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Efficient fingerprint search based on database clustering
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Abstract

Fingerprint identification has been a great challenge due to its complex search of database. This paper proposes an efficient fingerprint
search algorithm based on database clustering, which narrows down the search space of fine matching. Fingerprint is non-uniformly
partitioned by a circular tessellation to compute a multi-scale orientation field as the main search feature. The average ridge distance is
employed as an auxiliary feature. A modified K-means clustering technique is proposed to partition the orientation feature space into
clusters. Based on the database clustering, a hierarchical query processing is proposed to facilitate an efficient fingerprint search, which
not only greatly speeds up the search process but also improves the retrieval accuracy. The experimental results show the effectiveness
and superiority of the proposed fingerprint search algorithm.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fingerprint as a kind of human biometric feature has been
widely used for personal recognition in the commercial and
forensic areas because of its uniqueness, immutability and
low cost. In general, fingerprint based recognition systems
work in two modes: authentication and identification [1].
In the authentication mode, the user inputs his fingerprint
and claims an identity information, then the system verifies
whether the input fingerprint is consistent with the claimed
identity. In the identification mode, the user input his finger-
print and the system identifies the potential corresponding
ones in the database without a claimed identity. Therefore,
fingerprint identification requires searching the database for
a match, which is more complex than the authentication.
Although satisfactory performances have been reported for
fingerprint authentication, both the efficiency and accuracy
of identification deteriorate seriously by simple extension of
a 1:1 authentication procedure to a 1:N identification sys-
tem [1]. How to efficiently search the fingerprint database is
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a great challenge. Multi-level matching approaches are pro-
posed to facilitate the database search by incorporating the
global and local information of fingerprint [2,3]. The coarse
level matching (search) is often used to reduce the search
space of the time-consuming fine matching and alleviate the
accuracy deterioration of identification [1]. Exclusive clas-
sification, fingerprint indexing and continuous classification
have been proposed for the coarse level search of database.

Exclusive fingerprint classification is a traditional ap-
proach that has been widely investigated in the literature
[4–11]. It classifies each fingerprint exclusively into one of
the predefined classes such as Henry classes. Although it
has some advantages such as human-interpretability, fast
retrieval and rigid database partitioning, most automated
classification algorithms are able to classify fingerprints
into only four or five classes. Moreover, fingerprints are not
evenly distributed in these classes. The natural fingerprint
distribution of the Henry five classes is 3.7% plain arch,
2.9% tented arch, 33.8% left loop, 31.7% right loop and
27.9% whorl. On average, a query fingerprint still needs
to be compared with about 29.48% of database templates
in the fine matching of identification. Thus, the exclusive
classification cannot sufficiently narrow down the search of
database.
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Fig. 1. The overview of the clustering based fingerprint search algorithm.

In fact, it is not necessary to classify fingerprints into
human-interpretable classes for an automated identifica-
tion system. Fingerprint indexing, which divides fingerprint
database into a number of bins based on the minutia triplets,
was proposed in Refs. [3,12]. This approach classifies fin-
gerprints into more classes (or bins) than the exclusive
classification as it exploits the more discriminating fea-
tures, minutiae. However, the minutia points are the most
important local features and widely used in fingerprint fine
matching algorithms [2,13–15]. Although this approach can
speed up the database search, it should take care to avoid
a redundant representation of fingerprint in an identifica-
tion system. This is because the accuracy deterioration of
the identification system is hardly alleviated if the features
used in the coarse search and fine matching are strongly
correlated.

Continuous classification is proposed to overcome the
problems of exclusive classification by representing finger-
print with numerical feature vectors [16–18]. The finger-
print search is performed by comparing the query fingerprint
with all database templates and retrieving the closest ones.
The tradeoff between retrieval efficiency and accuracy can
be easily adapted by adjusting the size of retrieval neigh-
borhood. Although the comparison between the query fin-
gerprint and template is much faster than the fine match-
ing, this full fingerprint search is still prohibitive for large
database. Moreover, the continuous classification only ranks
the database templates according to their similarities to the
query fingerprint while neglecting the similarities among
the database templates. This limits the search performance.
Although some combined techniques were proposed to im-
prove the performance of fingerprint classification [19,20],
further work to facilitate an efficient search of database is

still of great interest to the researchers in the area of finger-
print identification.

Data clustering is a crucial technique used in discover-
ing the underlying structure in a data set by unsupervised
grouping of the similar patterns. It accelerates the content
based image retrieval by comparing the query image with a
few cluster representatives instead of all database templates
[21,22]. This work proposes an efficient fingerprint search
algorithm based on database clustering. The data-flow chart
of this algorithm is shown in Fig. 1. It differs from the
continuous classification (full search) in that clustering is
employed to exploit the similarities among the database
templates. Fingerprint is non-uniformly partitioned by a cir-
cular tessellation to compute a multi-scale orientation field
as the main feature for the search. The average ridge distance
(ARD) is extracted as an auxiliary search feature. Our pro-
posed fingerprint search algorithm consists of two phases:
offline database clustering and online query processing.
During the offline database clustering, a modified form of
K-means clustering is proposed to partition the orientation
feature space into clusters and fingerprints of each clus-
ter are further divided into bins according to their ARDs.
Based on the offline database clustering, a hierarchical on-
line query processing is proposed to facilitate an efficient
fingerprint search. In cluster search, each query fingerprint
is compared with the cluster prototypes to retrieve the close
clusters followed by searching the bins of the retrieved clus-
ters. Fingerprint search is finally performed on the retrieved
bins to find the templates close to the query fingerprint.

The next section presents the feature extraction, including
the computation of multi-scale orientation field and ARD.
In Section 3, we present the proposed fingerprint search
algorithm based on database clustering. The experimental
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results and comparisons are presented in Section 4. Finally,
the conclusions are arrived in Section 5.

2. Feature extraction

Fingerprint is composed of parallel ridge and valley flows.
There are two kinds of features for its representation: global
features that describe the flow structure and local features
that describe the minute details of ridges. The global features
such as singular points and orientation field (Fig. 2) are of-
ten used in the coarse level search (classification) algorithms
[4,6,7,16,17], while the local features such as minutiae are
employed in most fine matching algorithms [2,13,15]. To
avoid redundant representation, the coarse level search fea-
tures should not be strongly correlated with those for fine
matching. The orientation field describes the global ridge
flow pattern and the ARD is an intrinsic property of the
ridge. These two global features have little correlation and
hence are employed for our fingerprint search.

Most fingerprint images consist of the foreground pixels
originated from the contact of fingertip with the sensor and
the background pixels, i.e., the blank or heavy noisy area.
To avoid inclusion of the corrupted feature elements in the
background, segmentation is employed to separate the fin-
gerprint foreground pixels from the background pixels for
feature selection.

2.1. Orientation vector construction

To construct a compact orientation vector for efficient fin-
gerprint search, the orientation field computation is based on
blocks. The local block orientation is estimated by an ori-
entation operator [23] and a two-step orientation smoothing
framework [24]. Translation and rotation are needed to bring
two different imprints into alignment. A reference point de-
fined in Ref. [25] is detected for the translational alignment

Fig. 2. (a) Fingerprint core and delta points denoted by ‘◦’ and ‘$’, respectively, and (b) fingerprint orientation field.

while a reference direction [26] is used for the rotational
alignment. Let �̂i,j be the orientation of block (i, j) and
�r be the reference direction. Due to the periodicity and
discontinuity of �̂i,j at ±�/2 and �r at ±�, the aligned local
orientation is computed as

�i,j =

⎧⎪⎨
⎪⎩

�� if − �/2 < ����/2,

�� − � if �� > �/2,

�� + � if ��� − �/2,

(1)

where �� = �̂i,j − �r . Obviously, −�/2 < �i,j ��/2.
The orientation field computed by uniformly dividing fin-

gerprint into blocks has been widely used as the feature
for classification [6,16,17]. This uniform spacing orientation
field may obscure the discriminatory power of the orienta-
tions in the important singular regions. Larger scale is of-
ten required for noise attenuation and dimensionality reduc-
tion. Non-uniform spacing is proposed to concentrate orien-
tation measurements more densely in the areas more likely
containing the singular points [5,27]. This strengthens the
feature elements with large discriminatory power without
compromising the performance of noise attenuation and the
compactness of feature vector.

To evaluate the discriminatory power of each orientation
element, we compute the inconsistency of its orientation
values over the aligned fingerprints as in Ref. [26]. The first
fingerprint instances of the NIST special database 4 (NIST
DB4) are used to test the orientation inconsistency. Fig. 3a
shows the orientation inconsistency field. We find that the
elements of the region below the reference point have more
variant orientation patterns than those above. To improve
the discriminability of orientation vector, the elements with
large discriminatory power can be estimated in finer scale.
In addition, the ridge curvature of the inner region around
the reference point is usually larger than that of outer region.
The orientations of the high curvature area can be estimated
in finer scale than those of low curvature area.
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Fig. 3. (a) Fingerprint orientation inconsistency field (large value in white area) and (b) the circular tessellation of fingerprint aligned by the reference
point (∗) and direction (the line with arrow).

To compute the multi-scale orientation field, we construct
a circular tessellation to non-uniformly divide fingerprint
based on above observations. Let I (x, y) be the gray value
at pixel (x, y) of a fingerprint of size X × Y and (xr , yr )

be the reference point. The circular tessellation is composed
of sectors determined by the radius r from (xr , yr ) and the
rotation angle � from �r . The j th sector of the ith band
Si,j (1� i�E, 1�j �F ) is computed as

Si,j = {(x, y)|(i − 1)b + b0 �r < i · b + b0, �j−1

�� < �j , 1�x�X, 1�y�Y }, (2)

r =
√

(x − xr)
2 + (y − yr)

2,

� = tan−1
(

y − yr

x − xr

)
− �r mod 2�, (3)

where b is the band width and b0 is the width of the in-
nermost band which is not used for orientation extraction
due to its large inconsistency. The parameters �j , b, E,
F are determined empirically to obtain the best perfor-
mance of fingerprint search. Each band is segmented into
13 non-uniform sectors (F = 13) that put finer scale esti-
mation in the region with � close to �r than that far from
�r . �j = j�/8, (2j − 5)�/8 and (j + 3)�/8 for 1�j �5,
6�j �8 and 9�j �13, respectively. Parameter b depends
on the dpi resolution of the sensor. It is set to 18 pixels
for fingerprints scanned at 500 dpi. Parameter E depends
on the size of the contact area of fingertip with sensor.
The region around the reference point is partitioned into
12 bands (E = 12) for the fingerprints of 512 × 480 pix-
els in the NIST DB4. The circular tessellation is shown
in Fig. 3b.

An orientation vector �q = [�q,1, �q,2, . . . , �q,M ] (M =
E × F) is constructed for a fingerprint q by concatenating
the aligned local orientations of all sectors. The orientation
in each sector captures the local ridge flow pattern, while the
ordered enumeration of the tessellation describes the global

relationships among the local patterns. This orientation
vector consists of 156 elements. It covers most important
areas of fingerprint if the reference point is located at the
center of image. However, only a part of fingerprint is in-
cluded in the tessellation due to the unfavorable position
of reference point so that a substantial number of feature
elements are from the noisy background or the outside of
image. The segmentation is therefore used to label the valid
and invalid feature elements. The segmentation result of fin-
gerprint q is denoted by a vector Sq = [sq,1, sq,2, . . . , sq,M ]
where sq,k ∈ {0, 1} and sq,k = 1 indicates that sec-
tor k is segmented as foreground and valid for feature
selection.

2.2. ARD computation

Fingerprint local ridge distance is defined as the distance
between the center points of two adjacent ridges. It is an-
other important intrinsic property of fingerprint. For the fin-
gerprints scanned at 500 dpi, the local ridge distance varies
from 3 to 25 pixels [28]. Obviously, it is discriminating and
has little correlation with the orientation field and minutia.
Thus, the ridge distance can be used as an auxiliary feature
to bring more information for the fingerprint search. The lo-
cal ridge distance map {�x,y} can be estimated by one of
the available approaches [28,29]. However, the local ridge
distance of the same finger varies due to the different man-
ners that an elastic finger presses on a plane sensor. Noise
and image deterioration may result in large estimation er-
ror of ridge distance. The estimated local ridge distance is
less stable than the local orientation. It seems unfeasible
to construct a high-dimensional feature vector using local
ridge distances for the efficient fingerprint search. Neverthe-
less, the ARD over the fingerprint foreground shows a sta-
ble yet discriminating feature. It is a scalar feature invariant
of the translation and rotation of fingerprint. Therefore, the
1-D ARD serves as an auxiliary feature for our fingerprint
search.
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3. Fingerprint search based on database clustering

Fingerprint search on exclusive classification is a fast pro-
cess. But it cannot sufficiently narrow down the search of
database due to the small number of classes. Although the
continuous classification can alleviate this problem, the full
(exhaustive) fingerprint search is time consuming in the on-
line query process. We take advantages of both approaches
by performing the fingerprint search after the cluster re-
trieval. The 156-D orientation vector and 1-D ARD are used
for the fingerprint search. Instead of exclusively classify-
ing fingerprints into a small number of human predefined
classes, we employ the clustering technique to partition the
database into a number of non-overlapping groups with more
flexibility. The clustering based fingerprint search consists
of two phases: offline database clustering and online query
processing.

3.1. The offline database clustering

The orientation feature space is high-dimensional and un-
evenly distributed. For example, the orientation fields of
whorl fingerprints are more variant than those of plain arch
fingerprints as a whorl fingerprint contains more singulari-
ties with sharp orientation changes. The clustering technique
is applied to partition the orientation feature space into non-
overlapping clusters for an efficient fingerprint search. The
K-means clustering algorithm [30] is the most widely used
partitional clustering algorithm because of its high compu-
tational efficiency and low memory space requirement. This
clustering algorithm represents each cluster with its mean
vector and assign each pattern to the closest cluster itera-
tively. It terminates when the cluster labels do not change.
A modified form of the K-means clustering is developed to
group the close orientation vectors into clusters for efficient
fingerprint search of database.

It is well known that the K-means clustering needs to
specify the number of clusters previously. Instead of un-
derstanding the inherent data structure correctly, the main
purpose of clustering for fingerprint search is to exploit the
similarities among the database templates and facilitate a
fast and effective query process. Thus, the initial number of
clusters is approximately determined to balance the time ef-
ficiency and accuracy of fingerprint search. After grouping
N patterns into K clusters, the average number of compar-
isons is approximately computed as K + N/K for retriev-
ing the nearest cluster followed by fingerprint search in the
retrieved cluster. It is minimized when K = √

N . However,
multiple clusters close to the query fingerprint are often re-
trieved to improve the accuracy of fingerprint search. To
balance these effects, the initial number of clusters is set to
about �

√
N (1 < � < 3).

Euclidean distance measure is often used in the tradi-
tional K-means clustering to assign each pattern to the clos-
est cluster. This makes it only effective to discover the hy-

perspherical clusters. Since our feature vector for clustering
is composed of the orientation angles, Euclidean distance
by averaging the squared differences cannot be directly ap-
plied due to the orientation’s periodicity and discontinuity.
In addition, if all elements between two orientation vectors
consistently have a constant difference, the orientation fields
of such two vectors are very similar just with a rotation in
human perception. The distance between them is zero but
their Euclidean distance can achieve a large deviation. To
overcome this problem, we introduce a distance measure by
averaging the unit vectors of the doubled difference instead
of the squared differences over all valid orientations. The
distance between the orientation vectors of fingerprint p and
q (i.e., �p and �q ) is computed as

dC(�p, �q) = 1 −
∣∣∣∑M

k=1 vkej2(�p,k−�q,k)
∣∣∣∑M

k=1 vk

, (4)

where vk = sp,ksq,k (vk ∈ {0, 1} and vk = 1 means that el-
ement k is valid for both fingerprint p and q) , j = √−1
and |z| computes the magnitude of the complex variable z.
This distance measure dC(�p, �q) (∈ [0 1]) quantifies the
dissimilarity of �p and �q based on the inconsistency of
the orientation differences �p,k − �q,k among all valid el-
ements. It reaches the minimum of zero when all orienta-
tion differences are same and increases with the increase
of the variation of the orientation differences. Let a and
c be two scalars and I be a unit vector of the same size
as �. It is easy to verify that the distance measure (4)
satisfies

dC(�p + aI , �q + cI) = dC(�p, �q), (5)

because∣∣∣∣∣
M∑

k=1

vkej2(�p,k+a−�q,k−c)

∣∣∣∣∣ = |ej2(a−c)|
∣∣∣∣∣

M∑
k=1

vkej2(�p,k−�q,k)

∣∣∣∣∣

=
∣∣∣∣∣

M∑
k=1

vkej2(�p,k−�q,k)

∣∣∣∣∣ .

This indicates that the distance measure (4) is invariant of
constant amount of orientation differences caused by a slight
rotation between two aligned fingerprints. It is employed
to compute the distance between two orientation vectors in
this work. The modified K-means clustering employs this
distance measure to assign each orientation vector to the
cluster with the closest prototype.

After all patterns are assigned to their closest clusters in
each iteration, the mean vector of each cluster is computed
as its new prototype in the traditional K-means clustering.
However, the mean vector by directly averaging the orien-
tation vectors is not applicable due to the periodicity. For
example, the average orientation of 0 and � is 0 instead of
the arithmetic mean value �/2. To avoid this problem, the
orientation averaging is often performed by separately aver-
aging two components of the unit vector of doubled angles
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[cos 2�, sin 2�]. This method is used to compute the mean
vector of each cluster. Let {Z1, Z2, . . . , ZK} denote the K

cluster prototypes. In the modified K-means clustering, the
prototype Zl of cluster Cl is updated as

Zl = 1

2
arctan

∑
p∈Cl

Sp sin 2�p∑
p∈Cl

Sp cos 2�p

. (6)

The K-means clustering cannot guarantee the global min-
imum of the cluster criterion. In this application, the skewed
fingerprint distribution on the clusters may deteriorate the
effectiveness of fingerprint search. Let pi (1� i�K) be the
portion of fingerprints assigned to cluster Ci . The average
portion of fingerprints retrieved is about

∑K
i=1 p2

i if the near-
est cluster is retrieved for a query fingerprint. It achieves the
minimum on even distribution (p1 = p2, . . . , =pK) and in-
creases on skewed distribution. To alleviate the above prob-
lems, the modified K-means clustering eliminates the small
clusters and splits the large clusters into two clusters. To
split the large cluster, a new prototype is added by randomly
choosing one feature vector from the cluster.

The traditional K-means clustering is modified by re-
placing the Euclidean distance measure with the distance
measure (4), computing the cluster prototype with Eq. (6),
eliminating the small clusters and splitting the large clusters.
The modified K-means clustering algorithm repeats above
procedures and outputs the clusters when the cluster proto-
types do not change. The processing steps of this algorithm
are summarized as:

(1) initialize the number of clusters K and cluster proto-
types;

(2) compute distances between each orientation vector and
K prototypes with Eq. (4) and assign the fingerprint to
the closest cluster;

(3) compute the new cluster prototypes with Eq. (6);
(4) compute distances between the new and old prototypes

with Eq. (4). If the maximum one is larger than �, go
to step (2);

(5) if there are no small or large clusters, output the clusters.
Otherwise, eliminate the small clusters, split the large
clusters and go to step (2).

After partitioning the orientation feature space into clus-
ters, the 1-D ARD is employed as an auxiliary feature to
further divide the fingerprints of each cluster into bins. Over
the whole range of ARD, B bins of equal width are prede-
fined in each cluster. The center of the kth bin is computed
as ARDmin + k × (ARDmax − ARDmin)/B. Since more than
three bins close to the query fingerprint are usually retrieved
in the fingerprint search, B is set to larger than 20. The fin-
gerprints in each clusters are assigned to the bin with the
closest center to its ARD.

3.2. The online query processing

The online query processing is to retrieve a subset of
database templates close to the query fingerprint. We pro-
pose a hierarchical query process that consists of three lev-
els of search (see Fig. 4). In the first level, we search the
clusters by comparing the query orientation vector with the
cluster prototypes. Some ambiguous fingerprints are located
near the cluster boundary no matter how well the database
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is partitioned. To alleviate this problem, we retrieve multiple
nearest clusters instead of only the nearest one. Similarly,
we search the bins of the retrieved clusters by comparing
the query ARD with the bin centers and retrieve multiple
nearest bins in the second level. These coarse level searches
can efficiently narrow down the search of database because
the number of groups is much smaller than the number of
templates. In the finest level, the fingerprint search is per-
formed on the retrieved bins using the orientation feature
to further narrow down the search space. Therefore, the on-
line query processing of fingerprint search is accelerated by
database clustering without compromising the effectiveness
of fingerprint search.

For the cluster search, we compute the orientation dis-
tances (4) dC(�q, Zl) (1� l�K) between the query finger-
print and cluster prototypes and retrieve the clusters with the
distances smaller than a threshold. Since the clusters may
be unevenly distributed in the orientation feature space, the
threshold is adaptively determined as minK

l=1 dC(�q, Zl) +
	1 where 	1 is tuned to adjust the retrieval neighborhood. In
the retrieved clusters, the distances between the query ARD
and bin centers are computed to retrieve the bins with the
distances smaller than a threshold. This threshold is set to
produce small retrieval error in this coarse level search. It
is constantly specified as 1 pixels in our experiments on the
NIST DB4.

In the fingerprint search, we compute the orientation dis-
tances dC(�q, �j ) between query fingerprint and all fin-
gerprints in the retrieved bins. The fingerprints with the
distances smaller than a threshold are finally retrieved for
the fine matching. Similarly, the retrieval threshold is adap-

tively determined as min
Nq

j=1 dC(�q, �j ) + 	2 where Nq is
the number of fingerprints in the retrieved bins and 	2 is
tuned to adjust the portion of retrieved fingerprints.

4. Experimental results and comparisons

Most published results of fingerprint search are based on
the NIST special database 4 (NIST DB4). To have a compre-
hensive comparison, we also test our algorithm on this well-
known database, which contains 2000 pairs of fingerprints
of size 480 × 512 pixels. NIST DB4 is collected for testing
the exclusive classification so that the five common classes
(arch, tented arch, left loop, right loop and whorl) are evenly
distributed in the database. However, the natural fingerprint
distribution in these five classes is significantly different. To
resemble the natural distribution, we reduce the number of
fingerprints of less frequent classes and obtain 1204 pairs of
fingerprints. The reduced database, called data set 2, and the
original NIST DB4 are both applied in our experiments. The
first fingerprint instances are used as the database templates
while the second instances serve as query fingerprints.

The performance of fingerprint search is evaluated by the
penetration rate, retrieval accuracy and search complexity.
The penetration rate is the average portion of database re-
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trieved over all query fingerprints. It indicates how much
the fingerprint search can narrow down the database and is
controlled by the parameter 	1 and 	2 in our proposed ap-
proach. For a query fingerprint, the search is successful if
one of the retrieved candidates is from the same finger as
the query. It is more likely to retrieve the correct one if
more templates are retrieved from the database. The retrieval
accuracy is thus computed at various different penetration
rates. The orientation comparisons of Eq. (4) cost most of
the computation in the online query processing. The search
complexity is thus evaluated by the average number of such
comparisons required over all query fingerprints.

4.1. Experiments on feature extraction

This experiment tests the effectiveness of two features
for fingerprint search: a 156-D orientation vector and a 1-
D ARD. Full database search based on the orientation vec-
tors constructed by the uniform and proposed non-uniform
spacing is applied on the NIST DB4. The uniform spac-
ing orientation field is computed by dividing fingerprint into
blocks of 27 × 27 pixels. An orientation vector consisting
of 361(19 × 19) elements is constructed by concatenating
the phase angles after the same translational and rotational
alignments. To show the improvement of search performance
by adding the ARD, the fingerprints whose ARDs are close
to that of query fingerprint (their distances are smaller than
1 pixel) are retrieved for the fingerprint search on the non-
uniform spacing orientation vectors. Their results of finger-
print search are shown in Fig. 5 where the penetration rate
is adapted by varying the parameter 	2. We can see that the
orientation extraction by our proposed non-uniform spac-
ing not only produces more compact feature vector but also
achieves better retrieval accuracy than that by the uniform
spacing. The 1-D ARD as an auxiliary feature consistently
improves the retrieval accuracy. It also reduces about 38%
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orientation comparisons in the query process since the av-
erage portion of the retrieved fingerprints by ARD is about
62% of the fingerprints in the database.

4.2. Experiments on clustering based fingerprint search

All experiments in this section are performed on the NIST
DB4.

4.2.1. Comparison with the traditional K-means clustering
To apply the traditional K-means clustering algorithm,

the orientation vector is constructed on the unit vectors
[cos(2�), sin(2�)] instead of the phase angles and Eu-
clidean distance measure is used to assign each fingerprint
to the closest cluster. The number of clusters and the clus-
ter prototypes are initialized same for both clustering tech-
niques. The final numbers of clusters are 90. To better reflect
the effectiveness of clustering techniques on the fingerprint
search, we present the search results just by retrieving the
close clusters produced by clustering the orientation feature
space. The 1-D ARD and the following fingerprint search
are not used in this experiment. Fig. 6 shows the experimen-
tal results where the penetration rate is adapted by varying
the parameter 	1. Our proposed modified K-means cluster-
ing outperforms the traditional K-means clustering for the
fingerprint search of database.

4.2.2. Comparison with full fingerprint search
In this experiment, the same feature set is used in the

fingerprint search procedures with and without clustering.
Using the 1-D ARD as an auxiliary feature for full finger-
print search narrows down the search space to about 62% of
database. In the query process of our clustering based finger-
print search, the number of orientation comparisons is the
number of clusters (90 in our experiments) plus the num-
ber of fingerprints in the retrieved bins. It varies at different

penetration rates. Fig. 7 shows the results of the full finger-
print search (without clustering) and our proposed finger-
print search (with clustering). From Fig. 7a, we can see the
search complexity is greatly reduced by using the clustering,
especially at the low penetration rates. For example, to re-
trieve 5% of database, we require 300 (N×15%) orientation
comparisons in our clustering based fingerprint search that
is much smaller than 1240 (N × 62%) comparisons in the
full fingerprint search. Moreover, the retrieval accuracy is
slightly yet consistently improved by the modified K-means
clustering (see Fig. 7b). This may be resulted by exploiting
the similarities among the database templates through the
clustering. The results demonstrate that the proposed clus-
tering based approach not only speeds up the search process
but also improves the retrieval accuracy.

4.2.3. Effects of the number of clusters
This experiment is to test the effects of different number of

clusters on the performance of fingerprint search. Although
it is not necessary to specify the optimal number of clus-
ters for our fingerprint search, the final number of clusters
may have some effects on the search results. The number of
clusters varies from 20 to 135 in our experiments and the
search results are shown in Fig. 8. The retrieval accuracy is
improved when increasing the number of cluster from 20 to
90 and cannot be further improved with the number of clus-
ters increased to 135 (see Fig. 8a). From Fig. 8b, we can
see that the search complexity is reduced by increasing the
number of clusters from 20 to 60 and deteriorates by further
increasing it to 90 and 135.

4.3. Comparisons with other approaches

The continuous classification approach [18] was tested
on the data set 2 in Ref. [18]. It performs better than the
approach [16]. We also implement our search algorithm on
data set 2. Fig. 9 shows our results and the results reported
in Ref. [18] on the same data set. We can see that consis-
tent performance improvement of our approach is visible at
all penetration rates in Fig. 9 and significant performance
improvement is achieved at low penetration rates.

A fingerprint search approach based on indexing the
triplets of minutia points is proposed in Ref. [12]. The re-
sult of fingerprint search is further improved in Ref. [3] by
adding two new features. The best performed approach was
tested in Ref. [3] on the second 1000 pairs of fingerprints
of the NIST DB4. As stated in Ref. [3], the retrieval accu-
racies on the penetration rates of 5%, 10%, 15% and 20%
are 83.3%, 88.1%, 91.1% and 92.6%, respectively. Fig. 10
shows the results reported in Ref. [3] and the experimental
results of our proposed approach on the same data set. We
can see that our proposed fingerprint search approach out-
performs the approach [3] on indexing the minutia triplets.

We also compare our proposed fingerprint search ap-
proach with some state-of-the-art approaches of exclusive
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Fig. 7. Results of full fingerprint search (without clustering) and our proposed fingerprint search (with clustering): (a) search complexity and (b) retrieval
accuracy.

5 10 15 20

84

86

88

90

92

94

96

R
e
tr

ie
v
a
l 
A

c
c
u
ra

c
y
 (

%
) 135 clusters

90 clusters
60 clusters
20 clusters

5 10 15 20

300

350

400

450

500

550

600

650

700

N
u
m

b
e
r 

o
f 
C

o
m

p
a
ri
s
o
n
s

Penetration Rate (%) Penetration Rate (%)

135 clusters
90 clusters
60 clusters
20 clusters

a b

Fig. 8. Results of fingerprint search on the different number of clusters: (a) retrieval accuracy and (b) search complexity.
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Fig. 9. Results of fingerprint search in our approach and [18] on data set 2.

classification according to the error rate at about the same
penetration rate. Most published exclusive classification
approaches classify fingerprints into four or five Henry
classes. The penetration rate is 20% if a perfect classifier
is applied to partition NIST DB4 into five Henry classes
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Fig. 10. Results of fingerprint search reported in Ref. [3] and our proposed
approach on the same data set.

which are evenly distributed in the database. It will in-
crease up to 28% if two classes (plain and tented arches)
are merged into one. As the fingerprint frequency in each
class does not reflect the real distribution, many researchers
weight the classification results or construct a subset
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Table 1
Error rates of some exclusive classification approaches and our clustering based approach on NIST DB4

Method, PR = 20%, PR = 29.5%, PR = 28%, PR = 29.7%, Test set
year and source five classes five weighted classes four classes four weighted classes

Candela et al. 95 [6] — — 11.4 6.1 Second half
Karu and Jain 96 [4] 14.6 11.9 8.6 9.4 Whole
Jain et al. 99 [5] 10 7.0 5.2 — Second half
Jain and Minut 02 [31] — — 8.8 9.3 Whole
Cappelli et al. 99 [18] — 12.9 — — Data set 2
Cappelli et al. 99 [7] 7.9 6.5 5.5 — Second half
Senior 01 [10] — — — 5.1 Second half
Yao et al. 01 [9] 10.7 9.0 6.9 — Second half
Marcialis et al. 01 [11] 12.1 9.6 — — Second half
Zhang and Yan 04 [32] 15.7 — 7.3 — Whole
Park and Park 05 [8] 9.3 — 6.0 — Whole
Our approach 4.2 2.9 3.1 2.9 Whole

(data set 2) according to the natural distribution for test-
ing. For the weighted classification results or on data set 2,
the penetration rates are 29.48% and 29.69% for the Henry
four and five classes, respectively. For a fair comparison,
our approach retrieves fingerprints at the penetration rates
of or slightly smaller than 20%, 28%, 29.48% and 29.69%
in the experiments. Table 1 shows the error rates of 11 pub-
lished exclusive classification approaches and our proposed
approach on NIST DB4 (‘whole’) or its second half. All er-
ror rates in the same column are at the same penetration rate.
The number of classes labelled by the exclusive classifica-
tion approaches and whether weighting is used in the error
calculation are indicated in the second row of Table 1.

It should be noted that the error of exclusive classification
is not fully equivalent to the error of fingerprint search for
the application to identification. The exclusive classification
for fingerprint identification is successful only if the query
fingerprint and the corresponding one in the database are
consistently classified in the same class. There are about 17%
of fingerprints in the NIST DB4 labelled as two classes by
human experts. The error rates of approaches [4–7,9,31,32]
are calculated by assuming a correct classification if the
classifier output is any one of two class hypotheses. This
assumption gives lower error rate than that obtained using
only one class label. In addition, the error rates of approaches
[5,9,11] are obtained at 1.8% rejection rate, which slightly
increases their penetration rates. Nevertheless, experimental
results in Table 1 demonstrate that the proposed approach
achieves lower error rate than various exclusive classification
approaches.

5. Conclusions

Techniques that facilitate an efficient and effective
search of database in fingerprint identification have been
extensively studied in the past decades. The exclusive

classification cannot sufficiently narrow down the search of
database. The continuous classification by full fingerprint
search neglects the similarities among the database tem-
plates so that its search performance is limited. This paper
proposes an efficient fingerprint search algorithm based on
database clustering which performs cluster search before
the fingerprint search of retrieved clusters. In orientation
extraction, we propose a non-uniform spacing of finger-
print by a circular tessellation to compute a multi-scale
orientation field as the main feature for the fingerprint
search. The orientation extraction by the non-uniform spac-
ing not only produces more compact feature vector but
also achieves better performance of fingerprint search than
that by the uniform spacing. The 1-D ARD is employed
as an auxiliary search feature which not only reduces
the orientation comparisons in the query process but also
consistently improves the retrieval accuracy. A modified K-
means clustering was proposed to partition the orientation
feature space into clusters. It outperforms the traditional
K-means clustering for the fingerprint search. Based on the
offline database clustering, a hierarchical query processing
is proposed to facilitate an efficient fingerprint search. It
not only reduces the search complexity but also improves
the retrieval accuracy. The extensive experimental studies
and comparisons consistently demonstrate the effective-
ness and superiority of the proposed fingerprint search
framework.
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