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a b s t r a c t

An iterative trimmed and truncated arithmetic mean (ITTM) algorithm is proposed, and
the ITTM filters are developed. Here, trimming a sample means removing it and
truncating a sample is to replace its value by a threshold. Simultaneously trimming and
truncating enable the proposed filters to attenuate the mixed additive and exclusive noise
in an effective way. The proposed trimming and truncating rules ensure that the output of
the ITTM filter converges to the median. It offers an efficient method to estimate the
median without time-consuming data sorting. Theoretical analysis shows that the ITTM
filter of size n has a linear computational complexity OðnÞ. Compared to the median filter
and the iterative truncated arithmetic mean (ITM) filter, the proposed ITTM filter
suppresses noise more effectively in some cases and has lower computational complexity.
Experiments on synthetic data and real images verify the filter's properties.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Noise suppression has drawn great attention and is
used in a broad range of applications, such as imaging,
communications, geology, hydrology and economics [1]. A
noise corrupted signal can be modeled as

xi ¼
siþvi with probability p

ei with probability ð1�pÞ;

(
ð1Þ

where si, vi and ei denote the noise free signal, the additive
and exclusive noise, respectively. The occurrence probabil-
ity of the two types of noise is controlled by p, pA ½0;1�.
The additive noise vi is in general symmetrically distrib-
uted with zero mean. It could be short- or long-tailed
noise, such as Gaussian or Laplacian noise. The exclusive
noise ei could be impulsive noise with uniform distribu-
tion, or pepper & salt noise. Great effort has been devoted
All rights reserved.

o),
to developing the noise suppression filters based on the
noise model.

Many filters were designed to attenuate the additive
noise that corresponds to p¼1. The most frequently
occurring noise in practice is the additive Gaussian noise,
and the optimal filter in suppressing it is the mean filter.
Its simplicity in realization and the availability of rigorous
mathematical tool lead to the rich class of the linear finite
impulse response (FIR) filters. The linear FIR filters are
effective in attenuating the additive Gaussian noise but not
the long-tailed noise. This results in the development of
the nonlinear filters. The median filter [1], which is the
most widely used one among the nonlinear filters, pro-
vides a powerful tool for signal processing. It has good
properties in long-tailed noise suppression and structure
preservation. However, it destructs fine signal details and
cannot effectively suppress the additive Gaussian and
other short-tailed noise. This leads to the various exten-
sions of the median filter, including the weighted median
filters [1], the weighted rank order Laplacian of Gaussian
filter [2,3], the steerable weighted median filter [4], the
fuzzy rank filters [5], the truncation filters [6] and various
adaptive noise switching median filters [7–10]. The merits
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of the mean and median filters lead to another branch
of filters which make compromises between these two
filters, such as the mean–median (MEM) filter [11] and the
median affine (MA) filter [12]. The output of these filters
varies smoothly between the mean and median by adjust-
ing some free parameters. Selecting the optimal para-
meters to make them adaptive to signal types is not an
easy task though some efforts were made [12].

Both the additive and exclusive noise exist if p in (1) is
smaller than 1. As the exclusive noise completely replaces
the original samples, the most effective way is to trim
(remove) such samples and use the exclusive-noise-free
ones in a local region to restore the signal. The median
filter is optimal in suppressing the exclusive noise by
trimming all the samples except the middle one. The
filters to suppress the mixed additive and exclusive noise
include the α-trimmed mean (αT) filter [13], the modified
trimmed mean (MTM) filter [14] and the switching bilat-
eral filter (SBF) [15]. The αT filter discards some samples
strictly relying on their rank. This may not be effective as it
does not consider the dispersion of the data [12]. The MTM
filter is sensitive to the small variation of samples located
close to the threshold [12]. The SBF separates the impul-
sive noise from the Gaussian noise [15] and suppresses
these two types of noise respectively. Its performance
drops in dealing with the long-tailed noise. In addition,
all these filters require both data sorting and arithmetic
computing. Compared to the arithmetic computing, the
data sorting is much more time-consuming [16].

Nonlinear filters without data sorting were desirable
and proposed in [17–19]. The iterative truncated arith-
metic mean (ITM) filter [17] iteratively truncates the
extreme samples to a dynamic threshold that ensures
the filter's output converges to the median. The stopping
criterion of the ITM filter makes it own merits of both the
arithmetic mean and order statistic median operations in
attenuating the short- and long-tailed noise. By truncating
the extreme samples, the ITM1 filter outperforms both the
mean and median filters in suppressing Laplacian noise
and the Gaussian–Laplacian mixed noise [17]. By discard-
ing all the truncated samples and using the mean of the
remaining ones as the output, the ITM2 filter surpasses
other filters in attenuating the impulsive-contaminated
Gaussian noise [17]. A realization of the ITM filter [18] is
verified to perform faster than the standard median filter.
The ITM filter is extended to the weighted ITM filter to
realize the band- and high-pass filters [19]. However,
keeping all the truncated samples (ITM1) or trimming all
the truncated samples (ITM2) may not be optimal if both
the additive and exclusive noise exist. Moreover, further
analysis in this paper reveals that the truncation threshold
is largely affected by the extreme samples even if they are
truncated. This reduces the convergence of the truncation
threshold, and therefore leads to a high computational
complexity.

In this paper, we propose a trimmed and truncated
arithmetic mean (ITTM) algorithm to alleviate the above
problems. The proposed algorithm iteratively trims and
truncates the extreme samples simultaneously. Without
sorting, the extreme samples are symmetrically trimmed
from the input data set, and the remaining ones
are truncated to a dynamic threshold. Three types of filter
outputs are developed on the basis of the ITTM algorithm.
The proposed trimming and truncating rules guarantee the
filters' outputs approaching the median by increasing the
number of iterations. With the stopping criterion given in
[17] to terminate the iteration, the proposed ITTM filter is
not only faster than the ITM filter, but also more effective
in attenuating some types of noise.

2. The proposed ITTM filter

We propose the iterative trimmed and truncated arith-
metic mean (ITTM) filters based on analysis of the ITM
filter.

2.1. Iterative truncated arithmetic mean filter

As distinct from the mean filter that averages all samples
and the median filter that chooses one sample as the
output, the iterative truncated arithmetic mean (ITM) filter
[17] iteratively truncates the extreme samples and uses the
truncated mean as the filter output. Starting from x¼ x0, it
truncates samples in x to a dynamic threshold as shown by
Algorithm 1.

Algorithm 1. Truncation procedure of the ITM algorithm.

Input: x0 ) x; Output: Truncated x;

do�
1Þ Compute the sample mean : μ¼meanðxÞ;
2Þ Compute the dynamic threshold : τ¼meanðjx�μjÞ;
3Þ bl ¼ μ�τ; bu ¼ μþτ; and truncate x by :

xi ¼
bu if xi4bu
bl if xiobl
xi otherwise;

8><
>:

��������������

while the stopping criterion S is violated;
The ITM filter has two types of outputs [17]. The type I
output ITM1 is

yt1 ¼meanðxÞ: ð2Þ
Let xr ¼ fxijbloxiobug and nr be the number of samples in
xr . The type II output ITM2 is

yt2 ¼
meanðxrÞ if nr4ξ

meanðxÞ otherwise:

(
ð3Þ

The parameter ξ is used to avoid an unreliable mean in
case that too few samples remain in xr . It is set to ξ¼ n=4
in [17].

2.2. The proposed ITTM filters

Keeping all the truncated samples makes the ITM1
filter less effective in suppressing the exclusive noise.
Trimming all the truncated samples causes the ITM2 filter
not optimal in dealing with the additive noise. Neither the
ITM1 nor ITM2 filters can effectively deal with the case
that both the additive and exclusive noise exist. In addi-
tion, a large number of iterations may be in demand for
the ITM algorithm to converge as its truncation threshold,
which is the mean absolute deviation (MAD) of the
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truncated x, i.e. τ9meanðjx�μjÞ, is largely affected by the
extreme samples even though they are truncated.

Trimming the truncated samples in the subsequent
iterations is helpful to increase the convergence of the
truncation threshold. Unfortunately, trimming all trun-
cated samples violates the rule of the ITM algorithm that
the output converges to the median. As the median is
within the truncation bounds [17], trimming the same
number of the truncated samples from both sides of the
mean does not change the median. The following Theorem 1
guarantees that trimming the extreme samples leads to a
higher convergence of the truncation threshold.

Theorem 1. For any finite data set, simultaneously trimming
the minimum and maximum samples decreases the MAD
if the mean deviates from the median. Let x¼ fxa; xr ; xbg
be a set of n samples, where xr ¼ fx1; x2;…; xn�2g, xar
fxign�2

i ¼ 1rxb, and τ and τr be the MAD of x and xr respectively.
We have

τroτ if μaϕ; ð4Þ
where μ and ϕ are the mean and median of x.

Proof. Let μr ¼meanðxrÞ, and nh and nl denote the number
of samples in fxijxiAxr ; xi4μrg and fxijxiAxr ; xirμrg,
respectively. The MAD τr of xr satisfies

ðn�2Þτr ¼ ∑
n�2

i ¼ 1
jxi�μrj

¼ ∑
xi 4μr

ðxi�μrÞþ ∑
xi rμr

ðμr�xiÞ

¼ ∑
xi 4μr

ðxi�μÞþ ∑
xi rμr

ðμ�xiÞþðnh�nlÞðμ�μrÞ

r ∑
n�2

i ¼ 1
jxi�μjþðnh�nlÞðμ�μrÞ: ð5Þ

Based on (5), the MAD τ of x can be expressed as

τ¼ 1
n

∑
n�2

i ¼ 1
jxi�μjþðxb�xaÞ

" #

Z
1
n

n�2ð Þτr� nh�nlð Þ μ�μr
� �þ xb�xað Þ� �

: ð6Þ

As nhþnl ¼ n�2 and

n μ�μr
� �¼ ∑

n�2

i ¼ 1
xiþxaþxb�

n
n�2

∑
n�2

i ¼ 1
xi ¼ xaþxb�2μr ; ð7Þ

the second and third terms of (6) can be reformulated as

ðxb�xaÞ�ðnh�nlÞðμ�μrÞ
¼ ðxb�xaÞ�ðnh�nlÞðxaþxb�2μrÞ=n
¼ 2ðnlþ1Þðxb�μrÞ=nþ2ðnhþ1Þðμr�xaÞ=n: ð8Þ

Since τr ¼ 2= n�2ð Þ� �
∑xi 4 μr

xi A xr
xi�μr
� �

[17], we have

xb�μrZ
1
nh

∑
xi 4 μr
xi A xr

xi�μr
� �¼ n�2

2nh
τr : ð9Þ

Similarly,

μr�xaZ
1
nl

∑
xi r μr
xi A xr

μr�xi
� �¼ n�2

2nl
τr : ð10Þ

Substituting (9) and (10) into (8) yields

xb�xað Þ� nh�nlð Þ μ�μr
� �
Z
2ðnlþ1Þ

n
ðn�2Þ
2nh

τrþ
2ðnhþ1Þ

n
ðn�2Þ
2nl

τr

¼ τr
n�2
n

ðnh�nlÞ2þ2nhnlþðnhþnlÞ
nhnl

 !

Zτr
n�2
n

2þ nhþnl

nhnl

� �
Zτr

n�2
n

2þ 4
nhþnl

� �
¼ 2τr : ð11Þ

Therefore, substituting (11) into (6) yields

τZτr : ð12Þ
Note that τ¼ τr occurs if and only if all the inequalities of
(9), (10) and (11) are respectively equal, i.e.

xb�μr ¼
n�2
2nh

τr ; ð13Þ

μr�xa ¼
n�2
2nl

τr ; ð14Þ

and

ðxb�xaÞ�ðnh�nlÞðμ�μrÞ ¼ 2τr ; ð15Þ
which require (a) all samples are equal to either xb or xa
and (b) nh¼nl. This specific case does not occur if μaϕ.
This completes the proof of (4). □

Theorem 1 guarantees that trimming a pair of extreme
samples (one minimum and one maximum samples) from
any finite data set reduces the MAD of this data set. It is
further reduced by increasing the number of trimmed
sample pairs. This inspires the proposed iterative trimmed
and truncated arithmetic mean (ITTM) algorithm shown
by Algorithm 2.

Algorithm 2. Procedure of the ITTM algorithm.

In
put: x0 ) x; Output: Trimmed and truncated x;

d
o�
�
 1Þ Compute the sample mean : μ¼meanðxÞ;

2Þ Compute the dynamic threshold : τ¼meanðjx�μjÞ;
3Þ bl ¼ μ�τ; bu ¼ μþτ; and trim all sample pairs ðxi; xjÞ from x that
satisfy xiZbu ; xjrbl;

4Þ Truncate the rest samples by :

xi ¼
bu if xi4bu
bl if xiobl
xi otherwise;

8><
>:

������������������

while the stopping criterion S is violated;

Let nτuðkÞ and nτlðkÞ be the number of samples respec-
tively satisfying xiZbu and xjrbl in the kth iteration.
Obviously, the number of samples trimmed from x in the
kth iteration in Step 3 of Algorithm 2 is 2 minfnτlðkÞ;nτuðkÞg.

Three types of the ITTM filter outputs are proposed. The
type I and II outputs are analogous to those of the ITM
filter. Assume the total number of the trimmed samples on
each side of the mean be nt. By padding the trimmed
samples with the lower or upper bound, the padded x is
xp ¼ fnt⋄bl; x;nt⋄bug, where ⋄ is the replication operator
defined as

nt⋄x¼ x; x;…; x|fflfflfflfflffl{zfflfflfflfflffl}
nt times

: ð16Þ
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The type I output ITTM1 is

ytt1 ¼meanðxpÞ: ð17Þ
The type II output ITTM2 is

ytt2 ¼
meanðxrÞ if nr4ξ

ytt1 otherwise;

(
ð18Þ

where xr ¼ fxijbloxiobug, and nr is the number of sam-
ples in xr . Resembling the ITM filter, the ITTM1 filter keeps
all the truncated samples, and the ITTM2 filter trims all the
truncated samples. As the truncation threshold of the
ITTM algorithm decreases faster than that of the ITM
algorithm, with a same stopping criterion, the ITTM1 and
ITTM2 filters will be faster than the ITM1 and ITM2 filters.

The type III output ITTM3 is designed to alleviate the
problem that both the additive and exclusive noise exist.
Similar to that of the ITM filter, keeping all the truncated
samples (ITTM1) or trimming all the truncated samples
(ITTM2) may not be optimal in dealing the mixed additive
and exclusive noise. The proposed ITTM3 filter uses the
mean of the trimmed and truncated data set as the filter
output, i.e.

ytt3 ¼
meanðxÞ if n�2nt4ξ

ytt1 otherwise;

(
ð19Þ

where n�2nt is the number of samples in x. ξ¼ n=4 is
used in this paper to avoid an unreliable mean caused by
trimming too many samples.

The ITTM filter's output moves from the mean towards
the median by increasing the number of iterations. Since
neither mean nor median is the optimal solution for many
real signals/images, proper stopping criterion is applied to
suppress noise and preserve edges within a few iterations.
In the ITTM filter, we use the stopping criterion S proposed
in [17] to automatically terminate the ITTM algorithm.

3. Properties of the ITTM filters
Property 1 (Faster convergence). The truncation threshold τ
of the ITTM algorithm has a faster convergence than that of
the ITM algorithm. It decreases monotonically to zero if the
mean μ deviates from the median ϕ, i.e.

τðkþ1ÞoτðkÞ if μaϕ; ð20Þ
and

lim
k-1

τ¼ 0; if μaϕ: ð21Þ

Proof. The faster convergence of ITTM than ITM can be
derived from Theorem 1. The threshold τ of the ITTM
algorithm converges to zero as it is a non-negative value
and smaller than that of the ITM algorithm, which is proven
to converge to zero in [17]. □

Fig. 1 shows the average of the truncation thresholds
over 106 Laplacian distributed input data sets against the
number of iterations. They are normalized by the average
MAD of the input data sets. The filter size is n¼7�7. This
figure demonstrates that the convergence of the ITTM
algorithm is visibly faster than that of the ITM algorithm.
Property 2 (Converge to the median). The ITTM1, ITTM2
and ITTM3 outputs ytt1, ytt2 and ytt3 converge to the median ϕ
of the samples in the filter window, i.e.

lim
k-1

ytt1 ¼ lim
k-1

ytt2 ¼ lim
k-1

ytt3 ¼ ϕ: ð22Þ

Proof. Using the MAD of the data from the mean as the
truncation threshold, the truncating procedure does not
change ϕ [17]. Trimming the same number of the extreme
samples from both sides of the mean also does not change
ϕ. Therefore, ϕ is not changed in the iterative trimming
and truncating procedures. As Property 1 proves that the
truncation threshold converges to zero, the outputs ytt1,
ytt2 and ytt3 converge to ϕ. □

Property 3 (Scale and shift invariance). The ITTM filters are
invariant to scale and shift, i.e. if z¼ faxiþcg; 8xi; xiAx, we
have

yttðzÞ ¼ ayttðxÞþc; ð23Þ
where a and c are two constants, and ytt is the notation
shared by all the three types of the ITTM filter outputs. The
proof is trivial and hence omitted.

Property 4 (Symmetric distribution). The distribution of the
ITTM filter output is symmetric, if the samples of the input
data set x0 ¼ fx1; x2;…; xng are drawn from the random
variable X with a symmetric distribution.

Proof. If xi is symmetrically distributed around c, 2c�xi
has the same distribution as xi. According to Property 3,
yttð2c�x1;2c�x2;…;2c�xnÞ ¼ 2c�yttðx1; x2;…; xnÞ. Thus,
the distribution of ytt is symmetric around c. □

Property 5 (Unbiased estimate). The ITTM filter output is an
unbiased estimate of the population mean of X, if the samples
in x0 ¼ fx1; x2;…; xng are drawn from the random variable X
with a symmetric distribution.

Proof. According to Property 4, ytt is symmetrically dis-
tributed around c. Therefore, Efyttg ¼ c¼ EfXg. This com-
pletes the proof of Property 5. □

Property 6 (Edge preservation). The ITTM2 filter of size in
odd number preserves image step edges with any number of
iterations. The proof is similar to that of the ITM2 filter given
in [17], and hence is omitted.

Fig. 2 shows a step edge profile. The filter size of
n¼11�11 is applied. After the first iteration, the output
of the ITTM2 filter is the same as the median filter. After 3
iterations, the ITTM1 and ITTM3 filters produce much
lighter blur effect than the mean filter.

Property 7 (Impulsive noise suppression). The ITTM2 filter
with any iterations removes impulse D1 from the homoge-
neous area D2:

xi ¼
c1 for xiAD1;n1on=2
c2 for xiAD2;n24n=2;

(
D1 [ D2 ¼ x0; ð24Þ

where c1ac2, n1 and n2 are the numbers of samples in sets
D1 and D2, respectively. The proof is analogous to that in
[17], and hence is omitted.
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Fig. 1. Average MAD of the samples from the mean against the number of
iterations. The input data sets are Laplacian noise. The filter size is
n¼7�7.
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4. Computational complexity

The computational complexity depends on how the
algorithm is realized. A realization of the ITTM filter is
proposed based on the following proposition.

Proposition 1. Samples, once being truncated in an itera-
tion of the ITTM algorithm, must be either trimmed or
truncated in all subsequent iterations.

Proof. If the number of samples smaller than the lower
bound equals to that larger than the upper bound, all these
samples are trimmed in this iteration according to the
definition of the ITTM algorithm. For the case that these
two numbers are not equal, all pairs of extreme samples
are trimmed from the input data set, and the remaining
samples that are out of one of the two bounds are
truncated to that bound. In the following, we prove that
the truncated samples will be either truncated or trimmed
in the subsequent iteration.
Let x¼ fx1; x2;…; xng be the input data in the kth itera-

tion, xh ¼ fxijxi4μg, nh be the number of the samples in xh,
and δh ¼ sumðxh�μÞ=nh. Let xþ , xiþ , μþ , τþ , nhþ and δhþ
be the corresponding notations in the (kþ1)th iteration.
Assume that m samples are trimmed from each side of

the input data, and a sample xiu is truncated to the upper
bound μþτ in the kth iteration. Obviously, xiu ¼ μþτ,
which has the maximum value of the input data set
xþ of the (kþ1)th iteration. As Property 1 proves that
the truncation threshold decreases monotonically, τþ oτ.
Therefore, we have

xiuþ 4μþ þτþ if μþ rμ: ð25Þ
In case of μþ 4μ, from τ¼ 2nhδh=n [17], we have

τ¼ 2
n
∑
xi A x
xi 4 μ

xi�μð ÞZ 2
n

∑
xi A x

xi 4 μþ

xi�μþ þμþ �μ
� �

¼ 2
n

∑
xi A x

xi 4 μþ

xi�μþ
� �þ 2ðnhþ þmÞ

n
μþ �μ
� �

: ð26Þ

As there are m samples trimmed from xh and at least one
sample xiu truncated to the upper bound in the kth
iteration, we have

2
n

∑
xi A x

xi 4 μþ

xi�μþ
� �

4
2
n

∑
xiþ A xþ
xiþ 4 μþ

xiþ �μþ
� �þ 2m

n
xiu�μþ
� �

¼ n�2m
n

τþ þ 2m
n

τ� μþ �μ
� �� �

: ð27Þ

Substituting (27) into (26) yields

τ4
n�2m

n
τþ þ 2m

n
τþ 2nhþ

n
μþ �μ
� �

: ð28Þ

With some manipulation, (28) becomes

τ4τþ þ 2nhþ
n�2m

μþ �μ
� �

: ð29Þ

As τþ ¼ 2nhþ δhþ =ðn�2mÞ, (29) becomes

τ4τþ þ τþ
δhþ

μþ �μ
� �

: ð30Þ

As δhþ rxiuþ �μþ , we have δhþ rτþ if

xiuþ �μþ rτþ : ð31Þ
Therefore, under the condition (31), (30) becomes

τ4τþ þμþ �μ: ð32Þ
Since xiuþ ¼ μþτ, (32) becomes

xiuþ 4μþ þτþ : ð33Þ
The conclusion (33) conflicts with (31). Hence, the condi-
tion (31) is not true, which means

xiuþ 4μþ þτþ if μþ 4μ: ð34Þ
From (25) and (34), we have

xiuþ 4μþ þτþ : ð35Þ
In the same way, we can prove that if a sample xil is

truncated to the lower bound μ�τ in the kth iteration,

xilþ oμþ �τþ : ð36Þ
Inequalities (35) and (36) guarantee that the truncated
samples will be either trimmed or truncated in the
following iteration. This completes the proof of Propo-
sition 1. □

As all truncated samples must be either trimmed or
truncated in the subsequent iterations, we do not need
access such samples for computing the mean, threshold
and checking whether they should be trimmed, truncated
or not. We only need count the number of such samples in



3

3.5

4

Z. Miao, X. Jiang / Signal Processing 99 (2014) 147–158152
all subsequent iterations. Let nτu and nτl be the total
numbers of the samples of fxig and fxjg in x0 satisfying
xiZbu and xjrbl, respectively. The proposed implementa-
tion of the ITTM algorithm is shown by Algorithm 3.

Algorithm 3. An implementation of the ITTM algorithm.

2.5
Input: x0 ) xr , nt¼0 nτ ¼ 0; Output: xr , bl, bu, b, nτl , nτu , nτ and nt;
do
1.5

2
1Þ μ¼ ðsumðxrÞþnτbÞ=ðn�2nt Þ;
2Þ τ¼ ðsumðjxr�μjÞþnτ jb�μjÞ=ðn�2nt Þ;
3Þ bl ¼ μ�τ; bu ¼ μþτ; xr ¼ fxijbloxiobug and update nτl and nτu;

4Þ Compute nt ¼minfnτl ;nτug; nτ ¼ jnτl�nτuj; and b¼ bu if
nτu4nτl ; else b¼ bl;

������������

9 25 49 81

1

Fig. 3. Average number of iterations determined by the default stopping
criterion against the filter size n.
while the stopping criterion S is violated;

The three types of the ITTM filter outputs are reformu-
lated as

ytt1 ¼
1
n

sum xrð Þþnτlblþnτubuð Þ; ð37Þ

ytt2 ¼
meanðxrÞ if nr4ξ

ytt1 otherwise;

(
ð38Þ

and

ytt3 ¼
1

n�2nt
sum xrð Þþnτbð Þ if n�2nt4ξ

ytt1 otherwise:

8><
>: ð39Þ

The results of (37), (38) and (39) are the same as those of
(17), (18) and (19), respectively.

The computational complexity of the ITTM filter can be
measured by the number of the times that a sample in x0

is visited in the ITTM algorithm. It is determined by (a) the
number of iterations Ns, and (b) the probability pk of a
sample being visited in the kth iteration.

We use the Monte Carlo simulations [20] to analyze the
number of iterations Ns. The stopping criterion is set the
same as that in [17]. Three types of noise, Gaussian,
Laplacian and the uniform distributed noise, are simulated.
106 independent input data sets are used in each experi-
ment. The experimental results in Fig. 3 illustrate that the
numbers of iterations of different noise types have the
same tendency. They are approximately linear functions of
ln n. Therefore, we use

N̂ s ¼ 0:8 ln n ð40Þ

as an upper bound of Ns, which is plotted in Fig. 3.
As Algorithm 3 only accesses the un-trimmed and un-

truncated samples, the visited samples in the kth iteration
are the ones within the range ðμk�1�τk�1; μk�1þτk�1Þ.
As the truncation threshold decreases monotonically, the
probability of a sample within this range decreases. There-
fore, the probability of a sample being visited pk decreases.
In order to simplify the analysis of pk, we employ the
uniform distributed noise as an example. The probability
density function (pdf) of a uniform distributed random
variable X is given by

f uðX ¼ xÞ ¼ 1 if �0:5rxr0:5;
0 otherwise:

(
ð41Þ

From (41), we find the following lemma of τk.

Lemma 1. For sufficiently large filter size n, the truncation
threshold τk of the trimmed and truncated X drawn from the
uniform distribution (41) follows

τk ¼
1

2kþ1
; kZ1: ð42Þ

Proof. When the filter size n is sufficiently large, the
sample mean equals the expectation of X, i.e. μ¼ E½X� ¼ 0.
The truncation threshold of the first iteration is

τ1 ¼
1
n

∑
n

i ¼ 1
jxi�μj ¼ E jXj½ � ¼ 1

22 : ð43Þ

As the output of the ITTM filter is unbiased, E½μk�1� ¼ 0.
Thus, almost all samples outsides the range ð�τk�1; τk�1Þ
are trimmed. Therefore, the truncation threshold of the kth
iteration τk is

τk ¼
1

2τk�1

Z τk� 1

� τk� 1

jxj dx¼ τk�1

2
: ð44Þ

Eqs. (43) and (44) lead to (42). This completes the proof of
Lemma 1. □

As only the un-truncated samples are visited by the
ITTM algorithm, the probability of a sample being visited
at the kth iteration is pk ¼ 2τk�1, where we define τ0 ¼ 0:5.
Therefore, the computational complexity of the ITTM

algorithm is Oð∑N̂ s
k ¼ 1npkÞ ¼Oð2n∑N̂ s

k ¼ 1τk�1Þ. From Lemma

1 we get that 1r2∑N̂ s
k ¼ 1τk�1o2. Thus, the computational

complexity of the ITTM algorithm is OðnÞ. It is lower than
the standard median filter and the fast ITM (FITM) filter
given in [18], both of which are Oðn log nÞ [18].

The Monte Carlo simulations are also carried out to
analyze the visiting times for the filter size n that is not
sufficiently large for the above statistics. 106 independent
input data sets are used in each experiment. The experimental



2 4 6 8 10
0.18

0.5

1

5

9

Fig. 5. Normalized time consumption against the number of iterations k.
The time consumption is normalized by that of the median filter. The
y-axis is in log scale.
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Fig. 6. Normalized time consumption against the filter size n. The time
consumption is normalized by that of the median filter. The y-axis is in
log scale.
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results in Fig. 4 show that the average visiting times of a
sample in the ITTM filter window is constrained by the upper
bound N̂ave ¼ 2. Therefore, for n samples, the average visiting
times is smaller than 2n.

We further evaluate the computational complexity of
the ITTM filter in two experiments. These experiments are
performed under the Window 7 systemwith the Intel Core
i5 CPU 3.2 GHz. All filters are implemented by C program-
ming language. As data sorting is the basic building block
of many rank order statistic filters, such as the popular αT
filter, we implement both the median and αT filters using
the quick-sort algorithm. The ITM filter is implemented
based on the fast algorithm FITM given in [18]. The MA,
OM (optimal Myriad) and MLC (Mean-LogCauchy) filters
are implemented according to the algorithms given in
[12,21,22]. The first experiment tests the running time of
the filters against the number of iterations, and the second
experiment tests that with the stopping criterion against
the filter size. 106 independent Laplacian distributed
input data sets are used in each experiment. The time
consumption is normalized by that of the median filter.
The normalized time consumption with the filter size
n¼7�7 against the number of iterations is shown in
Fig. 5. The running time of all the iterative-algorithm
based filters, the MA, OM, MLC, FITM and ITTM filters,
increases with the increasing number of iterations. As the
truncation threshold of the ITTM filter decreases faster
than that of the ITM filter, its time consumption increases
slower compared to that of the FITM filter. Both the FITM
and ITTM filters are faster than the median filter for all the
numbers of iterations in Fig. 5. The ITTM filter is the fastest
one. The computational complexity of the MA, OM and
MLC filters is much higher than the median filter. The
experimental results using the stopping criterion are
plotted in Fig. 6. The stopping criterion for both the FITM
and ITTM filters is set the same as that in [17]. The fixed
number of iterations 10 is applied for the MA, OM and MLC
filters. As the MLC filter is a linear combination of the
mean and OM filters, its computational complexity is a
little bit higher than that of the OM filter. Similarly, the
time consumption of the αT filter is slightly higher than
that of the median filter because it averages part of the
data after data sorting. The MA, OM and MLC filters are
9 25 49 81
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Fig. 4. Average visiting times of a sample against the filter size n.
much slower than the median filter. Both the FITM and
ITTM filters are faster than the median filter. The ITTM
filter is the fastest one for all filter sizes.

5. Experiments

Although better performance can be achieved by tun-
ing the parameters, no parameter of the proposed filter is
optimized for specific data set or noise distribution. The
same parameters of the ITTM filter are employed through-
out all experiments. To compare the proposed ITTM filter
with the ITM filter, the parameter setting of the stopping
criterion given in [17] is applied to these two filters. All
additive noise applied in this work has i.i.d. and zero
mean. The standard deviation of Gaussian noise is denoted
by sn. Six sets of experiments are reported in this section.

The filters' noise attenuation capability in a constant
signal is tested in the first two sets of experiments, and the
filters' overall performance in image structure preserva-
tion and noise attenuation is tested in the next two sets.
The ITTM filters are compared with the mean, median, αT
[13,23], MEM [11,24] and ITM [17] filters. The mean
absolute error (MAE) over 107 independent outputs is
used as the performance indicator for synthetic data. The
mean square error (MSE) is used for real images. As none
of the α-adapted αT filters [25,26] outperform an α-fixed
αT filter averagely over the experiments, the α-fixed αT
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filter is compared in this section. α¼0.25 is chosen as the
αT filter approaches the mean if α-0 and approaches the
median if α-0:5.

Furthermore, the proposed filters are compared with
four iterative-algorithm based filters, the MA [12], OM
[27], MLC [11] and ITM [17] filters in the last two sets of
experiments. The α-stable noise is tested as the MA, OM
and MLC filters were proposed specifically to tackle the
problem of this noise model. The MLC filter is a weighted
sum of the mean and LogCauchy filters to tackle the ε
contaminated Gaussian noise [28]. The weight λ was
suggested to be equal to the prior probability of the
Gaussian noise [11,24]. λ¼0.5 is chosen for both the MLC
and MEM filters in this work.
5.1. Single type of noise in constant signal

Filters' performance in suppressing single type of noise
on a constant signal is tested. Experimental results in
suppressing Gaussian and Laplacian noise are shown in
Fig. 7(a) and (b), respectively. The filters' MAEs are normal-
ized by that of the median filter.

As the mean filter is optimal for Gaussian noise, the
ITM, ITTM, MEM and αT filters perform between the mean
and median filters by making a compromise between
them. The median filter is not the minimum MSE estima-
tor [18] though it is the ML estimator for the Laplacian
distribution. Therefore, it is not a surprise that the ITM1
filter and the proposed ITTM1 and ITTM3 filters outper-
form the median filter even for the long-tailed Laplacian
noise. The αT filter is better than the median filter for
n¼3�3 and surprisingly much worse than the median
filter for larger filter size. It is seen that the numbers of
iterations of the ITTM filters are smaller than those of the
ITM filters for both Gaussian and Laplacian noise. Note that
the mean filter is not shown in Fig. 7(b), and the mean and
MEM filters are not shown in Fig. 8(b) as they are much
worse than the other filters.
Fig. 7. Normalized MAE against the filter size n for (a) Gaussian and (b) Laplacia
and 1.8, 3.6, 5.7, 7.7 in (b), respectively for the filter size of 9–81. The average num
5.2. Mixed types of noise in constant signal

The mixed noise is generated from the noise model (1).
It contains two types of noise, the additive noise with
probability p and the exclusive noise with probability 1�p.
The additive noise is set to have the ε-contaminated
normal distribution as Pε ¼ fð1�εÞΦþεHg [28], where Φ
and H are Gaussian and a longer-tailed distributions,
respectively, εA ½0;1�. Similar to the setting in [17], we
choose the Laplacian distribution as H with the standard
deviation 1:3sn and ε¼ 0:5. The exclusive noise is gener-
ated from pdf IðxÞ ¼ 0:5δðx�6snÞþ0:5δðxþ6snÞ.

We first set p¼1 so that only the additive noise exists.
Results in Fig. 8(a) show that all the ITM and ITTM filters
have better performances than both the mean and median
filters. Then, we decrease the probability of the additive
noise to p¼0.9. The probability of the exclusive noise
increases to 1�p¼ 0:1. The experimental results are
shown in Fig. 8(b). Here it is evidenced that the proposed
ITTM3 filter that trims and truncates the samples performs
the best, outperforming filters ITM1 and ITTM1 that only
truncate the extreme samples and outperforming filters
ITM2, ITTM2 and αT filters that only trim extreme samples.
5.3. Noise step edge

A horizontal or vertical step edge with the grey level 1
on one edge side and �1 on the other side is tested. Such
an edge is contaminated by Gaussian noise of different
levels. Outputs of a filter are used for computing MAE if
and only if the filter mask covers both sides of the edge.
Experimental results are shown in Fig. 9. Filters' MAE is
normalized by the MAD of the noise.

The normalized MAEs of the median filter over differ-
ent noise levels are almost a constant. This confirms the
excellent ability of the median filter in edge preservation.
The mean, MEM, αT, ITM1, ITTM1 and ITTM3 filters all blur
the edge. Therefore, their MAEs are much higher than the
median filter for low noise levels. Since they attenuate
n noise. The average numbers of ITM iterations are 1.5, 3.3, 5.3, 7.5 in (a)
bers of ITTM iterations are 1.4, 2.1, 2.6, 3.1 in (a) and 1.5, 2.3, 2.9, 3.4 in (b).



Fig. 8. Normalized MAE against the filter size n for (a) Laplacian and (b) Laplacian and impulsive ε-contaminated Gaussian noise. The average numbers of
ITM iterations are 1.6, 3.4, 5.4, 7.5 in (a) and 1.6, 3.4, 5.5, 7.6 in (b), respectively for the filter size of 9–81. The average numbers of ITTM iterations are 1.4, 2.2,
2.8, 3.2 in (a) and 1.4, 2.2, 2.8, 3.2 in (b).
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Fig. 9. Normalized MAE of filters of size 3�3 in (a) and 11�11 in (b) against the noise level sn. The average numbers of ITM iterations are 1, 1, 1, 1, 2.7, 3.7, 2
in (a) and 1.8, 3.8, 4.7, 11.6, 13.5, 14.7, 12.2 in (b). The average numbers of ITTM iterations are 1, 1, 1, 1, 2.3, 2.8, 1.6 in (a) and 1.8, 2.6, 3.0, 6.7, 6.6, 5.2, 4.1 in (b).
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Gaussian noise better than the median filter, they perform
about the same as the median filter when sn reaches 0.64.
The performance of the ITTM2 filter is similar to that of the
ITM2 filter. Both of them significantly outperform the
other for the low and medium noise levels. Their perfor-
mances approach those of the median at the three highest
noise levels in which the pixel gray levels of the two edge
sides are overlapped.

5.4. Real images

Three real natural images shown in Fig. 10 are tested.
These images, named Crowd, Bank and Girl, represent
different image types and complexity levels. The image is
composed of 512�512 pixels, of which the gray levels
range from 0 to 255. The filter size is n¼5�5.

Additive Gaussian noise of different levels sn is used to
contaminate the images. For all three images, the MSE of
the median filter increases from the minimum among the
eight filters to the maximum along with the increasing of
sn. Therefore, five different noise levels are selected for
each image so that the median filter performs best at
level snð1Þ and worst at level snð5Þ. The other three noise
levels are determined by snð5Þ=snð4Þ ¼ snð4Þ=snð3Þ ¼ snð3Þ=
snð2Þ ¼ snð2Þ=snð1Þ. All MSEs are normalized by that of the
median filter. Average MSEs over 10 runs for image Crowd,
Bank and Girl are plotted in Fig. 11(a), (b) and (c),
respectively. The results of Fig. 11 coincide with the theory
that the median filter preserves image structures best
while attenuates Gaussian noise worst. The proposed
ITTM3 filter performs best except for the lowest noise
level where the median filter is the best. As the gray value
abrupt change of image structure that fall in the filter
window can be considered as impulsive noise or exclusive
noise, the noise of the real images should be modeled by
(1) with 1�p40 even if only additive Gaussian noise



Fig. 10. Three real natural images of size 512�512 pixels, Crowd, Bank and Girl applied in testing.

1.00 2.56 6.57 16.8 43.1

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

15.9 19.9 24.9 31.1 28.9

0.96

0.97

0.98

0.99

1

1.01

1.02

2.10 3.34 5.32 8.48 13.5
0.96

0.97

0.98

0.99

1

1.01

1.02

Fig. 11. Average MSEs over 10 runs for the 3 real images at 5 different noise levels of (a) Crowd, (b) Bank and (c) Girl. The average number of ITM iterations
is closely around 3.4. The average number of ITTM iterations is closely around 2.1.

Table 1
MSEs for constant image contaminated by α-stable noise.

α

Filters 0.5 0.8 1.2 1.5 1.8

Mean 486.41 217.44 73.050 32.235 14.175
MA 215.84 62.108 18.550 11.315 9:2205
OM 28.796 8:2874 10:617 12.479 11.642
MLC 164.71 62.017 24.940 15.216 10.555
ITM1 26.924 13.343 11.409 10:631 10.074
ITM2 15.050 12.482 12.320 12.186 11.559
ITTM1 18.827 11.827 11.128 10.779 10.516
ITTM2 13:503 11.547 11.759 11.925 11.679
ITTM3 17.536 11.252 10.796 10.678 10.698
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exists. This result further confirms that the proposed
ITTM3 filter performs the best in attenuating the noise
mixed by additive and exclusive noise. The average num-
ber of iterations for the ITTM filters is 2.1. It is smaller than
that of the ITM filters which is 3.4.

5.5. Constant signal corrupted by α-stable noise

The ITTM filters are compared with some other
iterative-algorithm based filters on a constant signal cor-
rupted by the α-stable noise. The heaviness of the noise
tails (degree of impulsiveness) is controlled by adjusting
the parameter α of the α-stable noise ð0oαr2Þ. The noise
impulsiveness increases as α decreases [11]. The “linearity
parameter” k of the OM filter [27] is computed by
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ð2�αÞ

p
γ1=α where γ is the dispersion of the α-stable

noise. The OM and MLC filters are implemented based on
the algorithm given in [21,22]. For the MA, OM and MLC
filters, the fixed number of iterations 20 is applied as more
iterations do not lead to a visible performance gain [17]. All
filters applied are in the size of 25.

Five different α values are set for the α-stable noise
with γ¼10. For each α, 107 independent input data sets are
generated to get the MSEs. Table 1 records the MSEs of
various filters where the results of the mean filter help
show the noise impulsiveness. For each α value, the
smallest MSE among all filters is underlined and in bold
font, and the second smallest is in bold font. The OM filter
is derived based on the maximum likelihood estimation
from the samples of the α-stable distribution (α¼1). With
the help of the noise distribution information α and k, the
OM filter performs best for α value around 1. Among the
filters which do not require the prior knowledge of the
noise distribution, including the ITM, ITTM and MA filters,
the ITTM3 filter performs best for α value around 1. The
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MA filter achieves the best performance for α value approach-
ing 2, where the α-stable noise degenerates to Gaussian noise.
For high degree of impulsiveness (α¼0.5) the ITTM2 and
ITM2 filters perform best. The average numbers of ITTM
iterations are 4.2, 3.3, 3.1, 2.9, 2.8, respectively for the α values
from 0.5 to 1.8. The corresponding average numbers of ITM
iterations are 6.6, 5.1, 4.7, 4.5, 4.3. It is seen that the numbers
of iterations of the ITTM filters are smaller than those of the
ITM filters for all α values.
5.6. Real image corrupted by Gaussian and α-stable noise

The original image “Lena” shown in Fig. 12 is corrupted
by ε-contaminated [28] (ε¼0.5) Gaussian ðs2n ¼ 100Þ and α-
stable (γ¼10) noise. The image size is 512�512 pixels. The
settings of filters are the same as those in Section 5.5.
Fig. 13 shows the average MSEs of filters over 10 different
noised versions of the image “Lena”. All MSEs are normal-
ized by that of the median filter. It demonstrates that the
Fig. 12. Real image “Lena” of size 512�512 pixels tested for the mixed
α-stable noise.

Fig. 13. Normalized MSEs for real image “Lena” corrupted by ε-contami-
nated (ε¼0.5) Gaussian (s2n¼100) and α-stable (γ¼10) noise.
ITTM3 filter achieves the best performance for all the 5
values of α. The performance of the ITTM1 filter is the
second best in dealing with this real image. The average
numbers of ITTM iterations are 3.1, 2.7, 2.5, 2.4 and 2.3,
respectively for the α values from 0.5 to 1.8. They are
smaller than the corresponding average numbers of ITM
iterations, which are 4.5, 4.0, 3.8, 3.7 and 3.6.

6. Conclusion

The proposed iterative trimmed and truncated arith-
metic mean (ITTM) filters circumvent the data sorting
process and guarantee the outputs approaching the median
with the increasing number of iterations. It is shown in the
experiments that the proposed ITTM filters with the rule
proposed in [17] that automatically stops the iterations
own some merits of both the mean and median filters,
and outperform these two fundamental filters in many
de-noising applications. By simultaneously trimming and
truncating the extreme samples, the ITTM algorithm has
a higher convergence rate than the ITM algorithm. The
resulting ITTM filters are hence faster than the ITM filters.
The computational complexity of the ITTM filters is OðnÞ.
It is smaller than that of the median and ITM filters, both of
which are Oðn log nÞ [18]. Although the ITTM filters use an
iterative algorithm, only a few iterations are needed in all
the experiments of this paper to achieve a good de-noising
performance. The number of iterations of the ITTM filter is
smaller than that of the ITM filter in all the experiments of
this work.

Three types of the ITTM filter outputs, ITTM1, ITTM2 and
ITTM3, are proposed. By averaging the truncated input
samples, the ITTM1 filter has the best performance in
attenuating the short- and long-tailed additive noise among
these three filters. By trimming all the truncated samples,
the ITTM2 filter has the best performance in suppressing
exclusive noise. Simultaneously trimming and truncating
the extreme samples lead the ITTM3 filter the best one in
attenuating the noise mixed by both the additive and
exclusive noise. As the gray value abrupt change of image
structure in a filter window can be considered as exclusive
or impulsive noise, the ITTM3 filter achieves the best
performance in dealing with the real images of this paper.
The superiority and flexibility of the proposed filters are
demonstrated by the comprehensive simulation results with
the same parameter setting throughout all experiments.
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