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a b s t r a c t

This paper proposes a framework of face recognition based on the multi-scale local structures of the

face image. While some basic tools in this framework are inherited from the SIFT algorithm, this work

investigates and contributes to all major steps in the feature extraction and image matching. New

approaches to keypoint detection, partial descriptor and insignificant keypoint removal are proposed

specifically for human face images, a type of non-rigid and smooth visual objects. A strategy of keypoint

search for the nearest subject and a two-stage image matching scheme are developed for the face

identification task. They circumvent the problem that local structures matched with those in probe

disperse into many different gallery images. Although the proposed framework can work for single

template per subject, a training procedure is developed for multiple samples per subject. It contains

template selection, unstable keypoint removal and template synthesis to meet different requirements

in face recognition applications. Each ingredient of the proposed framework is experimentally validated

and compared with its counterpart in the SIFT scheme. Results show that the proposed framework

outperforms SIFT and some holistic approaches to face recognition.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to recognize human faces is a demonstration of
incredible human intelligence. Over the last three decades
researchers from diverse areas have been making attempts to
replicate this outstanding visual perception of human beings in
machine recognition of faces [1]. However, there are still sub-
stantial challenging problems such as intraclass variations in
three-dimensional pose, facial expression, make-up and lighting
condition as well as occlusion and cluttered background. To deal
with these difficulties, numerous algorithms have been proposed,
which can be coarsely classified into two categories, holistic
approaches and local feature/component based approaches.

Although human beings can easily recognize face images,
it is unclear what features or image structures are used in the
human intelligence for this recognition task. Therefore, holistic
approaches do not explicitly utilize the image structure informa-
tion in feature extraction. They take all pixels of a face image as
initial features and extract a set of reliable and discriminative
features based on machine learning from an available database.
Since the principal component analysis (PCA) [2] and the linear
discriminant analysis (LDA) [3] were introduced into face recog-
nition, various holistic approaches have been extensively studied,
ll rights reserved.

,

such as Bayesian algorithm [4], the direct LDA [5], the null-space
LDA [6], the dual-space LDA [7,8], the unified framework [9], the
generalized LDA [10] and the locality preserving projections (LPP)
[11]. Some of these approaches are summarized under a common
framework graphically [12] and algebraically [13]. Recent devel-
opments of the holistic approaches include the marginal Fisher
analysis (MFA) [12], eigenfeature regularization and extraction
(ERE) [14], the sparse representation [15] and asymmetric PCA
and LDA [16,17]. In general, the holistic approaches require a
preprocessing procedure to normalize the face image variations in
pose and scale. This is not an easy task because it depends on the
accurate detection of at least two landmarks from the face image
[18]. As a result, most approaches work on the normalized face
images based on the manually identified landmarks. However,
the recognition performance will deteriorate considerably if the
manual process is replaced by an automatic landmark detection
algorithm. Moreover, global features are sensitive to variations in
facial expressions, poses and occlusions. Another intrinsic pro-
blem of all holistic approaches is their dependence to the training
databases because knowledge about the face discrimination is
generalized by machine learning from the face samples. A
representative training database is necessary, which, however, is
not available in many applications.

In contrast to holistic methods, local feature based approaches
have the potential of more robust to variations in pose, scale,
expression and occlusion [1,19]. Elastic bunch graph matching
(EBGM) [20] and active appearance model (AAM) [21] fall into
this category. However, the performances of both EBGM and AAM
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depend on a good selection of facial landmarks, which are often
annotated manually. This makes the approaches semi-automatic
and labor consuming.

One of the very fundamental problems arising when analyzing
face images originates from the fact that face structures appear in
different ways, depending upon the scales of observations. First,
facial local structures are shown at different levels of scales,
ranging from skin textures at fine scales, through eyes and mouth
represented at median scales, to the shape of face contours at
large scales. Second, the characteristic or the description of a local
structure is strongly dependent on the scale at which the
structure is modeled. Third, it is unknown in advance what the
proper scales are to describe different local structures of unknown
face images. To cope with these problems, an image representa-
tion that explicitly incorporates the notion of scale is a crucially
important tool. In [22], multi-scale local features are extracted
from a dense set of multi-scale image patches that deliver good
generalization ability for face recognition. However, a multi-scale
representation by itself contains no explicit information about
what image structures are significant and what scales are appro-
priate to describe them. Thus, it is essential to complement a
multi-scale process by explicit mechanisms for automatic scale
selection.

The scale invariant feature transform (SIFT) [23,24] detects
distinct local structures from images and selects appropriate
scales to describe them automatically. It has shown good perfor-
mance on object detection and some other machine vision
applications [25–29]. Recently, some initial attempts apply the
SIFT algorithm in the face recognition task. In [30] an overlapping
sub-image matching strategy is used as the first attempt to
explore the SIFT approach for face recognition. In [31], the SIFT
descriptor is adopted to describe irregular local marks detected by
a Hessian–Laplace detector. In [32–34], a graph is built on SIFT
features. The recognition problem is modeled as a graph matching
process. In [35], the authors propose a method based on SIFT and
support vector machine. Fernandez and Vicente [36] combine
Harris–Laplace and Difference-of-Gaussian detectors to detect
both corner and blob structures in face images and use SIFT
descriptors to represent them. In [37–39], salient regions are
firstly identified from face images, and then SIFT features are
extracted in each region. A modified keypoint descriptor and a
redundant keypoint removal scheme are proposed for face recog-
nition in [40,41]. Majumdar and Ward [42] rank the SIFT features
according to their discriminative power and use the most dis-
criminating ones for face recognition.

Despite all efforts above, there are still many outstanding
issues and problems that need to be addressed and circumvented
if we are to leverage the idea of SIFT and some of its good
properties to solve the challenging face recognition problem. For
instance, to fulfill the face recognition task, one must search all
the images in the database and compare each local feature in
every image. This will cause heavy computational burden. In this
paper, we first propose a training procedure to speed up the face
recognition task if multiple training samples per subject are
available. It contains template selection, unstable keypoint
removal and template synthesis to meet different requirements
of face recognition applications. Secondly, to enhance the identi-
fication performance, we analyze the merits and deficiencies of
SIFT and propose new strategies for feature extraction and image
matching, which leads to a new framework that overcomes
limitations of SIFT in solving the face recognition problem. We
propose a new approach to keypoint detection which can capture
the information of many facial structures in the smooth area such
as forehead, cheeks and chin. A partial descriptor is designed to
represent the keypoints whose support areas exceed the face
image. Our proposed detection approach and partial descriptor
strategy produce a rich number of keypoints. As a significant
keypoint should be distinct from others in terms of either its
location or the image structures of its neighborhood, we further
propose to remove keypoints based on their distinctiveness.
A two-stage image matching scheme and a strategy of keypoint
search for the nearest subject are developed to cater for the
identification task. It circumvents the problem that the most
similar local structures to the probe image disperse to many
different gallery images. Finally, we perform the training proce-
dure for multiple samples per subject based on our proposed
feature extraction and matching framework to speed up the face
recognition system with significantly better identification perfor-
mance than that based on the original SIFT algorithm.
2. Training for multiple image samples per subject

While multiple templates per subject in general increase the
recognition rate as shown in the experiments later, they bring a
great computational burden in the recognition process. It is
possible to greatly reduce the computational complexity of the
matching process by removing redundant information resides in
the multiple training images. To meet different requirements for
the computational complexity, we propose three schemes: tem-
plate selection, unstable keypoint removal and template
synthesis.

2.1. Template selection

From a set of training images of a subject, we want to select a
subset of images serving as templates that best represent all
training images of this subject in terms of differentiating it from
others in the training database. Suppose in the training data set D,
each subject has a training set S with N images, N41. To select q

templates from them, 1rqoN, we pick a subset Pk that contains
N�q images of this subject out of the training data set D. The
remaining training images form a data set Gk, Gk ¼D�Pk. The
candidate template set selected for this subject is then T k ¼ S�Pk.

Feature extraction and matching procedures are applied to the
probe set Pk and gallery set Gk. The number of probe images that
are correctly identified as the identity of T k is recorded as nk.
Their similarity scores are accumulated and recorded as sck. In
addition, the similarity scores of all the probe images to the most
similar gallery images in Gk�T k are accumulated and recorded as
sf k. This process is applied to all subsets of the q-combination of
the elements in set S, denoted by T k, k¼ 1,2, . . . ,ðNq Þ.

The subset T k with the maximum value of nk is selected as the
templates of this subject. If there are multiple subsets T k having
the same maximum value of nk, the subset T k with the maximum
value of sck among them is selected. If there are still multiple
subsets having the same maximum values of nk and sck, the
subset T k with the maximum value of sf k among them is selected.
Although the probability that multiple subsets T k have the same
maximum values of nk and sck is zero for N42, this event likely
occurs for N¼ 2. Larger value of sf k indicates that the subset T k is
more dissimilar to the images of other subjects than the other
subsets T i, iak. The number of templates q can be determined by
the event that the maximum value of nk for qþ1 is not smaller
than that for q.

2.2. Unstable keypoint removal

If we have multiple training images per subject, we can check
the repeatability of a keypoint in different images of the same
subject. A keypoint with low repeatability is unstable and hence
can be removed. Take a training image It from the training image



Fig. 2. An illustration of the process of template synthesis.
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set S of a subject and call it probe image and call all its keypoints
probe keypoints in this section. The descriptor of a probe keypoint
is compared with all the keypoints of the other subjects in the
training set D�S and the similarity of its nearest neighbor is
denoted by sb. The minimum similarity of all the probe keypoints
to their nearest neighbors is denoted by sb

m. Then, the descriptor
of this probe keypoint is compared with all the keypoints of the
other images of the same subject. Its similarity to its nearest
neighbor in the kth image Ik is denoted by sw

k , IkAS,kat. The
repeatability g of this keypoint is initialized as zero and accumu-
lated over all images Ik, IkAS,kat, by

g( gþ2 if sw
k 4sb

g( gþ1 if sb
mosw

k rsb

(
8k : IkAS, kat: ð1Þ

A keypoint of the image It with a larger value of g has a higher
repeatability. The rationale behind the two conditions and two
different values added to g can be seen in our two-stage image
matching process in Section 4. We can set a threshold T1 to select
keypoints with high repeatability. If the value of g of a keypoint is
smaller than T1, it will be removed.

As many keypoints may have the same value of g, we cannot
well control the keypoint removal to some desirable number. To
make the selection process more flexible, we further propose to
distinguish keypoints with the same value of g by the discrimi-
native value d defined as

d¼
Pka t

Ik AS sw
k

ðN�1Þsb
: ð2Þ

If the number of the keypoints satisfying gZT1 is larger than a
desirable n but that satisfying gZT1þ1 is smaller than n, we
remove the keypoints satisfying goT1 and the keypoints satisfy-
ing ðT1rgoT1þ1Þ & ðdoT2Þ. In this way, we can keep a desirable
number of keypoints by varying T1 and T2. This process is visually
shown in Fig. 1.

2.3. Template synthesis

In general, multiple templates per subject lead to better
recognition accuracy because they can represent different expres-
sions, poses and illumination conditions of a subject. However,
multiple templates will greatly increase the computational com-
plexity of the recognition process. And in some applications with
limited computational power, single template per subject might
be required. Although the template selection algorithm proposed
in Section 2.1 can select the most representative template, the
representation power of a single image is limited. A solution is
template synthesis. Fig. 2 visually shows the process of template
synthesis.
Fig. 1. An illustration of the process to remove keypoints with low repeatability.
First, the most representative template of a subject denoted by
It is selected by the algorithm proposed in Section 2.1. Second,
this template is used as a probe image and another image Ik from
the same subject and all images of the other subjects serve as
gallery images. If the probe image is correctly identified by the
algorithm proposed in Section 4, the unmatched keypoints in Ik

are candidates to be integrated into the template. Third, the
repeatability and the discriminative value of each candidate is
computed by the algorithm proposed in Section 2.2 if there are
more than two training images of this subject. The stable
candidate keypoints will be integrated into the template It . If
there are only two training images of this subject, all unmatched
keypoints in Ik will be integrated into the template It . Last, the
geometrical affine transform between Ik and It established in
the image matching process based on Eq. (3) is used to transfer
the stable candidate keypoints in Ik to the template It . This
process is repeated for all images Ik, kat of the same subject.

However, in the experiments, we find out that the perfor-
mance of the original SIFT approach for face recognition is not
effective. After the training procedure to speed up the face
recognition system, the performance drops further, which is far
from satisfactory. There are two main factors in the original SIFT
algorithm which deteriorate the recognition performance. First,
some keypoints representing distinct structures are missing,
which causes that the number of keypoints detected is not
sufficient to capture the distinct information of different identi-
ties. Second, in the matching procedure, after the Hough trans-
form the number of keypoints left decreases drastically. Face
identification based on the remaining few keypoints causes high
misidentification probability. Hence, we propose a new frame-
work for the feature extraction and matching to solve the
problems mentioned above.
3. Local structure detection and representation

A local structure is represented by a keypoint that locates it
and a descriptor that represents its intensity variations in a local
support area. The scale of a local structure or of a keypoint
determines the size of the support area. Thus, the keypoint
detection and its scale determination are the most critical parts
of finding the image local structures.
3.1. Keypoint detection and scale selection

A Laplace operator r2 applied to the image Iðx,yÞ produces
extrema at both blob-like and corner-like structures. Therefore,
the spatial extrema of the Laplace image r2Iðx,yÞ are keypoint
candidates. To find the scale of a possible keypoint, Lowe [24]
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proposed to use Difference-of-Gaussian (DoG) of nearby scales at
ks and s to approximate the normalized Laplacian-of-Gaussian.

To detect the blob-like and corner-like structures and repre-
sent them at the optimal scales, Lowe in his SIFT framework
proposes to compare each sample point to its eight neighbors in
the current DoG image (spatial space) and nine neighbors in the
scale above and below (scale space). A SIFT keypoint is selected
only if it is larger than all these 26 neighbor points or smaller than
all of them. This keypoint detection method works well for rigid
visual objects, which have sharp transitions between different
sides of an object. In other words, there are distinct corner or blob
structures with high contrast in such objects. However, human
faces are non-rigid, round and smooth. There are few obvious
blobs and corners with high contrast, because the intensity
changes in face images are gradual and slow in the most areas.
On the other hand, the shape of the structures could be complex
and some structures are close to each other or overlap. As a result,
many local structures in the smooth area such as forehead, cheeks
and chin cannot be detected due to the strict condition of the
extreme value in the 26 neighbors. To show an example of how
keypoints are missing in the detection process proposed by Lowe,
we plot a one-dimensional signal I as in Fig. 3(a), which is the sum
of two Gaussian structures at scales s1

i ¼ 3:0 and s2
i ¼ 4:1,

respectively. At least two keypoints near the two scales should
be detected in the vicinity of the two Gaussian peaks. Fig. 3(b)
shows the DoG outputs at six successive scales in the SIFT
framework that well cover the two scales of the signal I:
s1 ¼ 1:6� 21=3

� 2:02, s2 ¼ 1:6� 22=3
� 2:54, s3 ¼ 1:6� 23=3

¼

3:20, s4 ¼ 1:6� 24=3
� 4:03, s5 ¼ 1:6� 25=3

� 5:08 and s6 ¼ 1:6�
26=3
¼ 6:40. The DoG outputs in the vicinity of the two Gaussian

peaks are marked and the details are shown in Fig. 3(c) and (d).
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Fig. 3. Problem of the SIFT keypoint detection. (a) Input signal I. (b) DoG outputs at

references to color in this figure legend, the reader is referred to the web version of th
From Fig. 3(c), we see that the sample point 1 (in red) at scale
s3 ¼ 3:20 is the local minimum at the current scale compared
with the points 2 and 3. Although it is smaller than the three
neighbors in blue (sample points 10, 20 and 30) in the scale below,
it is not smaller than the neighbor point 2

00

in the scale above (in
black). Hence, the sample point 1 would not be detected as a local
minimum. Similarly, in Fig. 3(d) no keypoint will be detected by
Lowe’s method. In a word, the original detection approach cannot
detect any keypoint at the tested six scales in the vicinity of the
two Gaussian peaks correctly. The missing detection will be even
worse for the complex two-dimensional structures. This will
decrease the number of keypoints detected and also deteriorate
the following matching performance.

To fully detect the keypoints with distinct structures, we
propose to compare a candidate point with its eight neighbors
in the current scale and the corresponding one neighbor in the
scale above and below. A keypoint will be selected if it is larger
than all of these neighbors or smaller than all of them. In other
words, we compare a candidate point only to its 10 neighbors
rather than 26 neighbors. Fig. 4 visually shows the proposed
approach. Obviously, keypoints detected by Lowe’s approach form
a subset of the keypoints detected by our approach. We can see
from Fig. 3 that the proposed approach will successfully detect
two keypoints (the sample point 1 in Fig. 3(c) and the sample
point 1 in Fig. 3(d)) of signal I in the vicinity of the two
Gaussian peaks.

Another detection example is shown in Fig. 5, where the blue
points denote the ones detected by Lowe’s approach and the red
points denote some extra keypoints detected by the proposed
approach. As we see, Lowe’s approach detects few keypoints from
the forehead, cheeks, chin and facial contour which still provide
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useful information in telling different people although the change
of these areas are subtle, while our approach can successfully
detect these keypoints.

3.2. Descriptor representation

There are several descriptors proposed in the literature to repre-
sent the local image structures. Some efforts [43,44] were made to
produce discriminative and low-dimensional descriptors learned
from large databases. In this work, we adopt Lowe’s descriptor, which
is a set of histograms consisting of oriented gradients. In Lowe’s SIFT
framework, the support area proportional to the scale of the keypoint
is divided into 4�4 blocks. An 8-bin oriented gradient histogram is
computed in each block. Thus, a histogram vector h for each keypoint
has 4�4�8¼128 dimensions.

In the application of face recognition, keypoints near the face
edge carry important information about the shape of the facial
contour. However, these keypoints that represent the shapes of
the facial contour are often of large scale and hence their support
areas will exceed the image area, if the image is cropped tightly to
the face size. To make use of these important keypoints, we
introduce the partial descriptor. Readers can refer to our previous
work [40,41] for details.

3.3. Insignificant keypoint removal

The above process will detect a rich number of keypoints. To
reduce the matching time, Lowe [24] in his framework proposed
to remove keypoints with low contrast and on the edges. This is
an effective way to remove unstable keypoints detected from
rigid visual objects where there are sharp transitions between
different sides of an object. However, faces are non-rigid, round
and smooth objects. There are few straight edges in face images.
The intensity changes in face images are gradual and slow and
hence the blob and corner structures are not significantly
Fig. 5. (a) Initial keypoints detected by the original method (in blue) and extra keypoin

keypoint removal by low contrast. (c) Remaining blue keypoints after further keypoi

references to color in this figure legend, the reader is referred to the web version of th

Fig. 4. Extrema of the DoG images are detected by comparing a pixel (marked

with cross) to its eight neighbors at the current scale and the corresponding pixels

at the adjacent scales (marked with circle).
different from their neighboring pixels. Therefore, the keypoint
removal scheme in the SIFT framework is inappropriate for
face images. For instance, the blue points in Fig. 5(a) show the
initially detected keypoints by Lowe’s approach. Fig. 5(b) shows
the remaining blue keypoints after applying a threshold on the
minimum contrast of candidate keypoints. Fig. 5(c) shows the
final remaining blue keypoints after further removing keypoints
with high edge responses. The keypoints marked with ellipse and
rectangle are removed, which do represent distinctive structures
such as wrinkles and mouth corners.

Therefore, for face images, we propose to remove keypoints
based on their distinctiveness from others. A significant keypoint
should be distinct from others in terms of either its location or the
image structures of its neighborhood. Thus, an initially detected
keypoint is removed if and only if the spatial Euclidian distances
from it to any other keypoint is smaller than a threshold te and
the similarity between their descriptors is higher than a threshold
tc . This process removes insignificant keypoints and hence retains
distinctive ones. Finally, as we will see in the next section, the
final image matching is based on the similarities of keypoint
descriptors and their relative geometrical locations.
4. Face identification

To determine the identity of a probe face image based on a set
of gallery images, local structures of the probe image represented
by the keypoints and their descriptors are compared with those in
the gallery. The gallery image whose local structures have the
maximum similarity to the probe image establishes the identity
of the probe image. The image matching algorithm in Lowe’s
framework [24] contains two stages. First, the nearest neighbor in
terms of the descriptor of every keypoint in the probe image is
searched from all the gallery images. Gallery images that have at
least three nearest neighbors are picked out as candidate images.
Second, all nearest neighbors in a candidate image undergo a
geometrical verification based on a set of affine transform para-
meters estimated by the clustered nearest neighbors in the Hough
transform. The image matching score is then computed based on
the number of nearest neighbors that coincide with the affine
transform. This image matching algorithm works well for visual
object detection where gallery contains few and quite dissimilar
objects to be detected from a probe image that may contain
several objects against a cluttered background. However, it is
problematic if this algorithm is applied to an identification
problem where the gallery contains a lot of similar objects.

Fig. 6 shows a wrong case when applying the matching
algorithm of the SIFT framework [24] to the face identification.
Fig. 6(a) shows the candidate images that contain at least three
nearest neighbors to the probe keypoints. Geometric verification
ts detected by the proposed approach (in red). (b) Remaining blue keypoints after

nt removal based on the ratio of principal curvatures. (For interpretation of the

is article.)



Fig. 7. The process of keypoints matching strategy proposed by us: the number of keypoints matched in the right image is 16 and the number of keypoints matched in the

wrong image is 7. (a) Nearest neighbor search. (b) Geometric verification. (c) Individual image matching. (d) Decision.

Fig. 6. The process of keypoints matching strategy proposed by Lowe: the number of keypoints matched in the right image is 4 and the number of keypoints matched in

the wrong image is 5. (a) Nearest neighbor search. (b) Geometric verification. (c) Decision.
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is then performed between the probe keypoints and their nearest
neighbors in each candidate image as shown in Fig. 6(b). Only
those matches (linked by straight lines) with coherent relative
locations are kept. The final decision is based on the number of
the matched keypoints, which is apparently wrong since the third
candidate image has more matched keypoints than the correct
(the first) candidate.

The problem occurs at the very first stage. From Fig. 6, we can
see that only the keypoints that fulfill the nearest neighbor
condition are considered for further processing. In the identifi-
cation tasks, there are many similar gallery images. As a result,
the nearest keypoints to the probe often disperse to many
candidates in the gallery, and hence the probability that the
largest number of the nearest keypoints fall into the right
candidate is low. This problem becomes severe if the gallery
contains a large number of subjects. Moreover, multiple tem-
plates per subject in the gallery make it even worse. To alleviate
this problem, we propose a new matching framework for face
recognition as shown in Fig. 7, which has the following new
features:
1.
 To find a set of candidate gallery images, we search the
k-nearest neighbors of the nearest subject, where k is deter-
mined by the second nearest subject.
2.
 A second matching process is introduced into the framework that
re-matches the probe keypoints and keypoints in each individual

candidate gallery image to augment the matched keypoint set.

3.
 Compute the similarity scores between the probe image and

the candidate gallery images based on the accumulated key-

point similarities.

4.1. Search the k-nearest neighbors of the nearest subject and affine

transform estimation

The best candidate match of a keypoint in the probe image is
found by identifying its first nearest neighbor in the keypoint set
of all gallery images. The first nearest neighbor is defined as the
gallery keypoint whose descriptor has the maximum similarity to
that of the probe keypoint. The subject ID of the first nearest
neighbor is recorded. Then, we further identify the k-nearest
neighbors that have the same subject ID as the first nearest
neighbor so that the (kþ1)th-nearest neighbor has a different
subject ID. If two or more such nearest neighbors fall into a same
gallery image, only the one with highest similarity is chosen from
them. A candidate image is identified if at least three such
k-nearest neighbors are found from it. We often obtain multiple
candidate images. The minimum similarity sm of all the probe



Fig. 8. Images of a sample subject used in (a) holistic approaches and (b) multi-

scale local structure based approaches (the proposed and SIFT frameworks).
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keypoints to their k-nearest neighbors is recorded for the second
stage of the image matching. Note that we do not adopt the match
rejection mechanism in the SIFT framework that is based on the
similarity ratio between the first and the second nearest neigh-
bors because it is not appropriate for the identification task.
Fig. 7(a) shows the k-nearest neighbors (marked by circle) found
in the gallery.

Based on the correspondence between the keypoints in the probe
image and those in a candidate gallery image found in the k-nearest
neighbor search, we can compute the affine transform parameters
between the two images. We follow Lowe’s approach here [24].
Fig. 7(b) shows the keypoint pairs used to calculate the affine
transformation parameters. Note that some k-nearest neighbors
are rejected by this process due to their geometric inconsistency.

4.2. Further matching between probe and each candidate gallery

image

Although the proposed method that searches the k-nearest
neighbors of the nearest subject to a probe keypoint circumvents
the problem of multiple templates per subject, the k-nearest
neighbors often disperse to many different subjects if the gallery
contains a large number of subjects. In general, the more subjects
the gallery contains, the smaller the number of the k-nearest
neighbors can be found in a candidate gallery image. This
decreases the probability that the largest number of the nearest
keypoints fall into the gallery image with the correct ID. This
problem can be very severe if the gallery contains a large number
of subjects. Thus, in an identification problem, the k-nearest
neighbors of the probe keypoints found in a gallery image are
often only a small portion of the keypoints that can be well
matched with those in the probe image. Only considering the
k-nearest neighbors in the whole database as the matched key-
points in a gallery image greatly weakens the discriminative
power of the local structures of an image. Therefore, we propose
to further search the keypoints in each single candidate gallery
image that can well match with those in the probe.

We have obtained the six affine transform parameters
m1,m2,m3,m4,tx and ty based on the matched keypoint pairs in
the k-nearest neighbor search. We project the location of a probe
keypoint ½xp,yp� to the gallery image ½x0p,y0p� by the affine trans-
form as

x0p
y0p

" #
¼

m1 m2

m3 m4

" #
xp

yp

" #
þ

tx

ty

" #
: ð3Þ

The geometric distance d between the location ½xg ,yg � of a
gallery keypoint and that of a transformed probe keypoint is
computed as

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxg�x0pÞ

2
þðyg�y0pÞ

2
q

: ð4Þ

If a gallery keypoint i is geometrically close to a transformed
probe keypoint j, dijodt , and their descriptor is similar, sij4st ,
keypoint i is identified as a candidate matched with keypoint j.
The thresholds dt and st are chosen, respectively, to be the one
fourth of the translation bin width used in the Hough transform
and the minimum similarity sm of the probe keypoints to their
k-nearest neighbors. If multiple gallery keypoints satisfy the
above conditions, the one with the maximum descriptor similar-
ity is chosen as the matched keypoint. If there is no gallery
keypoint satisfying the above conditions, the probe keypoint is
not matched. The matched keypoint pairs are linked by straight
lines in Fig. 7(c). It shows a significant increase of the matched
keypoints of the correct gallery image from Fig. 6(b) or
Fig. 7(b) while the number of the matched keypoints of the
incorrect gallery image remains almost the same. We see that
the proposed matching algorithm greatly increases the discrimi-
native power of the image local structures.

The thresholds dt and st will affect the number of matched
keypoints of two images. It is difficult to find the optimal
thresholds for all applications. To reduce the sensitivity of the
image matching to the thresholds dt and st , instead of the number
of matched keypoints, we proposed to use the accumulated
similarities over all probe keypoints. The similarity of a probe
keypoint j to a candidate gallery image is defined as

sj ¼

max
iAI j

ðsijÞ if I ja|,

0 if I j ¼ |,

8<
: ð5Þ

where I j ¼ fijdijodt & sij4stg and i is the index of the keypoint in
the candidate gallery image. The similarity score of the probe
image to the candidate gallery image Spg is then the accumulated
similarities of all probe keypoints:

Spg ¼
Xq

j ¼ 1

sj, ð6Þ

where q is the number of keypoints in the probe image. The
identity of the probe image is established as that of the gallery
image that has the highest similarity score Spg .
5. Experimental results

We shall first validate each ingredient of the proposed feature
extraction and matching framework for face recognition by
comparing it with the counterpart of the SIFT framework and
some holistic methods, PCA [2], LDA [3] and ERE [14], one of the
state-of-the-art holistic approaches to the face recognition, on
FERET database 1, FERET database 2 and ORL database in Section
5.1. Then, in Section 5.2 we evaluate the efficacy of the unstable
keypoints removal approaches proposed in Sections 3.3 and 2.2.
Finally, performances of the training procedure for multiple
samples per subject proposed in Section 2 based on our feature
extraction and matching framework are compared with that
based on the original SIFT algorithm on ORL, Georgia Tech (GT)
and AR databases in Sections 5.3 and 5.4.

While images are preprocessed and normalized for the holistic
approaches following the CSU face identification evaluation
system with manually detected two eye coordinates, this pre-
processing and normalization procedure is not applied for the
multi-scale local structure based approaches. Fig. 8 shows some
image samples used by holistic methods and samples used by the
proposed and the SIFT frameworks.

5.1. Validation of feature detection and image matching

5.1.1. Results on FERET database 1

There are 2388 images comprising 1194 persons (two images
Fa/Fb per person) selected from the FERET database [45]. Images are
cropped into the size of 65�75 pixels. In the first experiment,
images of 250 people are randomly selected for training, and the
remaining images of 944 people are used for testing (FERET 1a). As



Table 2
Average recognition rate and its standard deviation with single template per

subject on FERET database 2.

PCA (%) LDA (%) ERE (%) SIFT (%) PFD-SIFTM (%) PFDM (%)

ARR 74.41 80.79 83.07 81.58 90.17 92.06

Std 2.03 1.54 1.43 0.89 0.75 1.37
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in the SIFT framework and our proposed approach, there are no
training process, so we only use the images of 944 people for the
experiments. In the second experiment, more training samples (497
people) are randomly selected, and the remaining images of 697
people are used for testing (FERET 1b). Table 1 gives the rank one
recognition rates of the holistic approaches PCA [2], LDA [3] and ERE
[14], together with the SIFT framework in [24], the proposed feature
detection with the SIFT matching approach (PFD-SIFTM) and the
proposed feature detection and matching framework (PFDM).

From this table, we can see that the recognition rates of holistic
approaches PCA, LDA and ERE increase with the increase of the
number of training images (from 500 to 994). Comparing the
performance of SIFT and PFD-SIFTM, we can see that the keypoints
detected by our approach can capture more distinct information than
Lowe’s keypoints. And the proposed feature detection and matching
framework (PFDM) can further improve the recognition performance.
Fig. 9 shows two cumulative matching curves [46] of PCA, LDA, ERE,
SIFT, PFD-SIFTM and PFDM on FERET database 1a and FERET database
1b. From this two figures, we can see that our proposed feature
detection and matching framework achieves significantly better
performance than the original SIFT approach over all ranks.

5.1.2. Results on FERET database 2

This database is constructed, same to one data set used in [14], by
choosing 256 subjects with at least four images per subject. And we
use the same number of images (four) per subject for all subjects. The
first 512 images of the first 128 subjects are used for training, and the
remaining 512 images serve as testing images. In the SIFT framework
and our proposed approach, we only use the last 512 images for
testing as there are no training process. The size of the image is
130�150 pixels, same as that in [14]. The ith (i¼ 1,2,3,4) images of
all the testing subjects are chosen to form a gallery set, and the
remaining three images per subject serve as the probe images to be
identified from the gallery set. Table 2 shows the average recognition
rates (ARR) and corresponding standard deviations (Std) over the four
probe sets, each of which has a distinct gallery set.

The recognition rates are lower than those obtained in
Section 5.1.1 due to the increase of variations of probe images.
Table 1
Rank one recognition rate on FERET database 1.

Database PCA (%) LDA (%) ERE (%) SIFT (%) PFD-SIFTM (%) PFDM (%)

FERET 1a 83.16 89.72 94.81 93.33 97.67 97.88

FERET 1b 85.8 96.41 97.13 94.41 98.42 98.71
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Fig. 9. (a) Cumulative matching curves on FERET 1a. (b) Cumulative matching curves o

reader is referred to the web version of this article.)
However, our proposed approach still outperforms the holistic
approaches PCA, LDA and ERE. And the higher recognition rates
achieved by PFD-SIFTM and PFDM compared with SIFT, show that
our keypoint detection and matching strategies are more appro-
priate for face recognition task than Lowe’s SIFT framework.
5.1.3. Results on ORL database

The ORL database contains 400 images from 40 subjects taken at
different times, varying the lighting, facial expressions and facial
details. Images of the ORL database are resized into 50�57 pixels.
Each subject has 10 images with index i from 1 to 10. The images
from each subject with the same index i are picked out to form the
gallery set and the remaining 360 images serve as the probe set. The
rank one recognition rate is computed by the number of correctly
identified probe images over 360. Ten runs of experiments are
performed where each run has distinct gallery images. The average
recognition rate (ARR) and its standard deviation (Std) over the 10
runs are recorded as indications of the recognition performance.

Table 3 gives the recognition rates of the SIFT framework in [24],
the proposed feature detection with the SIFT matching approach
(PFD-SIFTM) and the proposed feature detection and matching
framework (PFDM). No keypoint is removed in this experiment.

The recognition rate is low because the large variations of the face
pose and expression in this database cannot be well represented by
a single template per subject. Table 3 demonstrates that the proposed
feature detection and matching approaches significantly outperform
the counterparts in the SIFT framework. The large difference between
the average recognition rates relative to their standard deviations
shows the statistical significance of the experimental results.
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Table 3
Average recognition rate and its standard deviation with single template per

subject on ORL database.

SIFT (%) PFD-SIFTM (%) PFDM (%)

ARR 57.84 77.22 81.56

Std 2.52 1.64 1.85
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5.2. Validation of keypoint removal

To validate the method of the insignificant keypoint removal
proposed in Section 3.3, it is compared with the keypoint removal
approach in the SIFT framework that is based on the low contrast and
high edge response. Experiment setting is the same as that in Section
5.1.3. Fig. 10 shows the rank one recognition rates against the average
number of remaining keypoints after these two keypoint removal
approaches, respectively. Note that the proposed keypoint detection
and image matching scheme is applied in these experiments. Fig. 10
demonstrates that the proposed keypoint removal method consis-
tently outperforms that of the SIFT framework at different amount of
the removed keypoints. However, this experiment shows that the
gain in recognition accuracy by the keypoint removal is insignificant.
Removing the keypoints more than 20% of the initially detected
reduces the recognition accuracy. Therefore, the keypoint removal
should not target at improving the recognition accuracy but at
reducing the computational complexity of the recognition process.

In Section 2.2, we propose an approach to remove unstable
keypoints if multiple training images per subject are available. To
test the effect of this approach, we choose the first five samples
per person of the ORL database as the training set, and the last
five samples per person as the probe set. One template per subject
is selected from the training images using the template selection
method proposed in Section 2.1 and the keypoints of the selected
template are removed based on the method proposed in Section
2.2 with the help of the other training images. Table 4 gives the
average number of the remaining keypoints (ANo:) per template
and the recognition rate (RR) using different threshold T,
T ¼ T1þT2. It shows again that the gain in recognition accuracy
by the keypoint removal is insignificant. Removing the keypoints
by this method more than 30% reduces the recognition accuracy.
Therefore, the keypoint removal by this method should also not
target at improving the recognition accuracy but at reducing the
computational complexity of the recognition process.
Table 4
Average number of the remaining keypoints per template and recognition rate

using different threshold T.

T 0 1 2 2.5 3 3.5 4 5

ANo. 101 93 86 81 75 69 63 36

RR% 85 85.5 86 86 85.5 84.5 83 80
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Fig. 10. Rank one recognition rate of the two keypoint removal approaches. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
5.3. Validation of single template selection and synthesis

To test the effect of the proposed template selection approach
against the random template and the effect of the template
synthesis, we choose the first five samples per person of the
ORL database as the training images, and the last five samples per
person as the probe images. We first pick out one template per
subject randomly from the training set to form a gallery set and
use it and the probe set to test the recognition accuracy. This
random template picking-up is repeated 20 times and the average
recognition rate and its standard deviation are computed. Then,
one template per subject is selected from the training images
using the template selection method proposed in Section 2.1.
Recognition rate on the gallery formed by the selected templates
and the probe set is tested. Finally, some stable keypoints of the
remaining training images are integrated into the selected tem-
plate based on the template synthesis approach proposed in
Section 2.3. The synthesized template is basically a single tem-
plate, which has 20% more keypoints on average than that before
synthesis. Table 5 shows the recognition rates (ARR or RR). It
demonstrates the contribution of the template selection and
synthesis to the recognition accuracy. However, the single tem-
plate selected and synthesized cannot remarkably increase the
recognition rate because the representation power of a single
template for lighting, pose and expression variations is limited.
5.4. Recognition performances of multiple templates per subject

Three databases, ORL, GT and AR are applied to test the face
recognition performance with multiple templates per subject. For
ORL database, the first five samples per subject form the training
and gallery sets, and the remaining five samples serve as the
probe images. The Georgia Tech (GT) Face Database contains 750
color images of 50 subjects (15 images per subject). These images
have large variations in both pose and expression and some
illumination changes. Images are converted to gray scale and
resized into 60�80 pixels. Similarly, the GT database is parti-
tioned into the training or gallery set consisting of the first eight
samples per subject and the probe set consisting of the remaining
seven samples. The color images in AR database are converted to
gray-scale and cropped into the size of 120�170 pixels. In the
experiments, 75 persons with 14 non-occluded images per person
are selected, which makes the database containing 1050 images.
The first seven images per subject serve as training and gallery
images and the remaining seven images as probe images. The best
recognition performances of the holistic approaches PCA [2], LDA
[3] and ERE [14] are recorded. The SIFT framework with default
parameter in [24] and the proposed feature detection and
matching framework (PFDM) are applied on the three databases
with and without the proposed template selection. Table 6 shows
the rank one recognition rates on ORL, GT and AR databases. The
second row under the name of the database shows the number of
templates per subject selected by the approach proposed in
Section 2.1.

On the ORL database, the multiple templates per subject greatly
enhance the recognition accuracy for both the SIFT and the
Table 5
Recognition rate of single template on ORL database.

Template Random Random Selected Synthesized

Algorithm SIFT PFDM PFDM PFDM

ARR/RR 59.9% 80.6% 85% 89%

Std 4.60% 2.48% N.A. N.A.



Table 6
Recognition rate on ORL, GT and AR databases.

ORL database

5 5 5 5 5 4 4

PCA LDA ERE SIFT PFDM SIFT PFDM

85.5% 92.5% 97% 90% 99.5% 89% 98.5%

GT database

8 8 8 8 8 7 7

PCA LDA ERE SIFT PFDM SIFT PFDM

80.57% 90.71% 92.86% 80.57% 95.71% 78.6% 94.57%

AR database

7 7 7 7 7 6 6

PCA LDA ERE SIFT PFDM SIFT PFDM

93.52% 94.1% 95.43% 97.14% 99.81% 96.77% 99.43%
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proposed approach. While the recognition rate of SIFT increases
from 59.9% to 90%, the proposed approach achieves 99.5% recogni-
tion rate with five templates per subject, which is better than the
holistic approach ERE. The template selection of only four out of
the five slightly decreases the recognition rate. Note that the
results of template selection based on our proposed framework
significantly outperform that based on the original SIFT algorithm.
On the GT database, the proposed approach achieves a higher
recognition rate than SIFT and the holistic approaches on eight
templates per subject. On the AR database, the proposed approach
achieves a remarkably high recognition rate of 99.81% comparing
to 95.43% of ERE and 97.14% of SIFT. Reducing the number of the
templates per subject from seven to six by the proposed template
selection algorithm worsens the recognition performance of the
proposed approach a little. Table 6 shows that the deployment of
multiple templates of a subject is an effective way to circumvent
the problems caused by various intraclass variations of pose,
expression and illumination. It seems that more templates of a
subject than necessary cause no harm to the recognition accuracy.
This might be attributed to the proposed scheme that searches the
k-nearest neighbors of the nearest subject.
6. Conclusion

Face recognition based on the multi-scale local features has
the potential to be more robust to variations in pose, scale,
expression and occlusion than the holistic approaches. However,
local feature based methods are far more complex in both feature
extraction and matching/classification compared with the holistic
approaches that are mainly based on the machine learning. The
difficult face recognition task cannot be well accomplished based
on just one bright idea. Rather, a sophisticated system with well-
designed individual components is required to cope with this
challenging problem. This paper presents a face recognition
framework based on the multi-scale local image features with
scale selection. While some basic tools such as DoG filter, HoG
descriptor and Hough transform are inherited from the SIFT
framework, this work investigates and contributes to all major
steps in the feature extraction and matching for the challenging
face recognition task.

The SIFT framework is designed and works well for general
object recognition. However, it is not optimal for the face
recognition because face is a non-rigid, round and smooth object.
Its intensity has slow and gradual change but the local structure
may be complex due to the spatial overlap of different local
structures. The proposed keypoint detection, partial descriptor
and insignificant point removal extract and retain more useful
local structure features for the face recognition compared with
the counterparts in the SIFT framework.
The nearest neighbor search of the local structures suffers the
problem that the nearest neighbors of different probe keypoints
disperse into different templates of the correct subject. The
proposed search of the k-nearest neighbors of the nearest subject
solves this problem. Due to the inevitable intraclass variation, we
cannot expect that a probe local structure is always nearest to the
corresponding one of the same subject among all structures of all
subjects in the gallery. The proposed second matching stage
matches the local structures of the probe image individually with
each candidate gallery image. This solves the problem caused by
the large amount of subjects in the gallery.

The deployment of multiple templates per subject is a solution
to the large variations of the face pose and expression. This,
however, imposes great computational burden on the recognition
process, and hence we cannot arbitrarily increase the number of
templates of a subject in the gallery. In addition, a face database
collected in practice often contains some very similar or even
identical images, which need be trimmed off. Different training
schemes including template selection, unstable keypoint removal
and template synthesis are proposed to meet different require-
ments in the face recognition applications.
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