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a b s t r a c t

This paper proposes a novel nonlinear filter, named rank order Laplacian of Gaussian (ROLG) filter, based
on which a new interest point detector is developed. The ROLG filter is a weighted rank order filter. It is
used to detect the image local structures where a significant majority of pixels are brighter or darker than
a significant majority of pixels in their corresponding surroundings. Compared to linear filter based
detectors, e.g. SIFT detector, the proposed rank order filter based detector is more robust to abrupt
variations of images caused by illumination and geometric changes. Experiments on the benchmark
databases demonstrate that the proposed ROLG detector achieves superior performance comparing to
four state-of-the-art detectors. Evaluation experiments are also conducted on face recognition problems.
The results on five face databases further demonstrate that the ROLG detector significantly outperforms
the other detectors.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As a powerful tool for computer vision, interest point detection
has drawn great attentions in the last two decades [1–3]. It has
been used in a wide range of research, such as panoramic image
stitching [4], image retrieval [5], image registration [6], texture
classification [7], object categorization [8], object recognition
[9,10], 3D object modeling [11], video shot retrieval [12], and face
recognition [13]. Many interest point detectors have been pro-
posed in the past few years to detect local structures of images
[14–26]. They can be roughly classified into three categories:
corner-based detectors, blob-based detectors and region detectors.

Corners correspond to points in the 2D images with high
curvature [3]. Harris corner detector [14] uses the second moment
matrix, also called the auto-correlation matrix, to analyze the
principal intensity changes in two orthogonal directions in a
neighborhood around a point. The Harris measure combines the
trace and the determinant of the second moment matrix in a
single measure. This measure is used to detect the image local
structures where the principal intensity changes in two orthogonal
directions are both large. However, this type of structures includes
not only corners, but also textured patterns and noise [27].
Harris–Laplace/affine detectors [15] were proposed to be invariant
with scale and affine changes. Corners are detected by the Harris
corner detector in multi-scales, and their characteristic scales are
determined by the Laplacian operator. As the shape of a corner
ll rights reserved.
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does not match the shape of the Laplacian operator, scale estima-
tions for corners are often unstable [28]. SUSAN detector [16]
defines a corner as the smallest USAN (univalue segment assim-
ilating nucleus) point, which is dissimilar from a majority of pixels
within a neighborhood of it. This detector is sensitive to impulse
noise and blur, and it fails to deal with scale changes.

Blobs refer to bright regions on dark backgrounds or vice versa
[29]. Hessian detector [18] employs the Hessian matrix to analyze
the second order Taylor expansion of the intensity surface. The
Hessian matrix consists of the second order derivatives of image
intensity. The trace and the determinant of this matrix are used to
detect blobs in a single scale. Hessian–Laplace/affine detectors [15]
were developed to detect blobs in multiple scales based on the
Hessian detector and the Laplacian operator. These detectors are
stable in estimating the characteristic scales of blobs, of which the
shapes are similar to that of the Laplacian operator. SIFT detector
[19] employs the difference of Gaussian (DoG) filter to approx-
imate the normalized Laplacian of Gaussian (LoG) filter. The DoG
filter significantly accelerates the computation process. SURF
detector [20] employs the box filters and the integral images to
further speed up the Hessian–Laplace detector. The box filters are
approximations of the second order Gaussian derivative filters. The
integral images allow for the fast convolutions of the box filters
with the input image. Different approaches, which are not based
on the second order derivative of image intensity, were proposed
in [21–23] to detect blobs. Salient region detector [21] employs the
image local complexity to detect blobs. The characteristic scales
are determined by the entropy extrema of the local descriptors. A
common computational concept is proposed in [22] to detect
different types of local structures. The intensity variance in a local
circular region is divided into three components, which are used to
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Fig. 1. LoG filter. (a) Shape of the LoG filter. (b) Two parts of the LoG filter. S1
corresponds to the surrounding ring containing positive weights. S2 corresponds to
the inner circular disk containing all negative weights.
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detect corners, blobs and high textured structures. A histogram-
based similarity measure is introduced in [23] to bridge the gap
between interest point detectors and descriptors.

Region detectors extract regions with similar image structures
and properties [3]. Edge-based region detector [24] uses the Harris
points as the initial points. The two nearby edges and several
intensity based functions are exploited to determine a parallelo-
gram region. Intensity-based region detector [24] employs the
local intensity extrema as the initial points. The affine invariant
regions are determined by the significant changes of the intensity
profiles, which are along rays going out of the extrema. MSER
detector [25] starts with the local intensity extrema. The maxi-
mally stable extremal regions are extracted using a watershed like
segmentation algorithm. The MSER detector works well for struc-
tured images, which have strong intensity changes on region
boundaries. But it is sensitive to image blur which undermines
the stability criterion [1].

In this paper, we propose a new interest point detector based
on a nonlinear filter. The proposed detector is inspired by the SIFT
detector [19], and alleviates the problems of this detector. As the
most popular detector, the SIFT detector employs the DoG filter to
generate the blob map. However, the response of the DoG filter is
easily affected by the strong and abrupt structures near the
structure to be detected. This makes the SIFT detector unstable
to detect the low contrast image structures, where other strong
and abrupt structures caused by illumination or geometric
changes partially fall in the detection window. Moreover, due to
the second order derivative nature of the SIFT detector, many
unstable and spurious points are often detected around the
structures. To solve these problems of the SIFT detector, we design
our detector based on the rank order filter.

Most state-of-the-art rank order filters, such as the weighted
rank order filter and the weighted median filter, are designed to
remove noise or detect edges [30–32]. Very few studies have been
carried out on applying rank order filters to interest point detec-
tion. Paler et al. [33] developed a corner detector based on the
median filter. The difference between the median filtered image Im
and the original image I, Id ¼ Im−I, is used as the corner map. As it
functions as a high pass filter, this detector is sensitive to noise.
Ren and Jiang [34] employed a rank order filter pair to detect
human eyes. The difference of the outputs of the two rank order
filters, one for the eyeball and the other for the surrounding pixels,
is computed. The local maxima are used as the eye candidates. This
eye detector is effective in dealing with iris reflections and other
dark objects near eyeballs. However, it cannot be used as an
interest point detector because it has the following three limita-
tions. Firstly, it can only detect dark regions. Secondly, it has high
response on edges and contours. Local extrema may be detected
along edges and contours. These extrema are unstable because
they are sensitive to small intensity changes in their neighbor-
hoods. Thirdly, it is not invariant to scale changes.

In this work, a novel rank order filter with weights proportional
to the coefficients of the LoG filter is proposed and, hence, is
named rank order Laplacian of Gaussian (ROLG) filter. It is used to
detect the image local structures where a majority of pixels are
brighter or darker than a majority of pixels in their corresponding
surroundings. The new interest point detector is built on the
proposed ROLG filter to detect image local structures in multiple
scales.
2. The proposed ROLG filter

As a necessary preliminary of the study, the properties of the
LoG filter and the weighted rank order filter are discussed in
Sections 2.1 and 2.2.
2.1. LoG filter

The LoG filter with the shape shown in Fig. 1(a) is defined by

wðx; y; sÞ ¼−
1
πs4

1−
x2 þ y2

2s2

� �
e−ðx

2þy2Þ=2s2 ; ð1Þ

where s is the standard deviation of the Gaussian function, and
also named scale factor. For input image Iðx; yÞ, the output of the
LoG filter at (x,y) can be expressed as the difference of two
weighted averages

rðx; y; sÞ ¼ ∑
ðm;nÞ∈S

wðm;n; sÞIðx−m; y−nÞ

¼ ∑
ðm;nÞ∈S1

wþðm;n;sÞIðx−m; y−nÞ

− ∑
ðm;nÞ∈S2

w−ðm;n; sÞIðx−m; y−nÞ; ð2Þ

where S is the region of the filter, S1 and S2 (as shown in Fig. 1(b))
are the two parts of S with S1∪S2 ¼ S and S1∩S2 ¼ ϕ (ϕ is the null
set). S1 corresponds to the surrounding ring containing the
positive weights of the filter, and S2 corresponds to its inner disk
containing all the negative weights. wþ and w− are the absolute
values of the LoG coefficients in S1 and S2, respectively.

It is not difficult to see that the LoG filter produces extrema at
corners and blobs. Several detectors are built on the LoG filter
[15,18–20]. The SIFT detector [19], which is the most famous one,
employs the DoG filter to approximate the normalized LoG filter
that significantly accelerates the computation process.

The LoG filter is ineffective in dealing with the sparse but
strong noise, such as the salt and pepper noise. Even a small
portion of pixels can greatly affect the output adversely if their
grey values largely deviate from those of the image structure to be
detected. However, a small portion of pixels have almost no
influence on the output of the rank order filter even if their grey
values are extremely high or low. This motivates us to design a
weighted rank order filter with weights proportional to those of
the LoG filter for interest point detection.

2.2. Weighted rank order filter

The output of the weighted rank order filter [30,31] is defined
as follows. Assume the weights for the input series x¼ fx1; x2;…;

xqg arew¼ fw1;w2;…; wqg. For the ascending sorted ~x ¼ f ~x1; ~x2;…;
~xqg, their corresponding weights are rearranged as ~w ¼ f ~w1; ~w2;…;
~wqg. The output of the weighted rank order filter with rank rw,
rw∈f1;2;…;∑j ¼ q

j ¼ 1wjg, is given by

yrw ¼ rankrw fw1♢x1;w2♢x2;…;wq♢xqg
¼ rankrw f ~w1♢ ~x1; ~w2♢ ~x2;…; ~wq♢ ~xqg; ð3Þ



Z. Miao, X. Jiang / Pattern Recognition 46 (2013) 2890–29012892
where ♢ is the replication operator defined by

wi♢x¼ x; x;…; x|fflfflfflfflffl{zfflfflfflfflffl}
wi times

: ð4Þ

Take the input series x¼ f10;8;9g, the weights w¼ f2;3;1g, and
the rank rw¼4 as an example. The output of the weighted rank
order filter is

y4 ¼ rank4f2♢10;3♢8;1♢9g
¼ rank4f3♢8;1♢9;2♢10g
¼ rank4f8;8;8;9;10;10g ¼ 9;

which is the 4th element of the expanded data.
In order to avoid replicating the data, which is time consuming

and needs more storage spaces, a cumulative sum of the sorted
weights is defined by

ci ¼
1
ws

∑
i

j ¼ 1
~wj; ð5Þ

where ws ¼∑q
j ¼ 1

~wj is the total sum of the weights, i∈f1;2;…; qg
and c0 ¼ 0. Then, the output of the weighted rank order filter with
a normalized rank rnw∈½0 1� is given by

yrnw ¼ ~xio ; fio : cio−1ornw ≤cio g: ð6Þ

2.3. The proposed ROLG filter

One direct way to apply the weighted rank order filter to
interest point detection is to replace the weighted average in (2)
by the weighted median, as

rwmðx; y; sÞ ¼median
ðm;nÞ∈S1

ðŵþðm;n; sÞ♢Iðx−m; y−nÞÞ
−median

ðm;nÞ∈S2
ðŵ−ðm;n; sÞ♢Iðx−m; y−nÞÞ; ð7Þ

where ŵþðm;n; sÞ ¼wþðm;n; sÞ=∑wþ and ŵ−ðm;n;sÞ ¼w− ðm;n; sÞ=
∑w−. With these weighting coefficients, pixels near the boundary
between S1 and S2, which are uncertain to be grouped to S1 or S2,
are assigned with small weights to weaken their influence on the
filter output. The difference of the two weighted median filters (7)
has similar role to the LoG filter (2) and, hence, can be used to
detect interest points.

However, when noise exists, filter (7) produces very strong
response on an edge if one median filter captures one side of the
edge while the other median filter happens to capture the other
side of the edge. Such strong response results in many local
extrema being detected along edges, which are undesirable for
interest point detection. Therefore, additional rules are imposed to
enhance the robustness of the detector. Median filter is a special
case of the rank order filter, as median is equal to rank 0.5.
Replacing the weighted median filter by the weighted rank order
filter, (7) is reformulated as

rwrðx; y; s; λ1; λ2Þ ¼ rankλ1
ðm;nÞ∈S1

ðŵþðm;n; sÞ♢Iðx−m; y−nÞÞ

−rankλ2
ðm;nÞ∈S2

ðŵ−ðm;n;sÞ♢Iðx−m; y−nÞÞ; ð8Þ
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Fig. 2. Response on a 1D blob. (a) A 1D blob. (b) Respon
where λ1 and λ2 are the rank factors for the two weighted rank
order filters.

In order to suppress the edge response, we require a significant
majority of pixels (450%, e.g. 60%) in the surrounding ring
brighter than a significant majority of pixels (450%, e.g. 60%) in
the inner disk, or a significant majority of pixels in the surrounding
ring darker than a significant majority of pixels in the inner disk.
Otherwise, the outputs are set to zero to suppress noise and edges.
This idea can be realized by introducing a positive nonzero offset
parameter δ and two functions, P and N , as

Pðx; y; s; δÞ ¼ rwrðx; y; s;0:5−δ;0:5þ δÞ; ð9Þ

and

N ðx; y; s; δÞ ¼ rwrðx; y; s;0:5þ δ;0:5−δÞ: ð10Þ

Pðx; y; s; δÞ40 (N ðx; y; s; δÞo0 ) is used to check that a significant
majority of pixels in the surrounding ring is brighter (darker) than
a significant majority of pixels in the inner circle at point (x,y).
With this idea, the proposed ROLG filter is defined by

rROLGðx; y; s; δÞ ¼
Pðx; y; s; δÞ; if Pðx; y; s; δÞ40
N ðx; y;s; δÞ; if N ðx; y; s; δÞo0
0: otherwise

8><
>: ð11Þ
3. Analyses of the ROLG filter

In this section, illustrative analyses of the ROLG response on
blobs, corners and edges are presented.

3.1. Responses of the ROLG filter on blobs

One drawback of the LoG filter in detecting blobs is that
spurious local extrema are produced around the blobs. Examples
are shown in Figs. 2(b) and 3(b). For a 1D blob, one negative peak
at the center and two positive peaks on both sides of the center are
generated by the LoG filter. For a 2D blob, besides a peak at the
center of the blob, a ring (indicated by the red circle shown in
Fig. 3(b)) is produced around it. Many unstable extrema may be
detected on this ring in the presence of even very small noise.

Figs. 2(c) and 3(c) show the responses of the proposed ROLG
filter on a 1D blob and a 2D blob, respectively. It is clear to see that
the ROLG filter produces a peak at the center of the blob, and does
not generate any peaks around the blob. This is explained by
the filtering process on a 1D blob illustrated in Fig. 4. When the
1D-ROLG-filter mask is on one side of the blob, input values within
the mask are monotonically increasing or decreasing. Take mask
1 in Fig. 4 as an example. Within this mask, input values are
monotonically increasing. Compared to its inner part, half of its
surrounding parts (left part) is darker, and the other half (right
part) is brighter. The ROLG response is set to 0, because it does not
satisfy that a significant majority of pixels in the surrounding parts
5 −5 0 5

−2

0

se of the LoG filter. (c) Response of the ROLG filter.



Fig. 3. Response on a 2D blob. (a) A 2D blob. (b) Absolute value of the LoG response. (c) Absolute value of the ROLG response. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

mask 1

mask 2

Fig. 4. A 1D blob and two 1D-ROLG-filter masks on the blob. In each mask, the
white region corresponds to the inner part of the ROLG filer mask, and the gray
region corresponds to its surrounding parts.
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are brighter or darker than a significant majority of pixels in the
inner part. When the ROLG mask is at the center of the blob, e.g.
mask 2 in Fig. 4, a major part of the inner region is brighter than a
major part of its surrounding regions. Therefore, a peak is
generated by the ROLG filter at the center of the blob. Similar to
the 1D case, the ROLG filter produces a peak at the center of the 2D
blob, and does not generate a ring around the blob. This avoids
detecting spurious points around the 2D blob.
3.2. The ROLG responses on edges and corners

Another problem of the LoG filter in detecting interest points is
that local extrema are often detected along edges. For a 1D edge,
two peaks near the edge are produced by the LoG filter as shown
in Fig. 5(b). For a 2D corner, besides a peak on the corner, strong
responses are generated along the edges as shown in Fig. 6(b).
Local extrema may be detected along edges.

The ROLG responses on a 1D edge and a 2D corner are shown in
Figs. 5(c) and 6(c), respectively. These two figures demonstrate
that the ROLG filter suppresses the responses of edges. As shown
in Fig. 7, when the 1D-ROLG-filter mask is on the edge, values
within the mask are monotonically increasing. Half of the sur-
rounding parts is brighter than the inner part, and the other half is
darker. No majority of pixels in the inner part are brighter or
darker than a majority of pixels in the surrounding parts. Thus, the
responses of the ROLG filter on edges are set to 0.
4. Interest point detection by the ROLG filter

In this section, we propose the ROLG interest point detector based
on the ROLG filter. The advantages of the ROLG filter in detecting
interest points in a single scale are discussed in Section 4.1. The
algorithm to eliminate ridge responses is presented in Section 4.2.
The proposed ROLG detector to detect interest points in multiple
scales is given in Section 4.3.
4.1. Interest point detection in a single scale

Previous sections have shown that the ROLG filter has the
following advantages in detecting interest points:
1.
 The sparse but strong structures has small or no influence on
the output of the ROLG filter. Thus, the ROLG filter is robust to
the strong and abrupt variations of images.
2.
 Structures, which partially fall in a detection window, have
limited influence on the response of the ROLG filter. Hence, the
mutual influence of structures on the response of the ROLG
filter is limited.
3.
 Only one peak is produced at the center of a blob, and no ring is
generated around the blob. This property of the ROLG filter
avoids detecting spurious points around a blob.
4.
 The ROLG filter suppresses the response of edges. Therefore, no
point is detected along edges.

Fig. 8 shows some image structures and the detected points based
on the LoG filter and the proposed ROLG filter. The input image of
Fig. 8(a) contains a blob and a small black stripe. The abrupt structure
drastically changes the LoG response to the blob. The peak of the LoG
response deviates from the true position of the blob. Many false peaks
are detected around the blob. The response of the ROLG filter shows
that the abrupt structure has small impact on the output of the ROLG
filter. The blob is correctly detected by the ROLG filter. Two close blobs
are contained in the input image of Fig. 8(b). The mutual influence of
these two blobs results in many spurious points being detected on the
LoG response. However, their mutual influence on the ROLG response
does not generate spurious peaks. Thus, these two blobs are detected
correctly. Fig. 8(c) compares the response of the ROLG filter to that of
the LoG filter on a blob. It is clear to see that many false peaks are
detected on the LoG response around the blob, while no false peak is
detected on the response of the ROLG filter. Fig. 8(d) shows that many
local intensity extrema are detected along the edges on the LoG
response. In contrast, the response of the ROLG filter on the edges is
0 and, hence, no false peak is detected on the edges.
4.2. Eliminating ridge responses

The response of the ROLG filter on a ridge is strong if its scale is
close to the width of the ridge. Points detected on the ridge are
unstable to small amounts of noise. We employ the algorithm
given in [19] to remove such kind of unstable points.

Points on the ridge have a small principal curvature along the
ridge but a large one in the perpendicular direction. The two
principal curvatures at the location and scale of the interest point
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Fig. 5. Response on a 1D edge. (a) A 1D edge. (b) Response of the LoG filter. (c) Response of the ROLG filter.

Fig. 6. Response on a corner. (a) A 2D corner. (b) Absolute value of the LoG response. (c) Absolute value of the ROLG response.

mask

Fig. 7. A 1D edge and a 1D-ROLG-filter mask on the edge. In this mask, the white
region corresponds to the inner part of the ROLG filter mask, and the gray region
corresponds to its surrounding parts.

Fig. 8. Points detected on a single scale. ‘*’ denotes desired point and ‘+’ denotes
undesired point. From left to right of (a), (b), (c) and (d) are input images, absolute
value of the LoG responses, local extrema of the LoG responses, absolute value of
the ROLG responses, and local extrema of the ROLG responses, respectively.
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can be computed from the 2�2 Hessian matrix H

H¼
Ixx Ixy
Ixy Iyy

" #
; ð12Þ

where Ixx, Ixy, and Iyy are the second order derivatives. The
derivatives are estimated by the differences between neighboring
sample points.

The principal curvatures of I are proportional to the eigenvalues
of H. Therefore, the ratio between the larger eigenvalue and the
smaller eigenvalue of H can be used to remove the points on the
ridge. If the ratio is larger than some threshold r, it means that the
principal curvatures in one direction is larger than r times of that
in the perpendicular direction. In order to avoid explicitly comput-
ing the eigenvalues, the function given in [19]

TrðHÞ2
DetðHÞ o

ðr þ 1Þ2
r

ð13Þ

is used to check that the ratio of the eigenvalues of H is below r.
The experiments in this paper use r¼10, as suggested in [19].

4.3. Algorithm for ROLG detector

Interest point detection in multiple scales is an important issue
in vision applications. Similar to the Hessian–Laplace detector [35],
we can weight the responses in different scales, and choose the
local maximum points both in spatial and scale dimensions as the
interest points. In the implementation, we employ a straightfor-
ward method by detecting the interest points in each scale as done
in [23].

The proposed algorithm for the ROLG detector is summarized
below:
1.
 Initialize the ROLG filter by setting the offset parameter δ and
the scale parameter s.
2.
 Generate the corner/blob map by filtering the input image with
the ROLG filter (11).
3.
 Detect peaks on the corner/blob map, and remove peaks which
are on ridges. Remaining peaks are the interest points in
this scale.



Fig. 9. Interest points detected by two detectors. (a) SIFT detector, (b) ROLG detector. Local maxima are indicated in blue, and local minima are indicated in red. The radius of
the yellow circle is two times the scale s of the interest point at its center. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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4.
 Update the ROLG filter by a larger scale s, and go back to step 2 to
detect interest points in a new scale until the maximal scale is
reached.

Fig. 9 gives a visual comparison between the SIFT detector and
the ROLG detector on a face image. The parameters are chosen so
that the numbers of points detected by both the detectors are the
same. It is observed that SIFT detects many spurious points around
the eyeballs while it misses a lot of points in other areas. The ROLG
detector alleviates these problems. In the next section, statistical
experiments are carried out for further comparison between the
ROLG detector and other state-of-the-art ones.
5. Experiments

Experiments in Section 5.1 test the repeatability and the
discrimination of the interest points. Experiments in Section 5.2
test the performance of the interest points in the application of
face recognition. In both experiments, the SIFT descriptor [19] is
used to represent the detected regions.

The proposed ROLG filter has an offset parameter δ, 0≤δ≤0:5.
The Oxford database [1] is used to evaluate the sensitivity of the
offset parameter δ with respect to the detection result. Both the
absolute and relative measures given in Section 5.1 are employed.
The experimental results are shown in Fig. 10. It is not a surprise
that both the number of the repeated points and the number of
the matched points decrease with the increase of the offset
parameter δ, as shown in Fig. 10(a). However, as shown in Fig. 10
(b), the repeatability and the matching score increase first and
then decrease. Both of them reach and maintain the maximum
within the range of 0:05≤δ≤0:15. This clearly shows the noise-
and edge suppression function of a nonzero offset parameter δ in
the proposed ROLG filter. Therefore, we choose δ¼ 0:1 for the
proposed ROLG filter in all experiments of this paper.

5.1. Repeatability and discrimination tests

The goal here is to evaluate the ROLG detector under different
image variations. The evaluation is based on the protocols sug-
gested in [1]. Detectors are evaluated by both the absolute and
relative measures. The absolute measures include the number of
repeated interest points and the number of matched points. Each
interest point corresponds to a detected region. Two regions are
repeated if their overlap is the maximal and above some threshold
(in our experiments, the threshold is 60%). Two regions are
matched if they satisfy two conditions: (1) the two regions are
repeated and (2) their descriptors are the nearest-neighbor in the
descriptor space.

The relative measures include the repeatability and matching
score. Note that the definitions of the repeatability and matching
score in this paper are slightly different from that in [1]. In [1], the
repeatability for a given pair of images is computed as the ratio
between the number of the repeated points and the smaller
number of the detected points in the pair of images. This may
cause some inaccuracy problems in some cases. For example,
assume 100 points are detected in image 1. Due to some variations,
such as illumination change, assume 50 points are detected in
image 2. If the 50 points are repeated, by the definition of
repeatability in [1], the repeatability is 100%. This result is
undesirable because 50 points are not detected in image 2.
Therefore, in this paper we define the repeatability as the ratio
between the number of the repeated points and the larger number
of the detected points in a given image pair. Similarly, we also
define the matching score as the ratio between the number of
correct matches and the larger number of the detected points in a
given image pair. All these points should be within the common
area and the common scales of the image pair.

The publicly available Oxford database provided by [1] is used
to evaluate the detectors. This database contains eight data sets,
from which images are shown in Fig. 11. These data sets include
five different changes in imaging conditions for structured and
textured scenes: scale change, viewpoint change, JPEG compres-
sion, image blur, and lighting change. Each data set consists of six
images with five homographies between the first image and the
other five images. In all experiments reported here, interest points
are detected on the downsampled images.

The parameter setting for the ROLG detector is as follow.
Interest points are detected in 12 scales: fsngn ¼ 1;2;…;12 ¼ f1:6�
21=3;1:6� 22=3;3:2;…;1:6� 24g. Instead of continuously increasing
the ROLG mask size, the 12 scales are divided into four octaves by
downsampling the previous octave. Each octave contains three
scales fsnogno ¼ 1;2;3 ¼ f1:6� 21=3;1:6� 22=3;3:2g.
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Fig. 10. Sensitivity of the offset parameter δ with respect to the detection results. (a) The average number of repeated points (top line) and matched points (lower line).
(b) The average value of repeatability (top line) and matching score (lower line).

(boat) (bark) (graf) (wall)

(ubc) (bikes) (trees) (leuven)

Fig. 11. Samples from the eight data sets of the Oxford database. ‘boat’ (of size 424�339) and ‘bark’ (382�255): scale and rotation change. ‘graf’ (399�319) and ‘wall’
(499�349): viewpoint change. ‘ubc’ (399�319): JPEG compression. ‘bikes’ (499�349) and ‘trees’(499�349): image blur. ‘leuven’ (449�299): lighting change. Two (the 1st
and the 6th) of the six images are shown for each data set. The top image in each set is used as the reference image in the experiments.
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Four benchmark detectors, the MSER detector [25], the Harris-
affine (HR-A) detector [15], the Hessian-affine (HS-A) detector [15],
and the SIFT detector [19], are compared with the ROLG detector. The
default parameters given by the authors are used for each detector.

The results of the absolute measures and relative measures are
shown in Figs. 12 and 13, respectively. Each figure in Figs. 12 and 13
contains eight columns, corresponding to the eight data sets.
In each column, horizontal axis represents the image index in the
corresponding data set. From left to right of each figure shows the
results on the scale change structured sequence ‘boat’, the scale
change textured sequence ‘bark’, the viewpoint change structured
sequence ‘graf’, the viewpoint change textured sequence ‘wall’, the
JPEG compression sequence ‘ubc’, the blurring structured sequence
‘bikes’, the blurring textured sequence ‘trees’, and illumination change
sequence ‘leuven’, respectively.

Results for the scale change and in-plane rotation are shown in
the 1st and 2nd columns of Figs. 12 and 13. On both the structured
scene (Fig. 11 boat) and the textured scene (Fig. 11 bark), the ROLG
detector gives the best results.

Results for the viewpoint change are shown in the 3rd and 4th
columns of Figs. 12 and 13. When the viewpoint change is small,
the ROLG detector obtains higher repeatability score and larger
numbers of repeated points and matched points than those of the
other detectors on the structured scene (Fig. 11 graf). As the mask
of the ROLG filter is not adapted to viewpoint change, the
performance of the ROLG filter drops faster than that of the MSER
detector under the viewpoint change increasing. The most stable
one for the structured scene is the MSER detector, but its number
of repeated points is small. On the textured scene (Fig. 11 wall), the
ROLG detector outperforms the other detectors.

The 5th columns of Figs. 12 and 13 show the results for the JPEG
compression sequence (Fig. 11 ubc). The Hessian-affine detector and
the Harris-affine detector show best performance, but the number of
repeated points is small. When the distortion under JPEG compression
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is low, the repeatability score and the matching score of the ROLG
detector are as good as those of the Hessian-affine detector. Moreover,
both the number of repeated points and the number of matched
points of the ROLG detector are larger than those of the other
detectors.

The 6th and 7th columns of Figs. 12 and 13 show the results for
blur images. The ROLG detector outperforms the other detectors
on both the structured scene (Fig. 11 bikes) and the textured scene
(Fig. 11 trees).

Results for the illumination change (Fig. 11 leuven) are shown
in the 8th column of Figs. 12 and 13. As the ROLG filter is robust to
the variations caused by illumination changes, the ROLG detector
outperforms the other detectors.

We compare the running time of the SIFT and ROLG detectors
under the Window 7 system with the Intel Core i5 CPU 3.2 GHz
and RAM 4 GB. The code of the SIFT detector is downloaded from
http://www.vlfeat.org/�vedaldi/assets/sift/versions/sift-0.9.16.tar.gz.
The ROLG detector is implemented by the MATLAB programming
language. Both the image size and the number of detected interest
points affect the running time. From Fig. 12(a) it is seen that the
ROLG and SIFT detectors detect the similar number of repeated
points on the ‘bark’ data set. Therefore, we test the running time of
these two detectors on this data set. The average running time per
image of size 382�255 for the ROLG detector is 4.1 s and that for the
SIFT detector is 1.2 s. It is not a surprise that the SIFT detector is faster
than the ROLG detector as the former optimizes its speed by utilizing
the nice properties of the Gaussian linear filter.

5.2. Application to face recognition

Face recognition is an active research topic [36–40], and some
works have been done to apply the SIFT detector and descriptor in

http://www.vlfeat.org/~vedaldi/assets/sift/versions/sift-0.9.16.tar.gz
http://www.vlfeat.org/~vedaldi/assets/sift/versions/sift-0.9.16.tar.gz
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Fig. 14. Sample images in AR, ORL, GT, FERET and LFW databases. They show the typical image variations of the same persons in each database.
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Fig. 16. Cumulative matching curves on ORL database.
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Fig. 17. Cumulative matching curves on GT database.
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face recognition [13]. In the following experiments, we compare
the ROLG detector with five state-of-the-art detectors, the SIFT
detector [19], the MSER detector [25], the Harris-affine (HR-A)
detector [15], the Hessian-affine (HS-A) detector [15], and the
SURF detector [20]. Using the default parameters given by their
respective authors, all of these detectors detect too few points and
lead to very poor performance. Thus, we decrease the contrast
threshold and find that zero is the best for all detectors. Therefore,
the thresholds used to remove low contrast interest points are set
to zero for all detectors. The MSER detector is controlled by several
parameters. Even if we set the contrast threshold to the smallest
zero, there is no point detected on the ORL database. In order to
make MSER detector workable for the face recognition experi-
ments, we reduce the minimum size of output region of the MSER
detector. The minimum size of output region is set to 1=4 of its
default setting to make it workable on all face databases as its
recognition performance is better than those with 1=2 and 1=8 on
the ORL database. This optimal parameter setting is further
confirmed on the AR database. The matching procedures described
in [19] are employed in these experiments.

AR [41], ORL [42], Georgia Tech (GT) [43], FERET [44], and
labeled faces in the wild (LFW) [45] databases are chosen to test
the discriminative power of the interest points in face recognition.
Some sample images of these databases are shown in Fig. 14.
Before the interest point detection, images are resized to those
commonly used in most other face recognition approaches. The
rank 1 recognition rates and the cumulative matching curves are
used to evaluate the detectors. The cumulative matching curve of
the Harris-affine detector is not drawn in Fig. 17, Figs. 18 and 19,
because it is drastically lower than that of the other detectors in
these three figures.



Table 1
Rank 1 recognition rate on AR database.

ROLG SIFT SURF MSER HS-A HR-A

AR (%) 98.3 94.3 92.6 92.7 88.6 74.5
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Fig. 18. Cumulative matching curves on FERET database.
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Fig. 19. Cumulative matching curves on LFW database.

Table 2
Rank 1 recognition rate on ORL database.

ROLG SIFT SURF MSER HS-A HR-A

ORL (%) 96.5 90.0 78.5 91.0 80.0 66.5

Table 3
Rank 1 recognition rate on GT database.

ROLG SIFT SURF MSER HS-A HR-A

GT (%) 91.1 84.0 84.6 81.1 74.0 47.4

Table 5
Rank 1 recognition rate on LFW database.

ROLG SIFT SURF MSER HS-A HR-A

LFW (%) 36.4 27.6 20.9 16.1 16.0 10.4

Table 4
Rank 1 recognition rate on FERET database.

ROLG SIFT SURF MSER HS-A HR-A

FERET (%) 98.2 89.9 89.6 89.3 85.3 49.7
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5.2.1. Results on AR database
Color images of the AR database are converted to gray images

and normalized into the size of 60�85. In total, 75 subjects with
14 nonoccluded images per subject are selected. The first seven
images of all subjects are chosen as gallery set, and the remaining
seven images as probe set.

Table 1 gives the rank 1 recognition rates. Fig. 15 shows the
cumulative matching curves. From Table 1, it is clear to see that
the ROLG detector outperforms the other detectors. Images in the
AR database are taken under controlled conditions of the
illumination and viewpoints [41]. The variations of the test images
are well represented by the gallery images. Hence, the ROLG
detector, the SIFT detector, the SURF detector and the MSER
detector achieve high recognition rates. The Harris-affine detector
gives the worst performance because human face is a non-rigid
surface, and there are few sharp corners in a face image.

5.2.2. Results on ORL database
Images of the ORL database are normalized into the size of

50�57. The first five images of all 40 subjects are chosen as gallery
set, and the remaining five images as probe set.

The rank 1 recognition rates are shown in Table 2 and the
cumulative matching curves are shown in Fig. 16. Although the
ORL database is smaller than the AR database, the performance of
all the detectors here is poor compared to that on the AR database.
The main reason could be the smaller image size, and the information
captured by the detectors on the ORL database is less than that on the
AR database. Nevertheless, as shown in Table 2 and Fig. 16, the ROLG
detector still outperforms the other detectors.

5.2.3. Results on GT database
Color images of the GT database are converted to gray images

and normalized into the size of 60�80. The first eight images of
all 50 subjects are chosen as gallery set, and the remaining seven
images as probe set.

Rank 1 recognition rates and cumulative matching curves are
shown in Table 3 and Fig. 17, respectively. Images in the GT
database have large variations in expression, pose and illumina-
tions. Hence, the performance of all the detectors is poor com-
pared with that of the AR database. However, the ROLG detector
still outperforms the other detectors, and its rank 1 recognition
rate is still larger than 90%.

5.2.4. Results on FERET database
Images in the FERET database are cropped into the size of

60�80. In total, 1194 subjects with two images per person are
selected. The first image of all subjects is chosen as gallery set, and
the second image as probe set.

The experiment results are shown in Table 4 and Fig. 18.
Although the number of subjects of the FERET database is
drastically larger than that of the GT database, the rank 1
recognition rates of all detectors on the FERET database are higher
than those on the GT database. The reason is that the variation
between the gallery set and the test set is small for the FERET
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database. For this high quality database, the ROLG detector
significantly outperforms the other detectors over all ranks.

5.2.5. Results on LFW database
Color images are converted to gray images and cropped into the

size of 64�64. In total, 134 subjects with 10 images per person
are selected. It is seen that these samples have large variations.
The first five images of all subjects are chosen as gallery set, and
the remaining five images as probe set.

Table 5 and Fig. 19 show the experiment results. For the LFW
database, significant variations in face expression, pose, illumina-
tion and occlusion exist. These variations result in very poor
performance for all detectors in this experiment. For this very
difficult database, the ROLG detector also significantly outperforms
the other five detectors over all ranks.
6. Conclusions

A novel nonlinear filter named rank order Laplacian of Gaussian
(ROLG) filter is proposed, based on which a new interest point
detector called ROLG detector is developed in this paper. The
proposed ROLG filter is a weighted rank order filter. Compared to
the SIFT detector, the ROLG detector detects less spurious and
unstable points, and is more robust to abrupt variations of images
caused by illumination and geometric changes. Experiment results
demonstrate that its performance is better compared to four state-
of-the-art detectors in terms of the repeatability and the discri-
mination of the interest points. The application of interest point
detectors to face recognition on five databases further verifies the
superiority of the proposed ROLG detector.
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