sorting operations [6].
However, the compromise may not be well adjusted to different
kinds of images and noise.

The iterative truncated arithmetic mean (ITM) filter [7] has
been recently proposed. It iteratively truncates the extreme
values of samples in the filter window to a dynamic threshold.
This threshold guarantees that the filter output converges to the
median of the input samples. A proper stop criterion enables
the ITM filter owning merits of both the arithmetic mean
and the order-statistical median operations. Both edge preser-
vation and noise attenuation can be achieved within just a
few iterations. The ITM filter outperforms the median filter
in attenuating the single type of noise, such as Gaussian and
Laplacian noise, and the mixed type of noise, such as the mixed
Gaussian and impulsive noise. It also offers a way to estimate
the median by a simple arithmetic computing algorithm.
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Using the mean absolute error as a criterion, it is shown in [7]
that the ITM filter outperforms the median filter in attenuating
Laplacian noise. This opens to doubt because the median is
the optimum location estimator of Laplacian noise in the sense
of maximum-likelihood estimation (MLE). Therefore, in this
brief, we use the Cramer—Rao lower bound (CRLB) [8] and the
mean square error (MSE) to put it beyond doubt that the ITM
filter outperforms the median filter in attenuating Laplacian
noise. As the ITM filter employs an iterative algorithm in the
filtering process, people tend to think its computational com-
plexity must be much higher than the median filter. This brief
demonstrates that it is not the case. We show that, compared
with the standard median filter, the ITM filter is faster for small
filter size but slower for large filter size. Therefore, we propose
a fast ITM (FITM) filter, which is faster than the standard
median filter for all filter sizes.

II. NOISE SUPPRESSION PROPERTIES OF THE ITM FILTER

Given a set of n samples xo = {x;} in the filter window, the
ITM algorithm [7], starting from x = X, iteratively truncates
the extreme values of samples in x to a dynamic threshold 7.

Algorithm 1: Truncation Procedure of the ITM Filter
Input: xg = x; Output: Truncated x;

1 do

2 Compute the sample mean: ;1 = mean(x);

3 Compute the dynamic threshold: 7 = mean(|x — u

4 b, =p—r7,b, = p+ 7, and truncate x by

b
L bla

5 while the stopping criterion S is violated,

)

if x; > b,
ifz; < b[;

The stop criterion S proposed in [7] is composed of four
termination rules. In general, it terminates the iteration if the
truncated mean is close to the median or has little change.
It utilizes some relationships of the numbers of samples in
different conditions to terminate the iteration.

The type-I output of the ITM filter [7] is

ITM1: yu = mean(x)
where x is the truncated data set output from Algorithm 1. As
a necessary preliminary of the study, two properties of the ITM
filter are presented as follows.

Property 1: The distribution of the ITM output is symmetric,
if the samples of the input data set xo = {x1,z2,...,2,}
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TABLE 1
CRLB AND MSE OF SAMPLE MEAN z1 AND MEDIAN ¢
CRLB __ MSE (1) MSE (§)
: : 2 2 2
Gaussian noise o?/n o?/n mg
Laplacian noise o2 /(2n) a?/n o2 ym Klm.r)

=0 (m+r+1)2

are independent identically distributed (i.i.d.) samples of the
random variable X with a symmetric distribution around the
symmetry center a.

Proof: If x; is symmetric around a, 2a — x; has the same
distribution as z;. Thus, the ITM output y;1 (z1, z2, . . ., ) has
the same distribution as ys (20 — 21,24 — 29, ..., 2a — x,),
which is equal to 2a — ys1 (x1, T2, . . ., z,) because the ITM
filter is invariant to scale and shift [7]. It follows that the
distribution of y;; is symmetric around a. |

Property 2: The output of the ITM filter is an unbiased
estimate of the population mean of X, if the samples in xog =
{z1,z9,...,x,} are i.i.d. samples of the random variable X
with a symmetric distribution around the symmetry center a.

Proof: As x; is symmetrically distributed around a,
E{X} = a. Similarly, E{y;1} = a according to Property 1.
Therefore, E{y;1} = E{X}. This completes the proof of
Property 2. ]

Here, we analyze why the ITMI filter (a) cannot be better
than the mean filter for Gaussian noise and (b) can be superior
to the median filter for Laplacian noise even though the median
is the optimum location estimator of Laplacian noise in the
sense of MLE. As Property 2 shows that the output of the ITM
filter is unbiased, the analysis is based on the CRLB [8], which
provides a lower bound of the MSE of unbiased estimators.

A. Gaussian Noise

The probability density function (pdf) of Gaussian noise X
with the population mean 1, and the standard deviation o is

1 (z

fo(X = ali0) = = exp ( !

As shown in Table I, the CRLB for the estimation of /i, is o2 /n.
The MSE of the sample mean y is o2/n [9], which is equal
to the CRLB. Thus, x is the minimum MSE estimator, which
means that no estimator can outperform p in estimating signals
in Gaussian noise in terms of MSE. For large n, the MSE of the
sample median ¢ approximates MSE(¢) = 7/(2(n + 2))o?
[9]. It is about 7 /2 times of the CRLB.

It is difficult to get a mathematical expression of the MSE of
the ITM1 output. Here, we use the Monte Carlo simulations [9]
to evaluate the ITM1 filter. 10° independent input data sets are
used in the simulations. As the aT filter approaches the mean
if o — 0 and approaches the median if o — 0.5, a = 0.25 is
chosen in this brief. Fig. 1(a) shows the normalized MSE of the
ITM1 output against the number of iterations. The filter size is
n = 49. When the number of iterations is zero, the ITM1 output
is equal to the mean. Its MSE is approximately equal to the
CRLB. By increasing the number of iterations, the ITM1 output
approaches the median, and its MSE increases and approaches
that of the median. Fig. 1(b) shows the normalized MSE against
the filter size. The ITM1 filter employs the default stop criterion
in [7]. We see that both the ITM1 and oT filters significantly
outperform the median filter.
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Fig. 1. Normalized MSE against (a) the number of iterations k& and (b) the
filter size n for Gaussian noise.
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Fig. 2. Normalized MSE against (a) the number of iterations k£ and (b) the
filter size n for Laplacian noise.

B. Laplacian Noise
The pdf of Laplacian noise X is

fo(X = x|po,b) = %exp <_|acb,uo|> ()
where 11, is the population mean of X and b is a scale pa-
rameter. Its variance is o2 = 2b2. Table I shows its CRLB is
02/(2n). The MSE of the sample mean  is two times of the
CRLB [10]. Therefore, 1 is ineffective in estimating signals in
Laplacian noise. The MSE of the sample median ¢ is

var(¢) = 2b° Z ( K(m, )

= m+r+1)2 )
where K(m,r) = (=1)"(2m + )!/(mlrl(m — r)l(m +r+
1)2m*+7) and m = (n — 1)/2 [11]. When the filter size n is
small, the MSE of ¢ is far away from the CRLB. For example,
when n =9, var(¢) ~ 0.175b°. It is about 1.58 times of the
CRLB. From this, we can conclude that ¢ is not the minimum
MSE estimator for small filter size, although it is the MLE [12].
Therefore, it is not a surprise that the ITM1 filter can outper-
form the median filter even for the long-tailed Laplacian noise.

The performance of the ITM1 filter is analyzed based on the
Monte Carlo simulations with 10° independent input data sets.
Fig. 2(a) shows the MSE of the ITM 1 output against the number
of iterations. The filter size is n = 49. When the number of
iterations is zero, the ITM1 output is equal to the mean. Its
MSE is two times of the CRLB. After a few iterations, the MSE
of the ITM1 output becomes smaller than that of the median.
The MSE of the ITM1 output approaches that of the median
when the number of iterations is large enough. The normalized
MSE against the filter size is shown in Fig. 2(b). The aT
filter is superior to the median filter when n < 25 but inferior
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when n > 25. The ITMI1 filter uses the stop criterion in [7].
This stop criterion is a general criterion that is applied in all
experiments in [7]. Although this stop criterion is not optimized
for Laplacian noise, Fig. 2(b) shows that the ITM1 filter still
outperforms the median filter.

III. PROPOSED FITM FILTER

From the ITM algorithm (Algorithm 1), we see that all
samples are visited in all iterations. This becomes a heavy
burden when the filter size and the number of iterations are
large. In order to reduce the computational burden, we propose
an FITM filter by only visiting the untruncated samples in each
iteration. This is enabled by the following proposition.

Proposition 1: Samples, once being truncated in an iteration
of the ITM algorithm, must be truncated in all subsequent
iterations.

Proof: Let x5, = {x;|x; > p}, np be the number of the
samples in xy,, and 0, = sum(x, — p)/ny, in the kth iteration.
Let x4, pt4, T4, Nt and 9y, be the corresponding notations
in the (k + 1)th iteration.

Assume a sample x;,, is truncated to the upper bound p + 7
in the kth iteration. Obviously, z;,+ = p + 7, which has the
maximum value in x in the (k + 1)th iteration. As 7 monoton-
ically decreases [7], 7+ < 7, we have

Tiug > Pt T+ Ty if py < p. “)
In the case of i > p, from 7 = 2n,d, /n [7], we have
2 2
T=2 Z(ffi—u) > -~ Z (i — pt +pg —p). (5)
€Ti> >y

As at least one sample x;,, is truncated to the upper bound in
the kth iteration, we have

2 2

- (zi — pg) > o Z @iy —pt) =74 (6)

n
Ti> Pt Tit >[4
Substituting (6) into (5) yields
2n
7> S (s ). (7)
As 74 = 2np 464 /n [7], (7) becomes
T.
7> T = (e — ). ®)
h+

As (5h+ < Tiu+ — MU+, WE have (Sh+ < T4, if
Tiut — Py < Ty 9)

Therefore, under the condition of equation (9), equation (8)
becomes

T> Ty + iy — [ (10)
Since x;,+ = p + 7, equation (10) becomes
Tiuy > oy + Ty (11)

The conclusion (11) conflicts with (9). Hence, the condition (9)
is not true, which means

Tiut > fig + T4, if oy > p (12)
From (4) and (12), we have
Tijut > P + T (13)

In the same way, we can prove that if a sample x;; is truncated
to the lower bound p — 7 in the kth iteration
Tipy < fp — T (14)
Inequalities (13) and (14) prove Proposition 1. [ |
Proposition 1 shows that all truncated samples must be trun-
cated in the subsequent iterations. In other words, all truncated
samples have the same values of either the lower or upper bound
in all subsequent iterations. Therefore, we do not need to access
such samples one by one. There is also no need to remember
the positions of the truncated pixels. We only need to count
the number of such samples and replace them by the constant
u— 1 or i+ 7 in all subsequent iterations. This leads to the
FITM algorithm, which speeds up the truncation procedure
by only visiting the untruncated samples. Let n.; and n,, be
the numbers of the samples smaller than the lower bound and
larger than the upper bound, respectively. The proposed FITM
algorithm is shown as follows.

Algorithm 2: Truncation Procedure of the FITM Filter
Input: x¢g = x, n; = 0, n,, = 0; Output: x, b, b, nry,

and 1,

1do

2 p=(sum(x) + npby + nryby)/n;

3 7= (sum(x — pl|) + nr(p = b)) + nru(by — p)/n;

4 by=p—71, by=p+7, x={zi|by <x; <b,}, and
update n,; and n.y,;

5 while the stopping criterion S is violated,

Comparing Algorithm 2 with Algorithm 1, we can find that
both 1 and 7 computed in these two algorithms are the same.
Therefore, the ITM and FITM filters have the same outputs. The
difference is that in steps 2—4, Algorithm 2 only visits the un-
truncated samples, whereas Algorithm 1 visits all the samples
in each iteration. This modification, enabled by Proposition 1,
speeds up the ITM algorithm.

IV. COMPUTATIONAL COMPLEXITY

The computational complexity of the ITM and FITM filters
can be measured by the times that all the samples are visited
in the iterations. The visiting times are determined by two
factors: a) the number of iterations N4 and b) the probability
pi of a sample being visited in the kth iteration. The number
of iterations N, for both the ITM and FITM filters are the
same because they utilize the same default stop criterion in
[7]. The probability py is different for these two filters. For
the ITM filter, py, = 1 because all the samples are visited in
each iteration. For the FITM filter, only the untruncated samples
are visited. Therefore, p;, monotonically decreases against the
number of iterations.

We use the Monte Carlo simulations [9] to analyze the num-
ber of iterations Ng. Three types of noise, namely, Gaussian,
Laplacian, and the uniform distributed noise, are employed.
10° independent input data sets are used in each experiment.
The experimental results in Fig. 3 illustrate that the numbers of
iterations, which are determined by the default stop criterion, of
different noise types are approximately the same. Fig. 3 shows
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Fig. 3. Average number of iterations determined by the stop criterion in [7]
against the filter size n.

that Ny is approximately a linear function of y/n. Therefore,
we use

Ny=+vn-—1

as an upper bound of N, which is plotted in Fig. 3.
For the ITM filter, as the probability of a sample being
visited in the kth itera}ion is pr, = 1, the total visiting times of

5)

all the samples is Z,]cv';l npr = n(y/n — 1). Its computational
complexity is O(n(y/n — 1)) = O(ny/n).

The FITM filter only visits the untruncated samples in each
iteration. As the dynamic threshold 75, monotonically decreases
[7], the probability of a sample within the range (ug—1 —
Tk-1, fk—1 + Tk—1) decreases. Therefore, the probability of a
sample being visited p; decreases. In order to simplify the anal-
ysis of the probability pj, we employ the uniform distributed
noise as an example. The pdf of a uniform distributed random
variable X is

1, if—05<z<0.5

fulX =z) = {O, otherwise. (16)

From (16), we find the following lemma of 7.

Lemma 1: When the filter size n is sufficiently large, the
dynamic threshold 7 of X drawn from the uniform distribution
(16) has a recurrence relation, i.e.,

T = Th-1(1 = T-1), k>1 (17)

with 71 = 0.25.

Proof: When the filter size n is sufficiently large, the
sample mean is equal to the expectation of X, as y = E[X] =
0. The dynamic threshold of the first iteration is

1 n
n=-= > |z — pl = B[ X[ = 0.25. (18)
i=1

After the (k — 1)th iteration, X can be either untruncated
or truncated. Only the samples within the range (ug_1 —
Tk—1, k—1 + Tr—1) are untruncated. Thus, the probability of a
sample untruncated is 271, and the probability of truncation
is 1 —27,_1. As the output of the FITM filter is unbiased,
tr—1 = 0. The deviation of an untruncated sample from the
mean is |x|, and that of a truncated sample is 7_;. Therefore,
the dynamic threshold of the kth iteration 7y, is

Th—1
Tk :E[|Xk,1|] = (1 — 27‘]6,1)776,1 + / |1’|d$

“Tk—1

=T-1(1 — 1) (19)

where X},_1 is the random variable X after the (k—1)th itera-
tion. Equations (18) and (19) complete the proof of (17). |
Since 7 has the property in Lemma 1, the summation of 7
is constrained by the following lemma.
Lemma 2: The summation of the dynamic threshold 7y
specified by (17) is bounded by two logarithm curves, i.e.,

m

0.5 (In (0.5m + 1)) < Y 7 < In(m + 1).
k=1

(20)

Proof: For k =1, we have 7, = 0.25 < 1/(k + 1). For
k > 1, we will prove 7, < 1/(k + 1) is true under the assump-
tionof 7;,_; < 1/(k—1+1).Lett =1/7,_1, and (17) yields
7w = (t — 1)/t2. Since t > k, we have

Tk:t;1<t7;:11:t—|1—1<k—1-1' 1)
This proves that
e < 1/(k+1), k>1. (22)
Therefore
m m m+1
’;n<;kil< 1/ %dmzln(m—kl). (23)
In the analogous way, it can be proved that
e >1/(2(k+1)), k> 1. (24)

Therefore

m+2
> —_— =0. . .
ZTk_;Q(k+l)>/ 5 0r=0.5In(0.5m+1). (25)
- - 2

k=1

Inequalities (23) and (25) complete the proof of (20). |

As only the untruncated samples are visited by the FITM
algorithm, the probability of a sample being visited at the
kth iteration is pj = 27,1, where we define 7 = 0.5.

Therefore, its computational complexity is O(Zg;l npy) =
O(2n chv:sl Tk—1). From (20), we can get that
O(ij;l Tr_1) = O(In(N,)). Thus, the computational com-

plexity of the FITM filter is O(2nIn(N,)) = O(2nIn(y/n —
1)) = O(nln(n)). It is smaller than that of the ITM filter and
has the same order as the quick-sort algorithm.

The Monte Carlo simulations are also carried out to analyze
the visiting times for the FITM filter when the filter size is
not large enough. Experimental results in Fig. 4 illustrate that
the average visiting times of a sample in the FITM filter is
approximately a linear function of Inn. Fig. 4 shows that

Nprrav = 0.7Inn (26)
is a close upper bound for the FITM filter for 9 <n < 81.
Therefore, the total visiting times of all the samples for the
FITM filter is about 0.7nInn. It is smaller than that of the
quick-sort algorithm, which is approximately equal to 2nlnn
[13]. The average visiting times for both the ITM and FITM
filters are compared in Fig. 5. It is seen that the visiting times
for the FITM filter are smaller than that for the ITM filter.
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time consumption is normalized by that of the median filter.

We further evaluate the computational complexity of the I[TM
and FITM filters in two experiments. These experiments are
performed under the Windows 7 system with the Intel Core i5
CPU 3.2 GHz. All of the filters are implemented by C program-
ming language. As data sorting is the basic building block that
many rank order statistic filters, such as the popular o'T filter,
are built around, we implement both the median and T filters
using the quick-sort algorithm. The first experiment tests the
running time of the filters against the number of iterations, and
the second experiment tests that with the default stop criterion
given in [7] against the filter size. The time consumption is
normalized by that of the median filter. The normalized time
consumption against the number of iterations is shown in Fig. 6.
The filter size is n = 49. The time consumption for the ITM
filter is a linear function of the number of iterations because all
the samples are visited in each iteration. As the FITM filter only
visits the untruncated samples, its time consumption slowly
increases compared with that of the ITM filter. The ITM filter
is faster than the median filter when the number of iterations
k < 5 but slower for k > 5. The FITM filter is faster than the
median filter for all the numbers of iterations in Fig. 6. The
experimental results using the default stop criterion are shown
in Fig. 7. As the T filter requires both arithmetic computing

o[ median
—#— aT-Gau
- % —-aT-Lap
—#— aT-uni
—6—ITM-Gau
- © -ITM-Lap
~O- ITM-uni
—»— FITM-Gau
— % — FITM-Lap
=X=FITM-uni

normalized time consumption

filter size n

Fig. 7. Normalized time consumption against the filter size n. The time
consumption is normalized by that of the median filter.

and data sorting operations, its time consumption is larger than
that of the median filter. Compared with the median filter, the
ITM filter is faster for the filter size n < 49 but slower for
n > 49. The proposed FITM filter is faster than both the ITM
and median filters for all filter sizes.

V. CONCLUSION

In this brief, some further properties of the ITM filter are
analyzed. It shows that the ITM filter outperforms the median
filter in dealing with both the short-tailed Gaussian noise and
the long-tailed Laplacian noise. The computational complexity
of the ITM filter is studied. It is O(n+/n). Experimental results
show that the ITM filter is faster than the median filter when the
filter size n < 49 but slower when n > 49. A fast implemen-
tation of the ITM filter is proposed. The computational com-
plexity of the FITM filter is analyzed. The analysis reveals that
the computational complexity of the FITM filter is O(nlnn).
Although it is of the same order as the median filter, experi-
mental results demonstrate that the FITM filter is faster than the
standard median filter implemented by the quick-sort algorithm.
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