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T
he ultimate goal of pattern recognition is 
to discriminate the class membership of 
the observed novel objects with the mini-
mum misclassification rate. An observed 
object is often represented by a high-

dimensional real-valued vector after some preprocessing 
while its class membership can be represented by a much 

lower dimensional binary vector. Thus, in the discriminating 
process, a pattern recognition system intrinsically reduces the 

dimensionality of the input data into the number of classes. In fact, 
dimensionality reduction often occurs implicitly in all modules of a rec-

ognition system: preprocessing, feature extraction, and classification. In some 
applications such as visual object detection and recognition, bioinformatics, and data 

mining, high data dimensionality imposes great burdens on the robust and accurate recognition due to insuf-
ficient knowledge about the data population and limited number of training samples. Dimensionality reduc-
tion thus becomes a separate and maybe the most critical module of such recognition systems. Linear 
subspace analysis is a powerful tool for dimensionality reduction. It also provides a solid foundation for vari-
ous nonlinear approaches. This is evidenced by numerous techniques published in the past two decades. 
While some of them, such as sparse representation [1], [2] and subspace arrangements [3], directly solve the 
classification and clustering problems, most approaches such as the principal component analysis (PCA) [4], 
linear discriminant analysis (LDA) [4], null-space LDA (NLDA) [5], locality preserving projections (LPP) [6], 
[7], marginal Fisher analysis (MFA) [8], and their numerous variants serve as a means of feature extraction. 

Dimensionality reduction functioning as a feature extraction has two objectives. One objective is to 
reduce the computational complexity of the subsequent classification with the minimum loss of 
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 information needed for classifi-
cation. The second objective is to 
circumvent the generalization 
problem of the subsequent clas-
sification and hence enhance its 
accuracy and robustness. To 
achieve the first objective, it is 
straightforward that we should 
maximize the information car-
ried by the data in the extracted 
low-dimensional subspace. Although 
PCA does maximize the data structure information in the prin-
cipal space and hence is optimal for data reconstruction, it is 
the discriminative information that plays roles in pattern recog-
nition. Thus, most researchers prefer discriminant analysis to 
the principal component analysis, as evidenced by the fact that 
the vast majority of the published approaches are based on some 
kind of the “most discriminative” criteria. There is no doubt 
that various discriminant analyses can effectively achieve the 
first objective. The  second objective of the dimensionality 
reduction is, however, far from straightforward. The most dis-
criminative subspace may not be an effective criterion for it 
because any dimensionality reduction causes a loss of informa-
tion, including the discriminative information. Any subspace 
cannot contain more discriminative information than any larg-
er one that includes the former. Why can the dimensionality 
reduction boost the classification accuracy if the discriminative 
information is the most critical for classification? Although 
some general phenomena, such as the curse of dimensionality, 
small sample size problem, noise removal effect of dimensional-
ity reduction, and better generalization in a lower dimensional 
space, are well known in the pattern recognition community, 
they have not indicated what dimensions should be extracted or 
what else should be removed for a more robust classification. 
We cannot develop an effective dimensionality reduction tech-
nique to maximize the classification accuracy just based on 
these general phenomena. 

It is thus necessary to study the underlying principles and 
insights of why and how the dimensionality reduction can 
enhance the generalization accuracy and robustness of the 
subsequent classification. This is critical because the second 
objective of the dimensionality reduction is more important 
than the first one in most applications with the rapid growth 
of computation power. The study will 
also help us find the commonalities and 
differences of various dimensionality 
reduction  techniques and their pros and 
cons. Without a thorough analysis and 
gaining an in-depth understanding of 
the underlying principles, it is difficult 
to bring the research in this area to a 
significantly higher level. This article 
studies the linear subspace learning-
based dimensionality reduction as a fea-
ture extraction module in the pattern 

recognition system. Hopefully, 
some doubts, misunderstand-
ings, ambiguities, and paradoxes 
in this area can be resolved by 
this study. For an in-depth anal-
ysis, we need to start from some 
fundamental yet critical issues 
in pattern recognition and then 
explore some problems of the 
statistical classification. 

FUNCTIONALITIES OF PATTERN RECOGNITION MODULES
To study how the dimensionality reduction enhances the recogni-
tion accuracy, we need to explore the roles of different modules of 
the recognition system. A statistical pattern recognition system 
can be partitioned into three modules as shown in Figure 1. The 
preprocessing/normalization module segments the object of inter-
est from the background, removes noise, and normalizes its repre-
sentation. This module is usually designed based on some human 
knowledge to reduce the intraclass variation of patterns with mini-
mum loss of their interclass distinction, i.e., to extract the most 
discriminative information from the pattern. Although its input x|

and output x may lie in the same domain, e.g., both are images, 
dimensionality reduction implicitly occurs at this early stage. 
Among various pattern representations after the first module, we 
consider the most widely applied vector format x [ Rn in an 
n-dimensional Euclidian space, called data space. The feature 
extraction/dimensionality-reduction module transfers the pattern 
from the data space x [ Rn to a feature space f [ Rd. Some 
approaches are based on the human knowledge about the pattern, 
e.g., extracting image local structures such as corner, blob, and 
local orientation [9], [10], and global structures such as Fourier 
transform and various moments [11]. For many difficult recogni-
tion tasks, human beings lack sufficient knowledge about the dis-
criminative features hidden in the data, and hence machine 
learning from training samples becomes more prevalent. 
Obviously, the objective of this module is the same as the first one: 
extracting the most discriminative information. Dimensionality 
reduction (d , n) often explicitly occurs at this intermediate 
stage. The last module, classification, establishes decision 
 boundaries in the feature space that separate patterns of different 
classes. As the extracted features are often abstract with little phys-
ical  interpretation, this module is mainly designed based on the 
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[FIG1] A general model of the statistical pattern recognition system.
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machine learning with limited human interference such as some 
assumptions of the data  distribution model, class prior probability, 
and loss function. The class label can be represented by a c-dimen-
sional binary vector for a c-class problem. Thus, classification 
transforms the feature vector, f [ Rd, into the class label vector, 
y [ 50, 16c, which again extracts 
the  mos t   d i sc r imina t i ve 
 information and, in most applica-
tions, implicitly reduces the 
dimensionality (c , d). 

We see from above that all 
three modules in fact have a com-
mon objective but are realized in 
different ways based on  different 
rules because one way or one rule 
cannot fully achieve the challenging objective. This common 
objective in all modules is to extract the most discriminative pat-
tern representations or equivalently, to discard the redundant rep-
resentations. This is some kind of dimensionality reduction based 
on some rules generated by human knowledge or machine 
 learning (or both). To understand how the dimensionality reduction 
in the first two modules helps the final classification, let’s explore a 
simple classification example graphically illustrated in Figure 2. 

Suppose the circles and squares in Figure 2 represent the 
whole data population of two classes, respectively. A classifier can 
be easily trained by them to form a decision boundary shown by 
the red solid line, which perfectly classifies all data. Obviously, 
the dimension spanned by its normal vector f (the green arrow) 
contains the most discriminative information and the one 
orthogonal to f has hardly discriminative information. 
Nevertheless, this redundant dimension causes no harm to the 
classification because it is ignored by the classifier trained to 
extract the most discriminative information. Why do we need the 
first two modules to reduce the dimensionality or to extract the 
most discriminative pattern representations? It is well known 
that the probability of misclassification decreases or at least does 

not increase as the data dimensionality increases, as long as the 
decision is based on the knowledge about the whole data popula-
tion. This was theoretically proven in [4], [12], and [13]. 
However, it is also well known that high dimensionality often 
degrades the classification performance in practice (curse of 

dimensionality) [4], [13]. This 
paradox can be resolved by distin-
guishing the discriminative infor-
mation about the data population 
from that on the training set. The 
trained classifier can only capture 
the most discriminative informa-
tion on the training data. If some 
statistics estimated on the train-
ing data deviate from those of the 

data population, the misclassification rate on the novel data 
increases. This is always the case in the practice. The question is 
only how severe it is. For example, if the available training data 
are only the blue solid points as shown in Figure 1, the decision 
boundary of the trained classifier will be the blue dashed line. 
The misclassification rate on the data population or on the novel 
data can approach the maximum 50%. The increasing probability 
of misclassification along with the increase of the data dimen-
sionality for a fixed number of training samples was theoretically 
proven in [12] with a simple example. 

If the first two modules can extract only the dimension f 
based on some human knowledge about the whole data popula-
tion, the classifier can easily perform a perfect classification in 
this one-dimensional subspace even if the solid points are the 
only available training data. This dimensionality reduction is 
quite possible if proper human knowledge such as some physical 
characteristics of the pattern is applied in the segmentation and 
feature extraction. However, if the dimensionality reduction is 
based on the machine learning from the training samples (the 
solid points), it cannot extract the right dimension f based on 
any kind of the “most discriminative” criterion because it in 
principle just duplicates the classification process. Therefore, 
some criterion other than the most discriminative should be 
developed for the dimensionality reduction via machine learn-
ing. As the classifier is trained to capture some statistics on the 
training samples, a problem occurs if they are unreliable in 
some dimensions (largely deviating from those on the data pop-
ulation). To boost the subsequent classification accuracy or 
robustness, the dimensionality reduction should be targeted at 
circumventing this problem. Although the ultimate objective of 
all modules of a pattern recognition system is to extract the 
most discriminative information, it is the most discriminative 
information about the whole data population, not on a specific 
training set. A classifier is trained to capture the most discrimi-
native information on the training samples. Therefore, to boost 
the classification accuracy, the dimensionality reduction should 
be targeted at removing the dimensions unreliable for the classi-
fication. Hence, to develop effective techniques of dimensionali-
ty reduction via machine learning, we need to study where the 
possible problem of a statistical classification lies. 

φ
x2

x1

[FIG2] A simple example showing the problem of classification 
with unrepresentative training samples. The decision boundary 
(the red solid line) trained by the circles and squares largely deviates 
from that (the blue dashed line) trained by the solid points.

TO BOOST THE CLASSIFICATION 
ACCURACY, THE DIMENSIONALITY 
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AT REMOVING THE DIMENSIONS 
UNRELIABLE FOR THE 

CLASSIFICATION.
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PROBLEMS OF CLASSIFICATION, REGULARIZATION, 
AND SEMIDIMENSIONALITY REDUCTION
Classification is to assign a given novel pattern, here represented 
by a column vector x [ Rn if no feature extraction is imposed, to 
one of the c categories, v i. The minimum probability of 
 misclassification is achieved by 
assigning the pattern to the class 
that has the maximum probabili-
ty after the pattern x has been 
observed, called a posteriori prob-
ability P 1v i|x 2 . This maximum a 
posterior (MAP) rule is a Bayes 
decision rule with the 0/1 loss 
function. It leads to the  optimal 
classification called Bayes classifi-
cation. As P 1v i|x 2 5 P 1v i 2p 1x|v i 2p21 1x 2  and p 1x 2  is not a func-
tion of v i, the Bayes classification is to evaluate the discriminant 
 functions that can be defined as 

 gi 1x 2 5 ln p 1x|vi 2 1 ln P 1v i 2   (1)

and find the class v i that has the maximum value of the dis-
criminant function for a given pattern x. Here, a natural loga-
rithm ln is applied as it is a monotonically increasing function 
that does not affect the decision result but will simplify its eval-
uation if p 1x|v i 2  is an exponential function. 

Further quantitative analysis needs an analytical form of the 
class-conditional probability function p 1x|v i 2 . We take the mul-
tivariate Gaussian distribution as an example due to several rea-
sons. First, it is the most natural distribution and the sum of a 
large number of independent random distributions obeys 
Gaussian distribution. It has the maximum uncertainty of all 
distributions having a given mean and variance. Moreover, it is 
an appropriate model for many situations, from handwritten 
characters to some speech sounds, where the data can be viewed 
as some prototype corrupted by a large number of random pro-
cesses [4]. Multiprototype distribution can be well approximated 
by Gaussian mixture, the weighted sum of a number of 
Gaussian distributions. Last, dimensionality reduction tech-
niques such as PCA and LDA and many classifiers are only spec-
ified by the second-order statistics, and so is the Gaussian 
distribution. Although LDA, Mahalanobis distance, and many 
classifiers are proven optimal only under Gaussian assumption, 
they are successfully employed in many applications. Under the 
Gaussian assumption 

 p 1x|v i 2 5
1

12p 2n/2|Si|
1/2 exp c2 1

2
1x 2 xi 2T Si

21 1x 2 xi 2 d ,  (2)

the discriminant function (1) becomes 

 gi 1x 2 5 2
1
2
1x 2 x i 2T Si

21 1x 2 x i 2 1 bi . (3)

In practice, bi is often not strictly determined by (1) and (2) but 
used as a threshold for users to control the error rate of class v i at 
a price of the other classes, e.g., to compromise between the false 

acceptance and false rejection rates in a biometric verification or 
object detection application. 

The problem is that human knowledge cannot provide the 
class mean x i and covariance matrix Si of the data population, 
which can only be estimated or learned by machine from the 

available training samples. If 
some estimates largely deviate 
from those of the data popula-
tion, we will face a large misclas-
sification rate. From (3) we see 
that the discriminant function is 
very sensitive to the covariance 
matrix Si because the data vector 
is multiplied by its inverse. 
However, it is very difficult to 

study the problems of Si directly as it carries two different kinds 
of information by n2 estimates: data variations and correlations. 
Eigen-decomposition  provides an effective tool to simplify the 
problem. As the covariance matrix is symmetric, its eigenvec-
tors provide an orthogonal basis for n-space. After applying 
 eigen-decomposition, Fi

TSiFi 5Li 5 diag5l1, l2, c, l n6, 
the discriminant function (3) is simplified as 

 gi 1x 2 5 2
1
2
1x 2 xi 2TFiL i

21Fi
T 1x 2 xi 2 1 bi

 5 2
1
2a

n

k51

1zk 2 zk 2 2
lk

1 bi ,  (4)

where zk and zk are respectively the projections of x and xi on 
the orthonormal eigenvector Fk corresponding to the eigenval-
ue lk of Si . For symbolic simplicity, the class index i is omitted 
where the index k is necessary. As an eigenvalue lk is the vari-
ance of the training samples of a class projected on the eigenvec-
tor Fk , it is an estimate of the class population variance based on 
the available training data. If it deviates from the population 
variance, the decision rule (3) or (4) overfits the training samples 
and hence leads to a poor generalization or prediction on the 
novel testing data. This problem will become very severe if some 
eigenvalues largely deviate from the population variances. 

The black curve of Figure 3(a) shows an eigen-spectrum (lk 
sorted in descending order) obtained from 400 face images of size 
20 3 20 and the green curve shows the variances vk of other 
8,500 face images (representing the face population) projected on 
the eigenvectors Fk . They are plotted in logarithm scale for com-
parison because we see from (4) that it is not the amount of the 
difference but the amount of the ratio between lk and vk that 
affects the accuracy of the discriminant function (4). All images 
are taken from a face detection database used in [14]. Other sets 
of training images produce results very similar to Figure 3. It 
shows deviations between the eigenvalues and the population 
variances. One way to quantify this disparity over the range space 
is to compute e 1l 2 5 m5 1 ln vk 2 ln lk 2 2 61#k#r , where m5 #61#k#r 
is a mean operator over 1 # k # r and r is the rank of Si . 

Figure 3 shows significantly larger deviations of the smallest 
eigenvalues. This phenomenon was elucidated in [14], [15], and 
[16], where more examples on several other real data sets can be 

THE LARGE DEVIATIONS OF THE SMALL 
EIGENVALUES FROM THE POPULATION 

VARIANCES RESULT IN A SEVERE 
OVER-FITTING PROBLEM OF THE 

CLASSIFIER THAT GREATLY AFFECTS THE 
CLASSIFICATION ACCURACY ADVERSELY.
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found. It seems to be a general problem verified in [14] by 
 synthetic data with known true population variances. Although, 
in general, the largest sample-based eigenvalues are biased 
upwards and the smallest ones are biased downwards, the bias is 
more pronounced when the population variances tend toward 
equality, and it is correspondingly less severe when their values 
are highly disparate [15]. In most applications, population vari-
ances often first decay very rapidly and then stabilize so that the 
smallest eigenvalues are biased much more severely than the 
largest ones [14], [16]. This is evidenced by Figure 3. The large 
deviations of the small eigenvalues from the population varianc-
es result in a severe overfitting problem of the classifier that 
greatly affects the classification accuracy adversely. 

One solution is to regularize the covariance matrix Si . A 
common practice in classification and data regression is to add 
a constant to its diagonal elements, Si

a 5Si 1 aI. We can let 
a 5 g trace 1Si 2 /r so as to select g invariably to the data scale. 
The normalized disparity of the regularized eigen-spectrum 

eg
a 5 e 1la 2 /e 1l 2  against g is shown by the red curve of Figure 

3(b). Its minimum is e0.08
a 5 0.06. The regularized eigen-spec-

trum lk
a with g 5 0.08 is shown by the red curve of 

Figure 3(a). Although this method was originally proposed to 
circumvent the singularity of Si and the numerical instability 
of its inverse, we see from Figure 3 that the regularized eigen-
spectrum can be very close to the population variances. It is 
thus not a surprise that numerous algorithms for classifica-
tion, data regression, dimensionality reduction, and manifold 
learning adopt this classical technique [15], [17]–[19]. The 
underlying principle of Si

a 5Si 1 aI can been seen by its 
equivalence to adding the  constant to all eigenvalues 
lk

a 5 lk 1 a. From 1lk 1 a 2 /vk 5 11 1 a/lk 2lk/vk, we see that 
the factor 11 1 a/lk 2  is larger for smaller lk and smaller for 
larger lk. Therefore, the regularized eigen-spectrum can be 
very close to the population variances as shown in Figure 3. 
Problems of this method are the increased disparity of large 
eigenvalues and no dimensionality reduction effect. Either the 
n 3 n covariance matrix or the n 3 n eigenvector matrix is 
needed to compute the discriminant function (3) or (4). 

Another solution, called probabilistic subspace learning [20], 
[21], decomposes the discriminant function (4) into two parts and 
replaces the small eigenvalues by a constant as 

 gi 1x 2 5 2
1
2
ca

m

k51

1zk 2 zk 2 2
lk

1 a
n

k5m11

1zk 2 zk 2 2
r

d 1 bi . (5)

The constant is computed by rav 5 m5lk6m,k#r in [20] and 
[21] as it is the optimal approximation to lk for m , k # r. 
This method leads to one of the best performers, called the  
Bayesian algorithm [22], in the face recognition community 
and is adopted in many other approaches of visual object rec-
ognition [23]–[25]. In fact, this method regularizes the eigen-
spectrum by setting lk

rav 5 rav for m , k # n. The normalized 
disparity em

av 5 e 1lrav 2 /e 1l 2  against m is shown by the magenta 
dotted curve of Figure 3(b). Its minimum is e70

av 5 0.26. The 
regularized eigen-spectrum lk

rav for 70 , k # n is shown by 
the magenta dotted line in Figure 3(a). We see a much greater 
disparity than lk

a. The problem is the computation of the con-
stant r. The purpose of the regularization is not best approxi-
mating to the eigenspectrum but to the population variances. 
Eigenvalues in the subspace m , k # n are replaced by a con-
stant r because they are unreliable, and so is their arithmetic 
average rav. As they are biased downwards, it is proposed in [26] 
to use their upper bound as the constant rup 5 max5lk6k.m, 
which is also adopted in [27]. The normalized disparity 
em

up 5 e 1lrup 2 /e 1l 2  against m is shown by the blue dashed curve 
of Figure 3(b). Its minimum is e175

up 5 0.12. The regularized 
eigen-spectrum lk

rup for 175 , k # n is shown by the blue 
dashed line in Figure 3(a). We see a much smaller disparity than 
lk

av, which is greater than ea in this example but smaller than it 
in another (Figure 4). The upper bound rup leads to significantly 
higher face recognition accuracy than the average rav [26]. 

In fact, this regularization has some role of dimensionality 
reduction as it is not necessary to project the data to the 
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[FIG3] Problems of eigenvalues and their regularization. 
Part (a) shows the eigen-spectrum lk and its regularized versions 
computed from 400 face images, and variances vk of other 8,500 
face images projected on the eigenvectors Fk. Part (b) shows the 
normalized disparity between the regularized eigen-spectrum 
and the variances vk.
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 eigenvectors Fk for k . m. As we choose orthonormal eigenvec-
tors, Euclidian distance between two vectors in the eigen-space 
is identical to that in the data space and hence, 

 a
n

k5m11

1zk 2 zk 2 2
r

5
1
r
c 1x 2 xi 2T 1x 2 xi 2 2 a

m

k51

1zk 2 zk 2 2 d . (6)

Thus, we only need n 3 m eigenvector matrix to compute (5) 
for classification. However, the n-dimensional class mean vectors 
xi are still required. We call it semidimensionality reduction. 

Besides adding a constant to all eigenvalues or replacing the 
unreliable eigenvalues by a constant as discussed above, another 
regularization technique [16] replaces the unreliable eigenvalues 
lk, m , k # r by a model a 1k 1 b 221, where a and b are two 
constants determined by the reliable eigenvalues. The rationale 
behind it is that the population variance is not constant in the 
unreliable subspace but decays much slower than the eigenvalue 
does. This decaying nature can be modeled by a 1k 1 b 221, 
which will be certainly closer to the population variances than 
the constant rav or rup if proper values of a and b are chosen. 

DIMENSIONALITY REDUCTION 
FOR REMOVING UNRELIABLE DIMENSIONS
Various regularization techniques that greatly improve the clas-
sification accuracy are evidenced by a large amount of publica-
tions. As analyzed in the last section, the underlying principle 
behind the regularization is that it reduces the disparity 
between the eigenvalues and the population variances and 
hence attenuates the overfitting problem. Obviously, we can 
also remove the unreliable dimensions to reduce the disparity 
in the remaining subspace. The normalized disparity of the 
eigen-spectrum in the subspace (1 # k # m) against m, 
em

dr 5 e 1ldr 2 /e 1l 2 , is shown by the black dot-dashed curve in 
Figure 3(b). The minimum is e105

dr 5 0.05. The extracted and 
removed subspaces resulting in the minimum edr are separated 
by a vertical black dot-dashed line in Figure 3(a). It shows that 
the dimensionality reduction effectively reduces the disparity 
because large disparity occurs at small eigenvalues. Therefore, 
similar to various regularization techniques that modify the 
smallest eigenvalues, removing the subspace spanned by the 
eigenvectors corresponding to the smallest eigenvalues 
improves the inference of the classifier, i.e., reduces the mis-
classification rate on the novel testing data. 

However, this dimensionality reduction may also reduce the 
interclass distinction and the discriminant functions (3) or (4) of 
different classes in general should be evaluated in a common fea-
ture subspace for comparison. To extract a common subspace reli-
able for all classes and to prevent possible significant loss of the 
interclass distinction, we combine all class-conditional covariance 
matrices plus the covariance matrix of class mean to create a cova-
riance mixture as 

 Sa 5 a
c

i51
aiSi 1 hSm,  (7)

where ai and h are weights and 

 Sm 5 a
c

i51

qi

q
1x i 2 x 2 2. (8)

The covariance matrix of class mean Sm is also called interclass 
scatter matrix, where qi is the sample size of class v i, and x and q 
are respectively the mean and the sample size of the whole train-
ing set. Eigen-decomposition is then applied to the constructed 
covariance mixture 

 FT SaF5L5 diag5l1, l2, c, ln6. (9)

If we remove a subspace spanned by eigenvectors corresponding 
to the smallest eigenvalues of Sa, it tends to remove unreliable 
dimensions of all class-conditional covariance matrices Si and 
retain large interclass distinction residing in a subspace that has 
large eigenvalues of Sm. Therefore, classification on the m-dimen-
sional feature vector 

 f 5Fm
T x (10)
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[FIG4] Parts (a) and (b)  show results of the same program 
as of Figure 3 but using 400 nonface training images and 8,500 
nonface test images.
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is most likely to perform better than on the n-dimensional data 
vector x, where Fm consists of m eigenvectors corresponding to 
the m largest eigenvalues of the covariance mixture Sa. If we 
regard (7), (9), and (10) as a separate module called dimensionality 
reduction, the subsequent classification (3) is simplified in the 
m-dimensional subspace 

 gi 1f 2 5 2
1
2
1f 2 fi 2TSfi

21 1f 2 fi 2 1 bi . (11)

It is not necessary to project training samples into the subspace as 
fi 5Fm

T
 xi and Sfi 5Fm

TSiFm. The objective of the dimensionality 
reduction by (7), (9), and (10) is to facilitate an effective removal of 
the unreliable dimensions and hence boost the classification accu-
racy (11). Thus, larger values of ai should be assigned to less reli-
able covariance matrices so that more dimensions characterized 
by the smallest eigenvalues of less reliable classes can be removed 
by the eigen-decomposition of Sa. 

The weights ai are critical in some applications because differ-
ent classes may have different characteristics and hence the 

 reliability of the estimated covariance matrices can be significantly 
different. Figure 4 is generated by the same program as Figure 3 
but uses 400 and 8,500 nonface training and testing images, 
respectively, from a face detection database used in [14]. Other 
partitions of the training and testing sets produce very similar 
results to Figure 4. It shows much larger disparity between the 
eigenvalue and the population variance than that of Figure 3. 
More examples can be found in [14]. This is a general problem 
caused by the different characteristics of different classes. In the 
applications of biometric verification and object detection, for 
example, the positive and negative classes are highly asymmetric 
because the former represents only one particular person or object 
while the latter represents the whole “rest of the world” that con-
tains all other people or objects. Thus, it is much more difficult to 
collect a representative training set for the negative class than for 
the positive one. This often results in a larger eigenvalue bias of 
the negative class. Furthermore, as pointed out in [15] and further 
evidenced by Figures 3 and 4, the bias is more pronounced when 
population variances tend toward equality, and less severe when 
their values are highly disparate. This is also verified in [14] by 
synthetic data with known true population variances. As the nega-
tive class occupies a much larger subspace and hence has flatter 
eigen-spectrum, in general, we need to assign a larger weight to 
the negative class than to the positive one. 

It is very interesting to see that if we set h 5 1 and ai 5 qi/q, 
the constructed covariance mixture Sa will be identical to the 
covariance matrix St of all training data without considering their 
class labels. It is also called a total scatter matrix. This shows that 
the well-known PCA is a specific case of the aforementioned 
dimensionality reduction method. Therefore, this study also 
reveals the underlying principle of why PCA, though an unsuper-
vised method that minimizes the data reconstruction error rather 
than maximizes the class discrimination, can improve the classifi-
cation accuracy. Although many approaches apply PCA only 
aimed at circumventing the singularity problem of the intraclass 
scatter matrix for the subsequent discriminant analysis, as ana-
lyzed above, the role of PCA for classification is in fact far beyond 
that. Figure 5 (refer to the experimental section) demonstrates 
the significant gains in classification accuracy by using PCA to 
reduce the dimensionality much lower than the rank of the intra-
class scatter matrix. More evidence can be found in the experi-
mental results of [8], [14], [19], [25], and [28].

Nevertheless, PCA is not optimized for classification. The 
weights h 5 1 and ai 5 P 1v i 2  or ai 5 qi/q are required for PCA to 
achieve the least-mean-square data reconstruction error, which is 
irrelevant to classification. Our objective for classification is to 
remove the unreliable dimensions in which the sample-based class-
conditional variances are largely deviate from the population vari-
ances. The reliability of a covariance matrix does not depend on the 
class prior probability. More training samples of a class may result 
in a more reliable covariance matrix if they are properly  collected. 
However, it is the less reliable covariance matrix that should be 
heavier weighted in the covariance mixture so that more dimen-
sions characterized by the small variances of this class can be 
removed. From the analysis, we see that PCA helps improve the 
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classification accuracy, not because it minimizes the data recon-
struction error, but because it has some roles in  removing the 
unreliable dimensions. As its objective is not from the classification 
point of view, PCA may not effectively remove the unreliable 
dimensions. In sharp contrast to PCA that weights Si proportional-
ly to qi, it is suggested in [14] to pool Si with weights inversely pro-
portional to qi if there is no prior knowledge about the class 
characteristics and the data collection procedure. Even h 5 1 in 
PCA may not be optimal for classification. Although a larger value 
of h ensures less loss of the interclass distinction, it leads to less 
effective removal of the unreliable dimensions. Hence, more 
dimensions have to be removed, which in turn results in more loss 
of the interclass distinction. The aforementioned limitations of PCA 
are verified by the experimental results shown in Figure 5. 

PCA is an unsupervised technique, as no class label is needed. 
For a two-class problem, dimensionality reduction (7), (9), (10) is 
called asymmetric principal component analysis (APCA) [14] due 
to the asymmetric treatment of the two covariance matrices. For a 
multiple-class problem, more generally, we call it supervised prin-
cipal component analysis (SPCA), as it utilizes the class label and 
other class-specific information by imposing different weights on 
the covariance matrices. The optimal values of weights are appli-
cation dependent. The objective of the SPCA (7), (9), (10) is to 
effectively remove the unreliable dimensions and hence boost the 
classification accuracy (11). Thus, it may not greatly reduce the 
dimensionality for a fast classification in some applications. In 
addition, APCA or SPCA may not work well for a classifier that nei-
ther explicitly nor implicitly weights the feature by the inverse of 
its variance, such as the classical nearest-neighbor classifier (NNC) 
with Euclidian distance and the sparse representation-based classi-
fier (SRC) where the ,1-minimization is applied [1], [2]. 

DIMENSIONALITY REDUCTION BY 
RETAINING DISCRIMINATIVE DIMENSIONS
As discussed in the last two sections, if the dimensionality reduc-
tion is aimed at enhancing the inference accuracy of the subse-
quent classification, it should be targeted at removing the 
unreliable dimensions. In some applications, we need to reduce a 
very high dimensional data vector to a very low dimensional fea-
ture vector to facilitate a simple and fast classification. This can be 
effectively achieved by extracting the most discriminative dimen-
sions, which ensures the minimum loss of the discriminative 
information in the extracted subspace among all other subspaces 
of the same dimensionality. Linear discriminant analysis and its 
various variants are the most widely studied approaches. 

In the identification applications, we often have a large 
number of classes with only a few samples per class for train-
ing so that each individual Si is extremely unreliable. One 
solution to  regularize them is to pool them together to form 
a common covariance matrix, Sw 5 g c

i51 qi Si/q, which is 
also called intraclass scatter matrix. The discriminant func-
tion (3) is thus simplified as

 gi 1x 2 5 2
1
2
1x 2 xi 2T Sw

21 1x 2 x i 2 1 bi 5 xT Sw
21 xi 1 ti ,  (12)

where ti absorbs all terms that is either constant to x or constant 
to i. We see that it is a linear function of x and hence the decision 
boundary gi 1x 2 5 gj 1x 2  between any two classes v i and v j is a 
hyperplane specified by its normal vector cij 5Sw

21 1x i 2 xj 2  and 
the threshold ti 2 tj. This means that for the optimal classification 
between two classes v i and v j, only one dimension spanned by cij 
is necessary. Thus, under the constraint of the linear classification, 
this dimension contains the most (in fact, all) discriminative infor-
mation to differentiate class v i and v j. It is easy to see that the 
training data in this dimension have the maximum ratio k 
between the interclass and intraclass variances. Therefore, we can 
define this ratio k as a discriminant value to assess the discrimi-
nating power of a dimension. Although we need 1c 2 1 2 ! hyper-
planes to classify c  classes, their normal vectors 
cij 5Sw

21 1x i 2 x j 2  only span a 1c 2 1 2-dimensional subspace as 
only c 2 1 of them are linear independent. Therefore, we can 
reduce the n-dimensional data space to this 1c 2 1 2-dimensional 
subspace without losing any discriminative information as the lin-
ear classification (12) produces exactly the same results in the two 
spaces. However, if the dimensionality is reduced to d, d , c 2 1, 
some discriminative information will be lost. The subspace 
spanned by the eigenvectors corresponding to the d largest eigen-
values of the matrix Sw

21Sm contains the most discriminative 
information among all possible d-dimensional subspaces for the 
linear classification (12) because an eigenvalue of Sw

21Sm is the 
ratio k between the interclass and intraclass variances in the 
dimension spanned by the corresponding eigenvector. This is the 
well-known LDA that performs the eigen-decomposition 

 CTSw
21SmC5L5 diag5l1, l2, c, ln6. (13)

We see from the above analysis that the objective of LDA is to 
find the one among all possible d-dimensional subspaces in which 
the linear classification (12) achieves the closest result to that in 
the original n-space. It is undoubtedly an effective method to 
largely reduce the data dimensionality with the minimum loss of 
the classification capability in a linear sense. 

For a two-category classification problem, LDA can only 
extract one dimension. It is insufficient for a reasonable classifica-
tion for some problems such as various tasks of verification and 
object detection because the two class-conditional covariance 
matrices are significantly different and hence the optimal classifi-
cation is obviously not linear. To apply the discriminant analysis in 
such problems, an asymmetric discriminant analysis (ADA) is pro-
posed in [14] to extract a rich number of features. It solves the fol-
lowing eigen-decomposition problem: 

 CT1S11bS22211S11gSm2C5L5 diag5l1, l2, c, ln6 (14)

in the APCA subspace. The underlying principle is that the dis-
criminative information is not only carried by the distinction of 
the two class means but also by the distinction of the two class 
variances. The constant g weights the discriminative information 
about the class mean against that about the variance. The asym-
metry of the two classes is balanced by the constant b. It is proven 
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in [14] that the ADA with g 5 b 5 1 maximizes the 
Bhattacharyya distance [29] between two classes in the subspace 
spanned by the eigenvectors corresponding to the largest 
max 1lk, 1 2 lk 2 . Note that, different from those in the last two 
sections, eigenvectors of LDA or ADA are not orthogonal. The 
Euclidian distance in a space using LDA/ADA eigenvectors as a 
base will be different from that using an orthogonal base. 
However, it is easy to show that the Mahalanobis distance is not 
affected by the orthogonality of the base. 

As the rank of Sw is at most min 1n, q 2 c 2 , Sw is often singu-
lar in some applications so that the discriminant value of LDA (13) 
and ADA (14) cannot be evaluated. Numerous variants or general-
izations of LDA have been proposed to circumvent this problem, 
which are summarized under a common framework graphically 
[8] and algebraically [19]. A popular approach called Fisherface or 
Fisher LDA (FLDA) [30] applies PCA so as to make Sw nonsingular 
before LDA. Another approach called direct LDA (DLDA) [17] 
removes null space of Sm and extracts the eigenvectors corre-
sponding to the smallest eigenvalues of Sw. This is under the 
assumption that the most discriminative information resides in 
the range space of Sm. NLDA [5] extracts features from the null 
space of Sw. Interestingly, this appears to contradict the popular 
FLDA that only uses the range space and discards the null space of 
Sw. A common aspect of all these methods is that they all remove 
some dimensions, either in the principal or the null space, before 
the LDA process. It is difficult to compare the effectiveness of the 
aforementioned LDA variants because we see from (13) that both 
Sw and Sm contribute to the discriminant value k in a dimension. 
NLDA and DLDA appear to retain more discriminative informa-
tion as any dimension in the intersection of the null space of Sw 
and the range space of Sm has infinite discriminant value k 
according to (13). DLDA ensures the class mean distinction Sm 
untouched in the first stage. However, small and zero eigenvalues 
of Sw are unreliable that may cause severe problem as we analyzed 
in the last two sections. Just a small decrease or increase in the 
number of training samples may greatly change them. 
Furthermore, the most discriminative dimensions are not restrict-
ed within the range space of Sm or the null space of Sw. Therefore, 
the above LDA variants are criticized in the literature [27], [31], 
[32] as a significant amount of discriminative information could 
be lost before the LDA process. 

To avoid losing discriminative information before the LDA pro-
cess, the dual-space LDA approach (DSL) [31], [32] performs LDA 
on the principal space of Sw and its complementary space sepa-
rately and combines the two sets of the extracted LDA features. 
Obviously, it is suboptimal to extract features separately from the 
two subspaces. Furthermore, how to fuse the two feature sets 
properly is an open problem as they do not share the same metric 
measurement. Features from the principal space, k # m, are 
weighted by the inverse of their intraclass variance and those from 
the complementary space, k . m, are equally weighted by some 
constant. From the last two sections, we see that this feature 
weighting is problematic in the principal space for a large value of 
m and is problematic in the complementary subspace for a small 
value of m. One solution to these problems is first to partition the 

data space into three subspaces: reliable, unreliable, and null space 
of Sw, then to regularize the eigenvalues differently in these three 
subspaces and finally to apply LDA in the whole space [16]. 
Consistent gains in face recognition accuracy of this approach 
were reported in [16]. Another way [33] to avoid losing informa-
tion of Sw and Sm before the discriminant evaluation is to modify 
the LDA (13) to 

 CTSt
21SmC5L5 diag5l1, l2, c, ln6. (15)

As St 5Sw 1Sm and hence the null space of St is the intersec-
tion of the null spaces of Sm and Sw, no discriminative informa-
tion is lost by evaluating (15) in the range space of St. However, 
(15) deviates from the LDA (13) and hence the extracted subspace 
may not be the most discriminative in a sense of LDA or of the 
classification (12). Moreover, it puts an undue emphasis on the 
null space of Sw as the discriminant value from St

21Sm in the 
range space of Sw (k , 1) is always smaller than that in its null 
space (k 5 1). In addition, there is also a problem of how to prop-
erly scale the features from the principal and null spaces of Sw, 
which may not be of full rank even in the reduced subspace. 

Most aforementioned approaches focus on the singularity 
problem of Sw. In fact, as analyzed in the last two sections, the 
unreliability, bias, and instability of the small eigenvalues of Sw 
cause great problems wherever its inverse is applied in the dis-
criminant evaluation (13), (14) or the classification (3), (12). Any 
regularization or dimensionality reduction technique discussed in 
the last two sections can be applied to attenuate this problem 
before applying discriminant analysis to further reduce the dimen-
sionality for a fast classification. Significant gains in classification 
accuracy were reported by applying various regularization tech-
niques in the LDA approaches [15], [16], [19], [27], [34]. Also, 
great gains in classification accuracy were reported by applying 
PCA, APCA, or SPCA to reduce the data dimensionality much 
smaller than the rank of the Sw before applying LDA or other dis-
criminative methods [8], [14], [19], [25], [28]. 

EXPERIMENTAL STUDIES
The different roles of dimensionality reduction by PCA, SPCA, 
and LDA/ADA for pattern recognition are further explored in 
two experiments. One is a face identification problem on a 
data set [16] extracted from the facial recognition technology 
(FERET) database with many classes (1,194 people) and only 
two samples per class, and the other is a face detection prob-
lem in the database used in [14] with only two classes (face 
and nonface) and many (9,000) samples per class. Images are 
cropped into the size of 33 3 38 for the identification prob-
lems and 20 3 20 for the detection problem. In the identifica-
tion experiment, 497 people are randomly selected for 
training, the remaining 697 people are used for testing, and 
the linear classifier (12) is applied in the feature space. In the 
detection experiment, four experiments, each with a distinct 
25% images as testing set and the remaining images as train-
ing set, are conducted and the average misclassification rate 
over the four distinct testing sets is computed. The detection 
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applies the quadratic classifier (11) for PCA-related approaches 
and its asymmetric version with b 5 0.75 [14] for SPCA-
related approaches, where bi is set so that the two classes have 
the same misclassification rate. For the identification prob-
lem, as there is no ground for significantly different distribu-
tions of different persons, the same parameter ai 5 1/497 is 
chosen for Sa. We choose h 5 1/4 to differentiate the covari-
ance mixture Sa significantly from the total scatter matrix St 
where h 5 1. For the detection problem, we choose h 5 1 
(same as in PCA) but a1 5 1/5 (for face class) and a2 5 4/5 (for 
nonface class) to remove significantly more unreliable dimen-
sions of the nonface class in the SPCA stage as discussed in the 
last section. For ADA, g 5 10 and b 5 0.75 is chosen [14]. 
Figure 5 shows the misclassification rates against the dimen-
sionality m reduced by PCA and SPCA and d  reduced by 
PCA+LDA/ADA and SPCA+LDA/ADA. The most left point of 
each dashed curve indicates the dimensionality m of the PCA/
SPCA subspace, in which the LDA/ADA further reduces it to d 
indicated by the other points on the same dashed curve. 

The experimental results shown in Figure 5 further verify 
the analysis of this article. It is the regularization technique or 
the dimensionality reduction by the supervised principal com-
ponent analysis (including PCA) that plays the most vital role 
in boosting the classification accuracy while the discriminative 
method can greatly reduce the dimensionality with the mini-
mum loss of the discriminative information. The question may 
arise as to why NLDA can work well in some applications if the 
smallest and zero eigenvalues are the most unreliable. The rea-
son behind it is that the classification of the NLDA features 
does not use the variance due to zero eigenvalues in all dimen-
sions of the null space. Thus, it implicitly circumvents the 
problem of the unreliable small eigenvalues to a certain extent 
by evenly  weighting all  features. Another question is why some 
approaches using LDA alone can also work well on some data 
sets. The underlying causes include the avoidance of feature 
scaling in the classification and the linearity of LDA but the 
nonlinearity of the classifier. These approaches, though apply-
ing LDA (13 ) for feature extraction, do not apply its origin (12) 
as classifier. Most of them apply the NNC with Euclidian dis-
tance. While the simple Euclidian  distance ignores the data 
variance and hence circumvents the problem of the unreliable 
small eigenvalues to a certain extent, the complex data distri-
bution is captured by the NNC that computes al l distances 
from a novel pattern to all training samples. The NNC, though 
very simple, is highly nonlinear, can form arbitrary complex, 
nonlinear decision  boundary and classifies all training samples 
without error. LDA restricts  such highly nonlinear classifier to 
a subspace, which is, though the most discriminative, only in a 
linear sense. This restriction has similar role to the regulariza-
tion . Therefore, the improvement of the classification accuracy 
by LDA is most likely contributed by its linearity constraint 
rather than its most discriminative natu re. However, LDA that 
represents the class distinction by using the difference of class 
mean only may impose too strict constraint on some complex 
data struct ure. Therefore, some approaches that utilize the 

locality and neighborhood of the training samples such as LPP 
[6], [7] and MFA [8] extract more discriminative features than 
LDA. Nevertheless, experiments in [ 7] and [8] still show that a 
PCA stage either is necessary to “remove the noise” [7] or sig-
nificantly improves the performance [8] of these discrimina-
tive approache s. 

CONCLUSIONS
To recognize unknown data, a pattern recognition system is 
designed based on the human knowledge about the data popu-
latio n and the machine learning from the known training 
samples. The difficult recognition task is performed in several 
stages. Classification as the last stage is mainly trained by the 
av ailable training samples. Thus, it extracts the most discrimi-
native information on the training data, which in general devi-
ates  from that about the whole data population as only a finite 
set of training samples is applicable. This deviation increases 
the misclassification rate  on the novel data. The problem 
becomes very severe if the data lie in a high-dimensional 
space. Moreover, high dimensionality also makes it difficult to 
apply sophisti cated classifiers. Linear subspace learning-based 
dimensionality reduction provides a powerful tool to circum-
vent these proble ms. It also serves as a solid foundation for 
various nonlinear approaches. Dimensionality reduction as an 
intermediate stage of a pattern recognition process has two 
objec tives. One is to reduce the computational complexity of 
the subsequent classification with the minimum loss of the 
discriminative information, and the other is to circumvent the 
over-fitting problems of the classification and he nce enhance 
its inference accuracy and robustness. 

To achieve the first objective, we need to maximize the discrimi-
native information in the reduced low-dimensional space. 
Discriminative approac hes such as LDA, NLDA, DLDA, ADA, LPP, 
MFA, and their various variants can undoubtedly reduce the data 
dimensionality in large scale with the minimum loss of the discrim-
inative in formation. Since these approaches in general have similar 
objective to that of classification, i.e., extracting the most discrimi-
native information on the tra ining samples, problems of misclassifi-
cation on novel data or poor generalization/inference capability 
caused by the high dimensionality of the data may not  be effectively 
circumvented. However, some constraints on these discriminative 
approaches such as the linearity and the limitation  to the zero intra-
class variation, which are not imposed on the subsequent classifica-
tion, play some roles in improving the classification accuracy. 

 The second objective cannot be effectively achieved only based 
on the consideration of some general phenomena, such as the 
curse of dim ensionality, small sample size problem, noise remov-
al effect of the dimensionality reduction and better generalization 
in a lower dimensional spa ce. For an effective dimensionality 
reduction, we have to find out which dimensions are more prob-
lematic or harmful than others for a robust cla ssification and 
hence should be removed. It is shown that the smallest eigenval-
ues of the class-conditional covariance matrix have the largest 
deviation from the population variances and hence caus e the 
most severe problem in classification and LDA/ADA evaluation. 
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Therefore, regularization of these un reliable statistics or removal 
of the corresponding dimensio ns by SPCA greatly enhances the 
classification accuracy. They also help the discriminant evalua-
tion of LDA, ADA, LPP, and MFA to find a portable set of reliable 
and most discriminative dimensions. However , they may not be 
effective for a classifier that neither explicitly nor implicitly 
weights the feature by the inverse of its variance, such as the clas-
sical NNC with Euclidian distance and the sparse representation-
based classifie r SRC. 

As regularization does not reduce or fully reduce the data 
dimensionality and the removal of the unreliable dimensions by 
SPCA may not lead to a portable feat ure vector, discriminative 
approaches such as LDA, ADA, LPP, MFA, and their variants can 
be followed to greatly reduce the dimensionality for a simple and 
fast classification. Although various regulariza tion techniques 
are also applied in many classifiers, they should be applied before 
the dimensionality reduction because the regularization in the 
classification stage cannot recover the improperly removed 
dimensions in the dimensionality reduction stage. With the in-
depth understanding of the roles of dimensionality reduction for 
pattern recognition and the underlying principles revealed in 
this article, it is not a surprise that most top performers of the 
state-of-the-art techniques either apply various regularized dis-
criminative analyses or apply two-stage approaches, such as 
PCA+LDA, PCA+LPP, SPCA+ADA, and PCA+MFA to accomplish 
the both objectives of the dimensionality reduction. 
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