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a b s t r a c t

We present a prediction and regularization strategy for alleviating the conventional problems of LDA and
its variants. A procedure is proposed for predicting eigenvalues using few reliable eigenvalues from the
range space. Entire eigenspectrum is divided using two control points, however, the effective low-dimen-
sional discriminative vectors are extracted from the whole eigenspace. The estimated eigenvalues are
used for regularization of eigenfeatures in the eigenspace. These prediction and regularization enable
to perform discriminant evaluation in the full eigenspace. The proposed method is evaluated and com-
pared with eight popular subspace based methods for face verification task. Experimental results on pop-
ular face databases show that our method consistently outperforms others.
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1. Introduction

Human beings are experts in verifying subject’s identity just by
analyzing face images (photographs). This ability is very appealing
and has become an active research area in many real-life machine
vision applications. Face verification (FV) is an important tool for
authentication of an individual and has significant role in many
security and e-commerce applications (Zhao et al., 2003).

Face verification and identification are the main applications of
face recognition (FR). A face verification system has to discriminate
between two kinds of events: either the person claiming a given
identity is the true claimant or the person is an impostor. In recent
years, many subspace based approaches like PCA and LDA are
being applied to FR problem (Zhao et al., 2003). The results are
not satisfactory because PCA does not encode the class information
and LDA suffers from instability of eigenvalue decomposition due
to the small number of training samples and high dimensionality
of face images. Moreover, in Fisherfaces (FLDA) (Belhumeur et al.,
1997), the singularity of the scatter matrices are not guaranteed
(Zhuang and Dai, 2007).

In recent times, many researchers have noticed these problems
and tried to solve them using different methods. Bayesian maxi-
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mum likelihood (BML) is proposed in (Moghaddam et al., 2000;
Moghaddam and Pentland, 1997). It uses a probabilistic similarity
measure based on the Bayesian belief that the image intensity dif-
ferences are characteristic of typical variations in appearance of an
individual. Their similarity measure is expressed in terms of prob-
ability using the two class of facial image variations: intrapersonal
variations and extrapersonal variations. Although this method per-
forms good for FR task, one need to store the original face image of
an individual in the database, which are in general, of very large
dimensionality. Moreover, the computation of their distance mea-
sure has very high time complexity as it involves both distance-in-
feature space and distance-from-feature space (Moghaddam et al.,
1998, 2000; Jiang et al., 2006).

To deliver promising FR results, recently a myriad of algorithms
based on the applications of PCA and FLDA are proposed in
the existing literature (Zhao et al., 2003; Shakhnarovich and
Moghaddam, 2005; Stan et al., 2004). Direct LDA (DLDA)
(Yu et al., 2001) approach removes null space of the between-class
scatter matrix and extracts the eigenvectors corresponding to the
smallest eigenvalues of the within-class scatter matrix. However,
an argument against the DLDA algorithm is presented in (Gao
and Davis, 2006), where they have shown that DLDA is actually a
special case of LDA by directly taking the linear space of class
means as the LDA solution. The pooled covariance estimate is
completely ignored. They also demonstrate that DLDA is not
equivalent to traditional LDA in dealing with the small sample size
problem and may impose performance limitations in general appli-
cation (Gao and Davis, 2006).

Null space LDA (NDA) approach is proposed in (Liu et al., 2004;
Huang et al., 2002). They have shown that the null space of the to-
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tal scatter matrix is the common null space of both within-class
and between-class matrices. The algorithm firstly removes the null
space of the total scatter matrix and projects the samples onto the
null space of within-class scatter matrix. It then removes the null
space of the between-class scatter matrix in the subspace to obtain
the optimal discriminant vectors. The basic notion of this algo-
rithm is that the null space of the within-class scatter matrix is
particularly useful in discriminating ability. Interestingly, this ap-
pears to be contradicting the popular FLDA that uses only the prin-
cipal space and discards the null space. A common problem to all
these approaches is that they all lose some discriminative informa-
tion, either in the principal or in the null space.

To take advantages from both the subspaces, dual space LDA
(DSL) is proposed in (Wang and Tang, 2004a). Using the probabilis-
tic visual model (Moghaddam and Pentland, 1997), the eigenvalue
spectrum in the null space of the within-class scatter matrix is esti-
mated. It performs discriminant analysis in both the subspaces and
the discriminative features are then combined in recognition
phase. The features in the complementary subspace are scaled by
the average eigenvalue of the within-class scatter matrix over this
subspace. As eigenvalues in this subspace are not well estimated
(Wang and Tang, 2004a), their average may not be a good scaling
factor relative to those in the principal subspace. Features ex-
tracted from the two complementary subspaces are properly fused
by using summed normalized-distance (Yang et al., 2005). Open
questions of these two approaches are how to divide the space into
the principal and the complementary subspaces and how to appor-
tion a given number of features to the two subspaces. Furthermore,
as the discriminative information resides in the both subspaces, it
is inefficient and only suboptimal to extract features separately
from the two subspaces.

Another popular approach called unified framework of subspac-
es (UFS) (Wang et al., 2004b), addresses the problems of instability
and noise disturbances in LDA based methods. Using this frame-
work they demonstrate the importance of noise suppression. This
approach applies three stages of subspace decompositions sequen-
tially on the face training data and the dimensionality reduction
occurs at the very first stage. However, as addressed in the litera-
ture (Jiang et al., 2007; Cevikalp et al., 2005; Wang and Tang,
2004a), applying PCA for dimensionality reduction may lose dis-
criminative information. Another open question of UFS is how to
choose the number of principal dimensions for the first two stages
of subspace decompositions before selecting the final number of
features in the third stage. The experimental results in (Wang
et al., 2004b) show that the recognition performance is sensitive
to these choices at different stages.

In this paper, we revisit the short comings of FLDA approach
for FV task and related ideas proposed in (Mandal et al., 2008).
FLDA has instability problem due to the limited number of train-
ing samples and high dimensionality of face images. Moreover, it
loses important discrimination information in the range and/or
null space. To alleviate these problems, we propose to partition
the entire eigenspace into reliable, unreliable and null regions
using two control points. A procedure for eigenvalue prediction
is proposed. The forecasted eigenvalues are used for regulariza-
tion of eigenfeatures in the eigenspace. These prediction and reg-
ularization enable to perform discriminant evaluation in the full
eigenspace and extract effective low-dimensional discriminative
features from face images. We evaluate and compare our ap-
proach with eight other popular subspace based methods for
the FV task.

In the following section, we present the partitioning of subspac-
es and eigenspectrum modeling. In Section 3, we discuss the eigen-
feature scaling and extraction procedures. Experimental results
and discussions are presented in Section 4. Finally conclusions
are drawn in Section 5.
2. Partitioning of subspaces and eigenspectrum modeling

Given a set of properly normalized h-by-w face images, we can
form a training set of column vectors fXijg, where Xij 2 Rn¼hw is an
image column vector, by lexicographic ordering the pixel elements
of image j of person i. Let the training set contain p persons and qi

sample images for person i. The total number of training samples is
l ¼

Pp
i¼1qi. For face recognition, each person is a class with prior

probability of ci. The within-class scatter matrix is defined by

Sw ¼
Xp

i¼1

ci

qi

Xqi

j¼1

Xij � Xi
� �

Xij � Xi
� �T

; ð1Þ

where Xi ¼ 1
qi

Pqi
j¼1Xij. The between-class scatter matrix is defined by

Sb ¼
Xp

i¼1

ci Xi � X
� �

Xi � X
� �T

; ð2Þ

where X ¼
Pp

i¼1ciXi. If all classes have equal prior probability, then
ci ¼ 1=p. The total class scatter matrix is defined by

St ¼
Xp

i¼1

ci

qi

Xqi

j¼1

Xij � X
� �

Xij � X
� �T

: ð3Þ

In the well-known Fisher objective criteria (Duda et al., 2001), if
Sw is nonsingular, the optimal projection vectors U is chosen as the
matrix with orthonormal columns which maximizes the ratio of
the determinant of the between-class matrix of the projected sam-
ples to the determinant of the within-class scatter of the projected
samples. The columns of the solution matrix are eigenvectors of
matrix corresponding to its greatest eigenvalues:

ðSw�1
SbÞUopt ¼ UoptK; ð4Þ

which also implies:

Uopt ¼ arg max
U

jUT Sb
Uj

jUT Sw
Uj
; ð5Þ

where K is the diagonal eigenvalue matrix and U is the eigenvector
matrix.

Let Sg ; g 2 ft;w; bg represent one of the above scatter matrices.
If we regard the elements of the image vector and the class mean
vector as features, these preliminary features will be de-correlated
by solving the eigenvalue problem

Kg ¼ Ug T Sg
Ug ; ð6Þ

where Ug ¼ ½/g
1; . . . ;/g

n� is the eigenvector matrix of Sg , and Kg is the
diagonal matrix of eigenvalues kg

1; . . . ; kg
n corresponding to the

eigenvectors. Suppose that the eigenvalues are sorted in descending
order kg

1 P; . . . ; P kg
n. The plot of eigenvalues kg

k against the index k
is called eigenspectrum of the face training data. It plays a critical
role in subspace methods as the eigenvalues are used to scale and
extract features. In the following section we discuss the problems
of feature scaling in detail.

2.1. Problems in feature scaling

The result of the discriminant evaluation (Fisher criteria) in (5)
cannot be directly adopted to the FR area as the Sw is often singular
because of the limited number of training samples, noises and high
dimensionality of the face images. Moreover, the large number of
small eigenvalues that arises in the range space after eigen-decom-
position of the Sw matrix give undue weightage in the feature scal-
ing process.

To demonstrate these problems, we first perform eigen-decom-
position of the Sw matrix computed from the original face samples
images. Let Uw ¼ ½/w

1 ; . . . ;/w
n � be the eigenvector matrix of Sw, and
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Fig. 2. Real eigenspectrum and weighting function (16).
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Kw be the diagonal matrix of eigenvalues kw
1 ; . . . ; kw

n corresponding
to the eigenvectors. We assume that the eigenvalues are sorted in
descending order kw

1 P; . . . ; P kw
n . The plot of eigenvalues kw

k

against the index k is called eigenspectrum. A typical plot of
rw

k ¼
ffiffiffiffiffiffi
kw

k

p
is shown in Fig. 1 (for simplicity, we still call it eigen-

spectrum). It plays a critical role in the subspace methods as the
eigenvalues are used to scale and extract features. These eigenvec-
tors then undergo a whitening process (Fukunaga, 1991). The pur-
poses of this transformation are to change the scales of the
eigenvectors in proportion to 1ffiffiffiffi

kw
k

p and also make the within-class
covariance matrix invariant to any further orthonormal transfor-
mation. This property will be used for simultaneous diagonaliza-
tion of Sw and Sb matrices for evaluating the Fisher criteria (5). A
two-dimensional example is shown in (Fukunaga, 1991).

However, before performing this whitening step, we first ana-
lyze the reliability of the projection (eigen)vectors corresponding
to all the eigenvalues of Sw matrix. After computing the
Uw ¼ ½/w

1 ; . . . ;/w
n � matrix from the training data, we project face

images from a test dataset onto these projection vectors (using
Yij ¼ UwT Xij), and then compute the within-class variance across
all the projected test data for all dimensions (indices). Let
tw

k ¼
ffiffiffiffiffiffi
vw

k

p
, where vw

k represents within-class variance arising from
the projected test data, is shown in Fig. 1. It is evident from Fig. 1
that there is a large deviation of the small eigenvalues from the
variances of novel images projected on the eigenvectors. Other
datasets of training and testing face images produce results similar
to Fig. 1. An estimate of the training and test datasets are given in
Section 4 – experimental results and discussion.

This problem is well addressed in (Jiang et al., 2008) and re-
cently in (Jiang, 2009). Although the largest sample-based eigen-
values are biased high and the smallest ones are biased low, as
pointed out in (Friedman, 1989), the bias is most pronounced when
the population eigenvalues tend toward equality, and it is corre-
spondingly less severe when their values are highly disparate. In
FR application, eigenspectrum often first decays very rapidly and
then stabilizes. Therefore, the smallest eigenvalues are biased
much more than the largest ones. This is evidenced by Fig. 1.

The whitened eigenvector matrix Uw ¼ ½/w
1 =rw

1 ; . . . ; /w
n =rw

n �;
rw

k ¼
ffiffiffiffiffiffi
kw

k

p
as shown in Fig. 2, is used to project the image vector

Xij before constructing the between-class scatter matrix for the sec-
ond eigen-decomposition. This is equivalent to image vector Xij is
first transformed by eigenvector, Yij ¼ UwT Xij, and then multiplied
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by a weighting function ww
k ¼ 1=

ffiffiffiffiffiffi
kw

k

p
(whitening process). Discard-

ing dimensions that have zero eigenvalues is equivalent to set
ww

k ¼ 0 for these dimensions (as done in Fisherfaces (Belhumeur
et al., 1997)). The weighting function is thus

ww
k ¼

1=
ffiffiffiffiffiffi
kw

k

p
; k 6 rw

0; rw < k 6 n

(
; ð7Þ

where rw is the rank of Sw. Fig. 2 shows a typical real eigenspectrum.
There are two problems associated with the scaling function in

(7). Firstly, the eigenvectors corresponding to the zero eigenvalues
are lost or discarded as the features in the null space are weighted
by a constant zero. This leads to the lose of important discrimina-
tive information that lies in the null space (Liu et al., 2004; Huang
et al., 2002; Xu et al., 2008). Secondly, using the inverse of the
square root of the eigenvalue (7) to weight the eigenfeature ampli-
fies noise and tends to over-fit the training samples. The small and
zero eigenvalues are training-set-specific adding new samples to
the training set or using different training set may easily change
some zero eigenvalues to nonzero and make some very small
eigenvalues several times larger. Hence, they are unreliable. In
the following subsections, we first discuss procedures for estimat-
ing two index (control) points, named as m1 and m2, using which
eigenspectrum is partitioned into three subspaces and then pres-
ent a methodology for predicting the eigenvalues for replacing
the unreliable ones.

2.2. Estimation of first control point m1 for subspace partitioning

We propose to decompose the whole eigenspace spanned by
eigenvectors Rn into three subspaces: a reliable face variation
dominating subspace (or simply face space) F ¼ f/w

k g
m1
k¼1, an unre-

liable noise variation dominating subspace (or simply noise space)
N ¼ f/w

k g
m2
k¼m1þ1 and a null space Ø ¼ f/w

k g
n
k¼m2þ1 as illustrated in

Fig. 2. The purpose of this decomposition is to modify the unreli-
able eigenvalues for better generalization. The rank of Sw is
rw 6 minðn; l� pÞ. As face images have similar structure, significant
face components reside intrinsically in a very low-dimensional
(m1-dimensional) subspace. As the face component typically de-
cays rapidly and stabilizes, eigenvalues in the face dominant sub-
space, which constitute the initial portion of the eigenspectrum,
are the outliers of the whole spectrum. It is well known that med-
ian operation works well in separating outliers from a data set. To
determine the start point of the noise dominant region m1 þ 1, we
first find a point near the center of the noise region by

kw
med ¼median 8kw

k jk 6 rw
� �

: ð8Þ
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The distance between kw
med and the smallest nonzero eigenvalue is

dm1 ;rw ¼ kw
med � kw

rw
. The upper bound of the unreliable eigenvalues

is estimated by kw
med þ dm1 ;rw . More generally, the start point of the

noise region m1 þ 1 is estimated by

kw
m1þ1 ¼max 8kw

k jk
w
k < ðkw

med þ lðkw
med � kw

rw
ÞÞ

� �
; ð9Þ

where l is a constant. The optimal value of l may be slightly larger
or smaller than 1 for different applications. To avoid exhaustive
search for the best parameter value, l is fixed to be 1 in all exper-
iments of this paper for fair comparisons with other approaches.

2.3. Estimation of second control point m2 for subspace partitioning

The phenomenon that the eigenspectrum accelerates its de-
crease is caused by the limited number of training samples and
noises present in them (Jiang et al., 2009). To study this phenome-
non, we define eigenratios as

cw
k ¼

kw
kþ1

kw
k

; 1 6 k < rw: ð10Þ

The plot of eigenratios cw
k against index k is called eigenratio-spec-

trum. Fig. 3 shows a typical eigenratio-spectrum of a real face train-
ing database. The eigenratios are, in general, very random in nature.
To obtain a summarization of their behavior, we smoothen the
eigenratios by using an average over a moving window. The original
eigenratios and their smoothen values are shown in Fig. 3. We
examined several different face databases, the eigenratio plots
shown in Fig. 3 is a general behavioral pattern that all the eigenra-
tios of different databases portray.

From the graph it is evident that the eigenratios first increases
very rapidly, then stabilizes and finally decreases. The limited
number of the training samples causes the decrease of the eigenra-
tios. The corresponding eigenvalues are thus unreliable. Therefore,
the start point of the unreliable region m2 þ 1 is estimated by

cw
m2þ1 ¼ maxf8cw

k ; 1 6 k < rwg: ð11Þ

A typical such m2 value of a real eigenspectrum is shown in Fig. 3.

2.4. Prediction of eigenvalues

This work uses function form 1=f to fit only the reliable part of
eigenspectrum fkw

k j1 6 k 6 m1g and then to extrapolate eigen-
1 
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Fig. 3. Plot of eigenratios (10) and smoothened eigenratio-spectrum from a real
eigenspectrum.
values in the noise subspace fkw
k jm1 < k 6 rwg (Jiang et al., 2008).

Prediction of the eigenspectrum is performed by

k̂w
k ¼

a
kþ b

; 1 6 k 6 rw; ð12Þ

where a and b are two constants. As the eigenspectrum in the face
space is dominated by the face structural component, the parame-
ters of a and b are determined by fitting the model to the real eigen-
spectrum in the reliable face space F. We determine a and b by
letting k̂w

1 ¼ kw
1 and k̂w

m1
¼ kw

m1
, which yields

a ¼
kw

1 kw
m1
ðm1 � 1Þ

kw
1 � kw

m1

; ð13Þ

b ¼
m1k

w
m1
� kw

1

kw
1 � kw

m1

: ð14Þ

Since the eigenspectrum decays very fast, we plot the square roots
rw

k ¼
ffiffiffiffiffiffi
kw

k

p
and r̂w

k ¼
ffiffiffiffiffiffi
k̂w

k

q
for clearer illustration (we still call them

eigenspectrum for simplicity). A typical real eigenspectrum rw
k

and its prediction r̂w
k are shown in Figs. 1 and 2.

From Fig. 1, firstly, we see that the predicted eigenvalues
matches closely with that of the real eigenvalues. Secondly, for
small eigenvalues it matches more closely with the variances ob-
tained from the projected testing dataset as compared to that of
the real eigenvalues. This shows that our prediction of the eigen-
values using few principal eigenvalues of Sw matrix provides more
generalization to the unseen (test) data. In Fig. 2, we see that the
predicted values r̂w

k fits closely to the real rw
k in the face space F

but has slower decay in the noise space N. The faster decay of
the real eigenspectrum rw

k in N due to noise and the limited num-
ber of training samples is what we want to slow down (as shown in
Figs. 1 and 2).

3. Eigenfeature scaling and extraction

The partitioning of the eigenspectrum has helped in identifying
the face, noise and null regions. Eigenvalues are then forecasted
using the few reliable eigenvalues from the range space. From
Fig. 2 it is evident that noise component is small as compared to
face components in F but it is dominating in region N. Thus, the
predicted eigenspectrum ~kw

k is given by

~kw
k ¼

kw
k ; k < m1
a

kþb ; m1 6 k 6 m2

a
rwþ1þb ; m2 < k 6 n

8><>: : ð15Þ

The proposed feature weighting function is then

~ww
k ¼

1ffiffiffiffiffiffi
~kw

k

q ; k ¼ 1;2; . . . n: ð16Þ

Fig. 2 shows the proposed feature weighting function ~ww
k calculated

by (9), (11), (13)–(16). Using this weighting function and the eigen-
vectors /w

k , training data are transformed toeY ij ¼ eUwT
n Xij; ð17Þ

whereeUw
n ¼ ½ ~ww

k /w
k �

n
k¼1 ¼ ½ ~ww

1 /w
1 ; . . . ; ~ww

n /w
n �; ð18Þ

is a full rank matrix that transforms an image vector to an interme-
diate feature vector. There is no dimensionality reduction in this
transformation as eY ij and Xij have the same dimensionality n.

A new between-class scatter matrix is formed by vectors eY ij of
the transformed training data as

eSb ¼
Xp

i¼1

ciðeY i � YÞðeY i � YÞT ; ð19Þ
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where eY i ¼ 1
qi

Pqi
j¼1
eY ij and Y ¼

Pp
i¼1

ci
qi

Pqi
j¼1
eY ij. The transformed fea-

tures eY ij will be de-correlated for eSb by solving the eigenvalue prob-
lem (6). Suppose that the eigenvectors in the eigenvector matrixeUb

n ¼ ½
f/b

1 ; . . . ;
f/b

n � are sorted in descending order of the correspond-
ing eigenvalues. The dimensionality reduction or feature extraction
is performed here by keeping the eigenvectors with the d largest
eigenvalues,eUb

d ¼ ½
f/b

k �
d
k¼1 ¼ ½

f/b
1 ; . . . ;

f/b
d �; ð20Þ

where d is the number of features usually selected by a specific
application. Thus, the proposed feature scaling and extraction ma-
trix is given by

U ¼ eUw
n
eUb

d; ð21Þ
which transforms a face image vector X;X 2 Rn, into a feature vector
F; F 2 Rd, by

F ¼ UT X: ð22Þ
Below we summarize the proposed algorithm.

3.1. Proposed algorithm

The proposed approach of extracting discriminative vectors by
applying predicted eigenvalues (DVPE) is summarized below:

At the training stage:

1. Given a training set of normalized face image vectors fXijg, esti-
mate Sw by (1) and compute all its eigenvectors and eigenvalues
using (6).

2. Estimate m1 value using (8) and (9).
3. Estimate m2 value using (10) and (11).
4. Decompose the eigenspace into face-, noise-, and null-space

using m1 and m2 values.
5. Transform the training samples represented by Xij into eY ij using

(17) with the weighting function (16) determined by (9), (11),
(13)–(15).

6. Compute eSb by (19) with eY ij and solve the eigenvalue problem
using (6).

7. Obtain the final feature scaling and extraction matrix by (18),
(20) and (21) with a predefined number of features d.

At the enrollment or registration stage:

1. Extract d–dimensional feature vector F from the enrolled n–
dimensional normalized face image vector X by (22) using the
feature scaling and extraction matrix U obtained in the training
stage (21).

2. Store the extracted feature vector and the registration ID into
the gallery feature vector set.

At the verification stage:

1. Extract d–dimensional feature vector F from the n–dimensional
normalized probe face image vector X by (22) using the feature
scaling and extraction matrix U obtained in the training stage
(21).

2. Compare or match the probe feature vector with that in the
gallery feature vector set corresponding to the claimed ID.

In the experiments of this work, first nearest neighborhood
classifier (1-NNK) is applied to test the proposed DVPE approach.
Cosine distance measure between a probe feature vector FP and a
gallery feature vector FG

dstðFP ; FGÞ ¼ �
FT

PFG

kFPk2kFGk2
ð23Þ
is applied to the proposed approach, where k � k2 is the norm 2
operator.
4. Experimental results and discussions

AR, FERET database 1 and FERET database 2 are used in our
experiments. In all the experiments reported in this work, images
are preprocessed, aligned and normalized following the CSU Face
Identification Evaluation System (Beveridge et al., 2003), which
also employs FERET database. Face verification is performed by
accepting a claimant if the subject’s matching score is greater than
or equal to a threshold and rejecting the claimant if its matching
score is lower than the threshold. Verification performance is eval-
uated using two measures: correct verification rate (CVR) and false
acceptance rate (FAR). FAR is the ratio of the number of accepted
imposter matches to the total number of imposter matches. CVR
is the rate at which legitimate end-users (subjects) are correctly
verified. The plot of CVR against FAR is called the receiver operat-
ing characteristics (ROC) curve. The system performances at vari-
ous different operating points (thresholds) are characterized by
the ROC curve.

The proposed DVPE method is tested and compared with eight
other popular subspace based approaches: PCA with Euclidian dis-
tance (PCAE), PCA with Mahalanobis distance (PCAM), FLDA, DLDA
(Yu et al., 2001), BML (Moghaddam et al., 2000), NDA (Liu et al.,
2004), UFS (Wang et al., 2004b) and DSL (Wang and Tang, 2004a)
approaches. We conduct the experiments starting with the number
of features d ¼ 10, incremented by 2 each time up to p� 1, where p
is the number of training subjects. Experimental results are pre-
sented in this paper for each approach where the minimum equal
error rate is obtained.

4.1. Results on AR database

In AR database (Martinez, 2002), color images are converted to
gray-scale and cropped into the size of 120� 170. Seventy-five
subjects with 14 non-occluded images per subject are selected
from the AR database. The first 7 images of 60 subjects are used
in the training and also serve as gallery images. The second 7
images of the 60 subjects serve as probe genuine images. The
remaining 15 subjects with 14 images per subject are used as
probe imposters. For this large image size, we first apply PCA to re-
move the null space of St and then apply the DVPE approach on the
419-dimensional feature vectors. Fig. 4 shows the ROC curve that
plots the correct verification rate (CVR) against the false accep-
tance rate (FAR).

The ROC curves of PCAE do not appear in Fig. 4 because their
CVRs and FARs are so low that their values are out of the range of
Fig. 4. We see that BML approach does not perform well for the face
verification task although it is one of the best approaches for the
face identification task (Moghaddam et al., 2000). Fig. 4 shows that
the proposed DVPE method consistently outperforms all other eight
approaches for all different operating points (thresholds).

4.2. Results on FERET database 1

In FERET database (Phillips et al., 2000), 2388 images compris-
ing of 1194 subjects (two images FA/FB per subject) are selected.
Images are cropped into the size of 33 � 38. Images of 497 sub-
jects are randomly selected for training and the remaining images
of 697 subjects are used for testing. For this database, the subjects
used for training are different from those used for the testing.
There is no overlap in subjects between the training and the testing
data sets. The gallery data set contains 697 subjects with 1 image
per subject. The remaining 697 images of the same subjects as in
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Fig. 4. Correct verification rate against the false acceptance rate on the AR face
database. The total number of genuine matches is 7� 7� 60 ¼ 2940 and the total
number of imposter matches is 14� 7� 15� 60 ¼ 88;200.
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Fig. 5. Correct verification rate against the false acceptance rate on the FERET
database 1. The total number of genuine matches is 697� 1 ¼ 697 and the total
number of imposter matches is 697� 696 ¼ 485;112.
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Fig. 6. Recognition error rate against the number of features used in the matching
on the FERET database 1 comprising of 994 training images (497 subjects) and 1394
testing images (697 subjects).
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Fig. 7. Correct verification rate against the false acceptance rate on the FERET
database 2 of 600 training and gallery images (200 subjects), 200 probe genuine
images (200 subjects) and 224 probe imposter images (56 subjects). The total
number of genuine matches is 200� 3 ¼ 600 and the total number of imposter
matches is 4� 3� 56� 200 ¼ 134;400.
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the gallery serve as both the probe genuine images (when matched
with gallery images of same subjects) and the probe imposters
(when matched with gallery images of different subjects). Fig. 5
shows the ROC curve that plots the CVR (%) against the FAR (%).

The ROC curves of FLDA and DLDA do not appear in Fig. 5 be-
cause their CVRs and FARs are too low to be included in Fig. 5. This
experiment shows that FLDA and DLDA suffer from severe over-fit-
ting problem. Although BML performs better than in the first
experiment, it still underperforms the traditional PCAE for some
operating points. Fig. 5 shows again that the proposed DVPE meth-
od achieves higher CVR for their corresponding FAR among other
tested approaches for many different operating points.

Since this database has largest number of testing (or probe)
subjects, we also evaluate our method for face identification pro-
cess. The recognition error rate given in this work is the percentage
of the incorrect top 1 match on the testing set. Fig. 6 shows the rec-
ognition error rate on the testing set against the number of fea-
tures d used in the matching. Similar to the verification process,
recognition error rates of DLDA are too high to be included in
Fig. 6. DSL performs better for larger number of features because
it evaluates the discrimination information separately from the
two subspaces and then combined in the recognition phase. For
lower number of features, UFS outperforms DSL because UFS sup-
presses noises by keeping very few of features in the initial stage.
However, our proposed approach DVPE consistently outperforms
all other approaches for all number of features.

4.3. Results on FERET database 2

In this experiment, we construct a database similar to Lu et al.
(2006), by choosing 256 subjects randomly with at least four
images per subjects from FERET database. However, we use the
same number of images (four) per subject for all subjects. Three
images per subjects of the first 200 subjects are used for training
and also serve as gallery images. The remaining 200 images of



Table 1
Equal error rate (EER %) of various approaches on three different databases.

Database AR FERET1 FERET2

PCAE 34.2 5.1 13.0
PCAM 21.9 6.0 15.5
FLDA 13.2 35.0 34.8
NDA 5.0 4.0 3.6
DLDA 5.2 27.0 10.5
BML 19.1 5.6 23.8
UFS 4.3 3.0 2.7
DSL 5.9 3.8 2.5
DVPE 2.6 2.0 2.0
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the 200 subjects are used as probe genuine images. All four images
of the remaining 56 subjects serve as probe imposter images. The
size of the normalized image is 130 � 150, same as that in (Lu
et al., 2006). For such a large image size, we first apply PCA to re-
move the null space of St and then apply the proposed DVPE ap-
proach on the 599-dimensional feature vectors. For this database
we conducted four runs of training and testing with distinct probe
genuine image set in each run. More specifically, the ith images
ði ¼ 1; 2; 3; 4Þ of all training subjects are chosen to form probe gen-
uine set and the remaining three images per subject serve as the
training and gallery images. The total number of genuine matches
is 200 � 3 ¼ 600 and the total number of imposter matches is
4 � 3 � 56 � 200 ¼ 134;400. Fig. 7 shows the average ROC
curve that plots the CVR (%) against the FAR (%) of the four runs
of training and testing.

The ROC curves of FLDA and BML do not appear in Fig. 7 because
their CVRs and FARs are so low that their values are out of the
range in Fig. 7. Although the second highest ROC curve is same
for both the experiments on FERET databases, Fig. 7 shows once
more that the proposed DVPE method consistently delivers the
most accurate face verification for all different operating points.

For an accurate record, verification performance in terms of
equal error rate (EER) obtained from the above three experiments
are numerically recorded in Table 1. It is defined by EER=FAR=FRR
at a specific threshold, serves as a single number indicator of a ver-
ification system’s performance. Where FRR (false reject rate) is the
ratio of the number of rejected genuine matches to the total num-
ber of genuine matches (or one minus the correct verification rate
1-CVR). Table 1 clearly demonstrates the superior performance of
the proposed DVPE approach to all other approaches tested in
the experiments on three different face databases.

4.4. Summary of the experimental results

We have performed four sets of experiments with three differ-
ent face databases that evaluate nine subspace based approaches
for face recognition task. Unlike face identification experiments
where some sample images of all probe subjects can be included
in the training, in all verification experiments of this work, the sub-
jects of the probe imposters are excluded in the training. Moreover,
in FERET database 1, the training subjects are different from those
in the gallery and probe sets. The experimental results verify the
difference in terms of accuracy between the face verification and
the face identification. Methods that work well for the face identi-
fication may not necessarily do the same for the face verification
task. BML is a good example for this. It is thus useful to test the ver-
ification performances of various approaches that were developed
and tested for identification task.

From the above experiments, it is evident that UFS, NDA and
DSL approaches perform better than PCAE, PCAM, FLDA, DLDA
and BML approaches. UFS keeps only a small principal subspace
with largest eigenvalues for the discriminant evaluation. It sup-
presses more noise and thus has less over-fitting problem compar-
ing to the FLDA and DLDA that perform the discriminant evaluation
in the whole range space. The good performance of NDA verifies
that the null space contains important discriminative information
and should not be simply discarded in the feature extraction. An-
other property of NDA is that it does not scale the features by
the eigenvalues. This is one possible reason why NDA has better
generalization than FLDA, DLDA and BML. DSL extracts two sets
of features, one from a principal subspace and the other from its
complementary subspace including the null space. Its relative good
performance shows that the discriminative information resides in
the both subspaces.

However, none of the three better approaches, UFS, NDA and
DSL can consistently achieve the second best performance in the
four experiments. One reason could be that all of them are subop-
timal that extract features by the discriminant evaluation in a sub-
space or separately in two subspaces. The proposed DVPE method
shows superior verification and identification performances to all
the other eight subspace based approaches. In all three experi-
ments on the different face databases, the proposed DVPE method
consistently achieves the highest correct verification rates (or low-
est EER) at many different operating points. It is important to test a
verification system at different operating points because there is
no optimal threshold for a verification system and different appli-
cations in practice has different requirement of FAR and CVR. In
identification experiment, the proposed DVPE approach consis-
tently achieves the lowest recognition error rate for all number
of features. The superior verification and identification perfor-
mances of the proposed method is attributed to the prediction of
the eigenvalues and then regularizing eigenfeatures in the eigen-
space. These enable a global optimization by the discriminant eval-
uation in the whole space and alleviate the over-fitting problem as
the unreliable or noise sensitive small and zero eigenvalues are re-
placed by the predicted values.
4.5. Limitations and future work

Although the proposed eigenmodel scheme works well for face
verification and identification problems, it might not be well suited
for other computer vision and pattern recognition (CV & PR) tasks
like general object recognition, fingerprint or palm print recogni-
tion. Our proposed algorithm uses the principal eigenvalues from
the training dataset to predict the unreliable and unknown eigen-
values, its effectiveness on other CV & PR problems would be an
interesting future research topic worth to investigate. The pro-
posed eigenmodel uses a function form of 1=f which fits well to
the decaying nature of the eigenspectrum of face images. Investi-
gating other function forms which could even better fit into the
decaying nature of the eigenspectrum is an interesting topic. In
fact, the decaying nature of the eigenspectrum could vary from
problem to problem in CV & PR research areas. Proposing a generic
eigenmodel for various CV & PR problems is a challenging task.
Currently, we are investigating the eigenspectrum modeling for
human activity recognition tasks. In addition, the proposed algo-
rithm has no free parameter as selection choice. This could be an
advantage for the implementation and application. On the other
hand, however, the algorithm may not be optimal for all training
tasks, some of which may have very small training samples while
others may have large number of training samples. If the algorithm
is made to be adaptive to the number of training samples then bet-
ter results can be expected.
5. Conclusions

Subspace based approaches such as FLDA, DLDA, NDA and UFS
discard a subspace before the discriminant evaluation. The ex-
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tracted features are only suboptimal as they are the most discrim-
inative only in a subspace. Although BML works in the whole space,
it does not evaluate the discriminant value and, hence, the whole
face image must be used in matching. The DSL approach scales fea-
tures in the complementary subspace by the average eigenvalue of
within-class scatter matrix over this subspace. As the eigenvalues
in this subspace are not well estimated, their average may not be
a proper scaling factor relative to those in the principal subspace.

This work shows the problems of feature scaling and extraction
from high-dimensional data such as face images for face verifica-
tion and identification tasks. To alleviate these problems we
decompose the eignespace into three subspaces using two control
points and predict the unreliable eigenvalues. The forecasted
eigenvalues are used for regularization of eigenfeatures in the
eigenspace. These enable a global optimization in the feature
extraction by performing the discriminant evaluation in the whole
space. Therefore, the extracted features are the most discrimina-
tive in the whole space and stable or less sensitive to the noise dis-
turbance, the data dimensionality and the number of training
samples. Experiments on AR and FERET databases demonstrate
that the proposed approach consistently outperforms other eight
subspace based approaches for face verification and identification
tasks.
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