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Extracting image orientation feature by using integration operator
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Abstract

This paper presents an orientation operator to extract image local orientation features. We show that a proper employment of image
integration leads to an unbiased orientation estimate, based on which an orientation operator is proposed. The resulting discrete operator
has flexibility in the scale selection as the scale change does not violate the bias minimization criteria. An analytical formula is developed
to compare orientation biases of various discrete operators. The proposed operator shows lower bias than eight well-known gradient
operators. Experiments further demonstrate higher orientation accuracy of the proposed operator than these gradient operators.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Orientation analysis appears in many different contexts
in computer vision, image analysis, feature extraction and
pattern recognition. Optical flow, fluid flow and some tex-
ture such as fingerprint and printed circuit board are typical
oriented patterns. Edges and lines are important image fea-
tures for both human perception and machine processing.
Orientation analysis is widely employed in the edge and line
detection, which is an important step in the object detec-
tion and recognition. Typical examples are the step and roof
edge detector [1], the angular dispersion operator [2] and
the Hermite transform method [3]. Local orientations play
an important role in the texture analysis [4], optical flow [5]
and oriented filter design [6,7]. They are crucial features for
fingerprint classification [8–10] and matching [11,12].

Quite a lot of approaches were developed to extract the
orientation feature. Early attempts were based on templates
that could match ideal edge or line profiles [13–16]. Due
to the variation of real edges and lines these methods often
yield unreliable results. Other alternatives include matched-
filter approaches [17,18] and spectral estimation methods
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[19]. However, the accuracy of the estimated orientation is
limited by using these methods due to the limited num-
ber of fixed possible orientations. The well developed and
most widely used approach for local orientation estimation
is based on averaging squared gradients or principal com-
ponent analysis of gradient covariance matrix. It was intro-
duced in Refs. [20,21] and widely adopted by a large number
of researchers for edge, corner and line detection [22–24],
texture analysis [4,25], optical flow [5] and fingerprint recog-
nition [26–29]. This prevalent local orientation estimation
method consists of two components: gradient computation
and squared-gradient averaging. While the gradient captures
the orientation information at the pixel level, the averaging
process attenuates noise contained in the gradient and there-
fore extracts smoothing local orientation features. Recently,
problems of squared-gradient averaging were studied and
an algorithm was proposed that captures the local dominant
orientation more effectively by using a two-stage weighted
average of the squared gradients [30].

Averaging the squared gradients can only reduce the esti-
mation error caused by noise that has no dominant orienta-
tion in the average window. Anisotropic (oriented) noise can
only be attenuated before the square operation, i.e., in the
process of the gradient computation. There are two problems
in the application of gradient for orientation estimation.
One is the noise sensitivity as gradient inherently amplifies
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the finer scale components (often noise) and suppresses the
larger scale ones (often oriented pattern). The other is the
orientation bias caused by the discrete operators that ap-
proximate to the differentiation. Many efforts were made
to solve these two problems by designing various discrete
operators. Pioneering attempts include Prewitt [31], Sobel,
isotropic [14] and circular [32] operators. The well-known
Canny operator [33] is approximated by the first Gaussian
derivative ∇G. Orientation of a certain scale can be robustly
captured by the scale fitting of the Gaussian function. The
pleasant properties of the ∇G operator were extensively dis-
cussed [34–37]. However, as we will see later, the ∇G oper-
ator produces high orientation bias if its scale deviates from
the optimal one of a given operator size. The truncation of
the Gaussian function to a finite operator size is one of the
causes. Small operators are often preferred in many practical
applications to preserve the image orientation locality and
to reduce the computation load. Various finite-size discrete
operators were therefore designed to minimize the orienta-
tion bias. Examples include the directional derivative (DD)
operator [22], consistent operator [38] and optimal operator
[39]. However, the scales of these operators are fixed for a
given support size as all coefficients of operators are used
up to approximate to the continuous gradient. There is thus
no flexibility to alter the operator scale for the desired noise
attenuation.

Unlike gradient operators that approximate to the differ-
entiation, we propose an orientation operator that approxi-
mates to the integration to alleviate problems of orientation
bias and scale flexibility. We first propose a continuous op-
erator that works on a finite support region and prove its un-
biased bandpass orientation computation in the next section.
Scalable discrete operators are obtained by approximating
to the integration in Section 3. To compare the proposed op-
erator with others, Section 4 develops an analytical formula
to compute orientation biases of various discrete operators.
Section 5 further tests and compares various operators with
some synthetic and real images. Conclusions are drawn in
Section 6.

2. Proposed continuous orientation operator

For the local orientation estimation, we model the band-
limited continuous image f (x, y) locally as the sum of an
oriented pattern and additive noise. In most practical appli-
cations, the oriented pattern can be approximated to have a
constant orientation in a small local area within the operator
window. Thus, an oriented image is locally modelled as

f (x, y) = h(x cos � + y sin �) + n(x, y), (1)

where h(t) is an arbitrary 1-D function (h : R → R), n(x, y)

represents noise and � + �/2 is the local orientation of the
oriented pattern, −�/2 < ���/2.

The gradient can be represented by a complex variable
as ∇f (x, y) = fx(x, y) + jf y(x, y) where fx(x, y) and

fy(x, y) are the x- and y-differentials of image f (x, y), re-
spectively. For the oriented pattern (1) with n(x, y) = 0,
we have ∇f (x, y) = cos �h′(t) + j sin �h′(t) with h′(t) =
�h(t)/�t . We see that a non-zero gradient (h′(t) �= 0) pro-
vides an unbiased orientation estimate (for n(x, y)=0), since
Im[∇f (x, y)]/Re[∇f (x, y)] = tan �. The transfer function
from f (x, y) to ∇f (x, y) is

T∇(u, v) = 2�(−v + ju). (2)

Obviously, it is a high-pass filter that amplifies the finer
scale components and suppresses the larger scale ones. An-
other problem is the difficulty of the discrete approximation
to the image differentiation. Large orientation error occurs
if a simple finite difference is used to approximate to the
differentiation.

One solution is to apply a low-pass filter and transfer
the image differentiation to the derivative of the filter’s im-
pulse response. The Gaussian derivative operator is the most
widely used example because of some excellent features of
Gaussian function. However, the truncation of the filter to
a finite size damages some desired properties of Gaussian
function such as orientation isotropy. As orientation feature
is captured by image differentiations, the limited operator
size results in orientation error even for noise-free patterns
because the derivative property of the operator is damaged
by the truncation. A number of efforts [22,38,39] were made
to approximate to the differentiation with size-limited dis-
crete operator. Although these approaches use up all operator
coefficients for the differentiation approximation and hence
fix the operator scale, as we will see later, their orientation
biases still do not reach the minimum. The roughening ef-
fect of the differentiation brings the difficulty of having an
accurate discrete approximation.

To circumvent the inherent roughening effect of differ-
entiation and the truncation problem of the derivative fil-
ter, this work proposes to use integration instead of differ-
entiation to extract the orientation feature. As we will see
below, a proper employment of integration achieves unbi-
ased bandpass orientation estimation with a finite square-
shape support region. It therefore circumvents problems of
the limited operator size and the roughening effect of the
differentiation.

The proposed continuous operator is defined as a weighted
sum of y- and x-integrations in interval 2� with shift
� as

IRf (x, y) =
R∑

�=−R

w�

(∫ y+�

y−�
f (x + �, z) dz

+j

∫ x+�

x−�
f (z, y + �) dz

)
, (3)

in a finite square-shape support area of size 2R × 2R.
For the symbolic simplicity, let �(t) = ∫

h(t) dt , ε =
�(cos � + sin �) and � = �(cos � − sin �). For the oriented
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pattern (1) with n(x, y) = 0, Eq. (3) can be expressed as

IRf (x, y) =
R∑

�=−R

w�

[
�(t + ε) − �(t + �)

sin �

+j
�(t + ε) − �(t − �)

cos �

]
, (4)

where t =x cos �+y sin �. With the constraint of w−�=w�,
it is not difficult to rewrite Eq. (4) as

IRf (x, y)

= (cos � + j sin �)

R∑
�=0

w�

× �(t + ε) − �(t + �) + �(t − ε) − �(t − �)

sin � cos �
. (5)

We see that the non-zero IRf (x, y) provides an unbiased
orientation estimate independent of R, � and w�, since

Im[IRf (x, y)]
Re[IRf (x, y)] = tan �. (6)

By using the translation property of the Fourier transform,
it is not difficult to obtain the transfer function from f (x, y)

to IRf (x, y) as

TIR
(u, v) = 2(−v + ju)

�uv

R∑
�=0

w� sin(2��u) sin(2��v).

(7)

Obviously, it is a bandpass filter comparing to the high-pass
filter of the gradient (2).

Unlike gradient that amplifies the finer scale components
(often noise) and suppresses the larger scale ones (often ori-
ented pattern), the proposed operator provides an unbiased
bandpass orientation estimate with the flexibility of scale
selection by choosing the free parameter w�. The optimal
scale match between the operator and the oriented pattern
maximizes the noise reduction and therefore minimizes the
orientation estimation error caused by noise. Moreover, the
proposed operator facilitates unbiased bandpass orientation
estimation using a finite square-shape support region. This
circumvents the problem of size limited square-shape oper-
ator window in the practical applications. In addition, the
discrete approximation to integration is in general more sta-
ble than that to differentiation because it is well known that
the smoothness properties deteriorate in the process of dif-
ferentiation [40]. Therefore, it is expected that the discrete
version of the proposed operator is able to achieve lower
orientation bias than various gradient operators. This will be
demonstrated in the subsequent sections.

3. Proposed discrete orientation operator

The proposed discrete orientation operator is a discrete
approximation to the continuous operator (3) presented in

the last section. We consider the discrete image f(k, l) sam-
pled from a continuous image f (x, y) as f(k, l)=f (kT , lT ).
By choosing � = iT or � = (i + 0.5)T , i ∈ Z, respectively,
for operators centered at a pixel or at the middle point of
four nearest pixels, we can obtain the discrete version of the
operator (3) by only approximating to the 1-D integrations.
Numeric quadrature formulae [41] such as the well-known
Newton–Cotes formulae can be applied to compute numeric
integration using sample points within the integration inter-
val. However, the operator (3) contains integrations in the
intervals 2� where |�| < R. To fully make use of the data
within the 2R ×2R operator window, we shall use data out-
side the integration interval as well for more accurate ap-
proximation. Therefore, we present the discrete approxima-
tion to the integration from the interpolation of the discrete
function, with which data outside the integration interval are
also used in the approximation.

We first approximate an unknown continuous integrand
function r(t) at intermediate t-values, t �= t0 + iT by an in-
terpolation polynomial that passes through the known sam-
ple points ri = r(t0 + iT ), i = 0, 1, 2, . . . , M , as

r(t) ≈ PM(t) =
M∑

i=0

ri�
M
i (t), (8)

where the M + 1 functions �M
i (t) are Mth degree polyno-

mials. Letting t = t0 + sT , the Lagrange interpolation coef-
ficients �M

i (t) [41] are expressed as

�M
i (t) = (−1)M−i

M!
(

M

i

) M∏
b=0,b �=i

(s − b), (9)

where b ∈ Z.
The integration of an unknown continuous integrand func-

tion r(t) is approximated by the integration of its interpo-
lation polynomial PM(t). Substituting Eq. (9) into Eq. (8)
yields

∫ tq

tp

r(t) dt ≈
∫ tq

tp

PM(t) dt =
M∑

i=0

ri
(−1)M−i

M!
(

M

i

)
T

×
∫ sq

sp

M∏
b=0,b �=i

(s − b) ds, (10)

where s = (t − t0)/T , sp = (tp − t0)/T , sq = (tq − t0)/T and
0�sp, sq �M . Obviously, Eq. (10) is a weighted sum of ri .
Given M, sp and sq , the weights denoted by hM

i (sp, sq) are
computed by (ignoring the constant T)

hM
i (sp, sq) = (−1)M−i

M!
(

M

i

) ∫ sq

sp

M∏
b=0,b �=i

(s − b) ds. (11)

Applying Eq. (10) with the integration interval tq − tp =2�,
the polynomial degree M = 2R/T and i = m + M/2 to
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Eq. (3), we obtain the discrete version of Eq. (3) as

IM f(k, l) =
M/2∑

n=−M/2

wn

M/2∑
m=−M/2

gM
m,n[f(k + n, l + m)

+ j f(k + m, l + n)], (12)

where n = �/T . Letting m− = M/2 − m, m+ = M/2 + m,
n− = M/2 − n and n+ = M/2 + n for symbolic simplicity,
the weights gM

m,n are obtained from Eq. (11) as

gM
m,n = hM

m+(n−, n+)

= (−1)m−

m−!m+!
∫ n+

n−

M∏
b=0,b �=m+

(s − b) ds, (13)

where {M, m−, m+, n−, n+, b} ∈ Z. From Eq. (13) it is easy
to prove that gM−m,n = gM

m,n and gM
m,−n = −gM

m,n. This means
that we need only tabulate the values of gM

m,n for m�0 and
n > 0. Table 1 shows gM

m,n computed by Eq. (13) for M from
2 to 7.

Formula (12) with the fixed coefficients gM
m,n computed

by Eq. (13) and a free parameter wn is our proposed discrete
orientation operator {oM

m,n} = {wng
M
m,n} of size (M + 1) ×

(M + 1). For example, the 4 × 4 and 5 × 5 operators with
wn ≡ 1 can be obtained from Table 1 as

⎡
⎢⎣

−0.3750 −1.1250 −1.1250 −0.3750
0.0417 −0.5417 −0.5417 0.0417

−0.0417 0.5417 0.5417 −0.0417
0.3750 1.1250 1.1250 0.3750

⎤
⎥⎦ and

⎡
⎢⎢⎢⎣

−0.3111 −1.4222 −0.5333 −1.4222 −0.3111
0.0111 −0.3778 −1.2667 −0.3778 0.0111

0 0 0 0 0
−0.0111 0.3778 1.2667 0.3778 −0.0111
0.3111 1.4222 0.5333 1.4222 0.3111

⎤
⎥⎥⎥⎦ .

The parameter wn is used to change the operator’s scale or
frequency selection, which does not violate the optimizing
regularization of the unbiased orientation estimation. Thus,
the weights wn provide us freedom to control the operator
scale. This feature is very useful because the scale match
between the operator and the oriented pattern maximizes
the noise reduction and therefore minimizes the orientation
estimation error caused by noise. In general, we can choose
any wn (wn ∈ R+) with w−n = wn to achieve a desired
scale for a specific application. While not limiting ourselves
from other possible choices, we use a Gaussian function
wn=exp(−n2/2�2) in this work so that we can easily adjust
the operator scale by varying � only.

4. Characteristics of the discrete operators

There are two error sources of the orientation estimation if
discrete operators are employed. One is the orientation bias

Table 1
Proposed discrete orientation operator coefficients gM

m,n of various orders
M for m�0 and n > 0

M n m = 0/0.5 m = 1/1.5 m = 2/2.5 m = 3/3.5

2 1 1.3333 0.3333

3 0.5 0.5417 −0.0417
1.5 1.1250 0.3750

4 1 1.2667 0.3778 −0.0111
2 0.5333 1.4222 0.3111

5 0.5 0.5569 −0.0646 0.0076
1.5 1.0875 0.4312 −0.0187
2.5 0.8681 1.3021 0.3299

6 1 1.2402 0.3976 −0.0190 0.0013
2 0.7026 1.2952 0.3619 −0.0085
3 1.9429 0.1929 1.5429 0.2929

7 0.5 0.5648 −0.0788 0.0155 −0.0016
1.5 1.0730 0.4574 −0.0333 0.0029
2.5 0.9249 1.1998 0.3867 −0.0114
3.5 1.2108 0.5359 1.4490 0.3042

caused by the finite operator size and discrete approximation
to the continuous function, which occurs even for a noise-
free oriented pattern. The other is noise which needs to be
attenuated by scale fitting of the operator to the oriented
pattern. In this section we compare various discrete operators
based on their scales and orientation biases.

The operator’s scale represented by the transfer func-
tion can be obtained by the discrete Fourier transform of
the operator. As the transfer functions of all discrete gra-
dient operators are bandpass filters, we divide them by the
transfer function of true gradient 2�(−v + ju) and call the
quotients pre-filter. It is easier to compare them by their
bandwidths since pre-filters of all operators are low-pass
filters.

We have not found any analytical formula in literature
that calculates the orientation bias of discrete operators. As
different operators were designed by different criteria, it is
helpful to develop some means of bias computation to as-
sess various operators. Orientation bias is defined by the dif-
ference between the true orientation and the expectation of
its estimates. The expectation is measured by the ensemble
average over all possible states of a noise-free pattern with
the same constant orientation within the operator window.
Since orientation has period of � and discontinuity at ±�/2
and the phase of the operator’s output has period of 2�, the
direct average of orientations or operator’s outputs is prob-
lematic. A solution is to average the squared outputs of the
operator. It has been proven in Ref. [29] that the squared
gradient average leads to the same result as that of the ori-
entation tensor or principal component analysis of gradient
covariance matrix. The half angle of the average squared
output of an operator represents the expectation of its ori-
entation estimates.
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The output of applying an orientation operator {oM
m,n} to

a discrete image f(k, l) can be expressed as

OM f(k, l) =
M/2∑

n=−M/2

M/2∑
m=−M/2

oM
m,n[f(k + n, l + m)

+ j f(k + m, l + n)]. (14)

The ensemble average of (OM f(k, l))2 over all possible states
of f(k, l) is expressed as

Ef[(OM f(k, l))2] = Ef[A2(k, l)] − Ef[B2(k, l)]
+ 2jEf[A(k, l)B(k, l)], (15)

where

A(k, l) =
M/2∑

n=−M/2

M/2∑
m=−M/2

oM
m,nf(k + n, l + m), (16)

B(k, l) =
M/2∑

n=−M/2

M/2∑
m=−M/2

oM
m,nf(k + m, l + n). (17)

For a noise-free pattern with constant orientation within the
operator window f(k, l) = h(k cos � + l sin �), Eq. (16) can
be rewritten as

A(k, l) = A1(t) =
M/2∑

n=−M/2

M/2∑
m=−M/2

oM
m,n

× h(t + n cos � + m sin �), (18)

where A1(t) and h(t) are 1-D functions and t = k cos � +
l sin �.

As h(t) goes through all states of a noise-free pattern
f(k, l) with t varying form −∞ to ∞, we can use the average
over t to replace the ensemble average over f. Based on
Parseval’s Theorem we have

Ef[A2(k, l)] =
∞∑

t=−∞
A2

1(t) = 1

2�

∫ �

−�
|A(	)|2 d	, (19)

where A(	) is the Fourier transform of A1(t).
Using the translation property of the Fourier transform

and the symmetry property of oM
m,n (oM−m,n = oM

m,n, oM
m,−n =

−oM
m,n), it is not too difficult to have

A(	) = 2jH(	)

M/2∑
m=e

M/2∑
n=e


moM
m,n

× cos(	m sin �) sin(	n cos �), (20)

where H(	) is the Fourier transform of h(t), 
0 = 1 and

m = 2 for m > 0. e = 0.5 and 0, respectively, for odd and
even numbers of M. {m, n} − e ∈ Z.

If we denote the sum term in Eq. (20) by GM
	 (sin �, cos �),

i.e.

GM
	 (sin �, cos �) =

M/2∑
m=e

M/2∑
n=e


moM
m,n

× cos(	m sin �) sin(	n cos �), (21)

we have A(	) = 2jH(	)GM
	 (sin �, cos �).

Similarly, we have B(	) = 2jH(	)GM
	 (cos �, sin �),

where

GM
	 (cos �, sin �) =

M/2∑
m=e

M/2∑
n=e


moM
m,n

× cos(	m cos �) sin(	n sin �). (22)

Thus, the orientation bias bM of a discrete operator is com-
puted by

bM = 1

2
tan−1 2

∫ �
−� |H(	)|2GM

	 (sin �, cos �)GM
	 (cos �, sin �) d	∫ �

−� |H(	)|2[GM
	

2
(sin �, cos �) − GM

	
2
(cos �, sin �)] d	

− �. (23)

For a single frequency oriented pattern, the bias is simply
computed by

bM = 1

2
tan−1 2GM

	 (sin �, cos �)GM
	 (cos �, sin �)

GM
	

2
(sin �, cos �) − GM

	
2
(cos �, sin �)

− �.

(24)

The developed formulae (23) and (24) can be used to com-
pute the orientation bias of any discrete operator {oM

m,n} as
long as it extracts the orientation feature by the phase of
the output of Eq. (14) and holds the symmetry property
(oM−m,n = oM

m,n, oM
m,−n = −oM

m,n). Orientation biases of all
nine operators used in the comparison of this paper can be
computed by Eq. (23) or (24).

We first compare the proposed 3 × 3 operator with the
well-known Prewitt [31], isotropic [14], Sobel, circular [32],
optimal [39] and consistent [38] operators. All of them ex-
cept Prewitt operator were designed based on some criteria
of isotropy, circularity, orientation invariance and consis-
tency. In addition, a 3 × 3 Gaussian derivative operator ∇G

with suggested � = 0.5 in Refs. [34,38] is also included in
the comparison. The pre-filters’ transfer characteristics of
these operators are illustrated in Fig. 1a. Their average ra-
dial bandwidths over all directions are recorded in Table 2.
They range from 0.202 to 0.238. According to the maxi-
mal bandwidth, the test oriented patterns are chosen to have
unity power spectrum in (0, 0.238] and zero outside. Fig. 1b
plots the orientation estimation biases of the above operators
against the true orientations of the test patterns computed by
Eq. (23). Table 2 records the maximal biases (over all true
orientations) in degree. Fig. 1b and Table 2 demonstrate that
our proposed 3 × 3 operator achieves the lowest orientation
estimation bias by a significant margin.
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Fig. 1. Pre-filters’ transfer characteristics of various 3 × 3 operators and
their orientation estimation biases. (a) Contours of height 0.5 of the
square amplitude transfer function, (b) biases against the true orientation
computed by Eq. (23).

The bandwidths of the 5 × 5 consistent, optimal and DD
[22] operators and the 7 × 7 optimal and DD operators are
0.150, 0.149, 0.163 and 0.124, 0.129, respectively. Accord-
ing to the maximum bandwidths, the test oriented patterns
are chosen to have unity power spectrum in (0, 0.163] and
(0 0.129] for the 5×5 and 7×7 operators, respectively, and
zero outside. Fig. 2 plots the pre-filters’ characteristics of
the optimal and DD operators. We do not plot the consistent
operator since it is very close to the optimal operator and
the maximal operator size given in Ref. [38] is 5 × 5. The
proposed and ∇G operators larger than 3 × 3 are scalable.

For the 5×5 ∇G operator, �=0.8 and 0.96 were suggested
in Refs. [34,38,39], respectively. For the 7 × 7 ∇G opera-
tor, � = 1.12 was suggested in Ref. [39]. We test the 5 × 5
∇G operator with five different � values (0.55, 0.8, 0.96,
1.25 and 1.55) and the 7 × 7 ∇G operator with � values
of 0.6, 0.95, 1.12, 1.7 and 2.3. For comparison, we choose
the � values of the proposed operators that lead to the same
bandwidths as those of the ∇G operators, respectively. For
these two scalable operators, Fig. 2 plots their pre-filters’
characteristics of the smallest and the largest scales used in
the test. Table 2 numerically records the maximal orienta-
tion estimation biases (over all true orientations) of various
operators computed by Eq. (23) and the pre-filters’ band-
widths. The � values used for the two scalable operators are
also indicated in Table 2.

Table 2 demonstrates that the proposed operators achieve
the lowest orientation estimation biases for all tested scales.
The highest bias of the proposed operator is lower than the
lowest bias of all other operators. Moreover, the highest bias
of the proposed 5 × 5 operator is even lower than the low-
est bias of all other 7 × 7 operators. We see that the bias of
the ∇G operator is very sensitive to the � value. The scale
flexibility of the ∇G operator is therefore at a price of the
high orientation bias. In contrast to that and the fixed scale
of other operators, a conspicuous advantage of the proposed
operator is that it keeps low bias for various different scales.
This facilitates an accurate and noise robust orientation es-
timate by adjusting its scale freely without sacrificing the
low orientation bias. The optimal scale fitting between the
operator and the oriented pattern maximizes the noise re-
duction and therefore minimizes the orientation estimation
error caused by noise.

For the application of pre-designed operators in an online
system, the computational consumption is an important is-
sue. For symbolic simplicity, we consider the even number
N of an N × N symmetric operator, which has N2/4 dif-
ferent absolute values of coefficients. For efficient computa-
tion, we first add/subtract the four image pixels that have the
same absolute coefficient value. The 3N2/4 arithmetic op-
erations produce N2/4 pixel sums, which are multiplied by
the corresponding operator coefficients. Finally, N2/4 − 1
additions compute the real or imaginary part of the oper-
ator’s output. For the multi-scale processing, if q outputs
using the same operator size but different scales are to be
computed, we need

CN
c (q) = 3N2/4 + q(N2/4 + N2/4 − 1)

= 3N2/4 + q(N2/2 − 1) (25)

arithmetic operations for conventional operators, q �1. This
is because the scale change results in changes of all op-
erator coefficients in general. For the proposed operator,
however, gN−1

m,n is fixed and the scale is adjusted by vary-
ing wn only. Therefore, after the 3N2/4 pixel additions, we
need N2/4 multiplications for only once. Then, N/2 results
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Table 2
Pre-filters bandwidths and orientation estimation biases of various operators

3 × 3 Bandwidth Bias 5 × 5 Bandwidth Bias 7 × 7 Bandwidth Bias

Consistent 0.215 1.0120 Consistent 0.150 0.0573 – – –
Optimal 0.214 1.1024 Optimal 0.149 0.0829 Optimal 0.124 0.0102
– – – DD 0.163 0.0990 DD 0.129 0.2802
∇G(0.5) 0.238 1.3585 ∇G(0.55) 0.225 0.3858 ∇G(0.60) 0.213 0.1174
Prewitt 0.202 3.2827 ∇G(0.80) 0.168 0.0785 ∇G(0.95) 0.139 0.0189
Isotropic 0.206 2.4173 ∇G(0.96) 0.147 0.3759 ∇G(1.12) 0.121 0.1201
Circular 0.212 1.4327 ∇G(1.25) 0.130 1.1926 ∇G(1.70) 0.094 1.2845
Sobel 0.212 1.5178 ∇G(1.55) 0.124 2.6574 ∇G(2.30) 0.086 2.4305
Proposed 0.225 0.1766 pro.(0.42) 0.225 0.0032 pro.(0.59) 0.213 0.0001
– – – pro.(0.81) 0.168 0.0005 pro.(0.92) 0.139 0.0000
– – – pro.(1.00) 0.147 0.0030 pro.(1.15) 0.121 0.0001
– – – pro.(1.58) 0.130 0.0061 pro.(1.93) 0.094 0.0002
– – – pro.(4.26) 0.124 0.0076 pro.(5.94) 0.086 0.0004
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Fig. 2. Pre-filters’ transfer characteristics of various operators. Contours of height 0.5 of the square amplitude transfer functions for (a) 5 × 5 and (b)
7 × 7 operators. The smaller/larger circles of the proposed and ∇G operators are for the largest/smallest scales used in the test.

corresponding to the same wn are summed together for each
of the N/2 different wn so that N/2(N/2−1)=N(N −2)/4
additions are needed, again for only once. Finally, for each
of the q scales, N/2 multiplications and N/2 − 1 additions
compute the real or imaginary part of the operator’s output.
As a result, we need

CN
p (q) = 3N2/4 + N2/4 + N(N − 2)/4

+ q(N/2 + N/2 − 1)

= 5N2/4 − N/2 + q(N − 1) (26)

arithmetic operations for q > 1. Note that CN
p (1) = CN

c (1)

because {wng
N−1
m,n } can be pre-computed for the single scale

application. Fig. 3 shows the number of arithmetic opera-
tions against the number of scales calculated by Eq. (25)
and (26) for the conventional and proposed operators. The
computational efficiency of the proposed operator for the
multiscale processing is visible from Fig. 3.
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Fig. 3. Number of arithmetic operations against the number of scales for
the proposed (solid line) and conventional (dashed line) operators of size
N × N .
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5. Experiments

5.1. Testing with synthetic images

A 256 × 256 Fresnel pattern shown in Fig. 4a and a
220 × 512 image consisting of a step edge with the orienta-
tion of 22.5◦ are generated. The Fresnel pattern has all pos-
sible, variable orientations and a wide frequency range. The
step edge has the gray value of d in one edge side and −d

in the other side. Its power spectrum spreads over the whole
frequency range. Gaussian white noise with standard devia-
tion �n is used to contaminate test images. Fig. 4b shows a
sample image of the contaminated Fresnel pattern.

Images are divided into blocks of size 9×9 and the dom-
inant orientation of each block is computed by the average
of the squared operator outputs in the block. For Fresnel
pattern, orientations of all blocks except the innermost four
are used in the accuracy test. For the step edge, orientation
of the block most close to the edge in each block row is
selected for test. We test the estimation accuracy for noise-
free, lighter- and heavier-contaminated images. The lighter
contaminated images have signal-to-noise ratio of 9 db for
Fresnel pattern and d/�n = 4 for step edge. The heavier
contaminated images have signal-to-noise ratio of 0 db for
Fresnel pattern and d/�n =2 for step edge. We calculate the
mean square root of the estimation errors and record it in
Table 3.

Table 3 shows that the proposed 3 × 3 operator achieves
the smallest orientation estimation errors among all 3 × 3
operators for the step edges with all the three different noise
levels. Although the proposed 3×3 operator outperforms all
other 3 × 3 operators by a significant margin for the noise-
free Fresnel pattern, it has the second largest errors for the
contaminated ones due to its second largest bandwidth (see
Fig. 1a and Table 2). The proposed 3 × 3 operator is not
scalable as we have only w1 = w−1. Varying the value of
w1 does not change the operator scale.

Fig. 4. (a) A Fresnel pattern and (b) its noisy version.

For the proposed and ∇G operators of size 5 × 5 and
7 × 7, we apply different values of scale � to the heavy
contaminated images and choose the � values that achieve
the minimal orientation error. Table 3 records the orientation
estimation errors of various operators and the corresponding
� values. It shows that the proposed 5×5 and 7×7 operators
achieve the smallest orientation estimation errors compared
to all other operators of the same size for both the oriented
patterns and all three different noise levels.

5.2. Testing with real images

Two real fingerprints, one of which has good and the other
bad quality shown in Fig. 5, are used for testing. The dom-
inant orientation of each 9 × 9 image block is estimated by
the average squared operator output in the block. As the true
local orientations of a real image are unknown, we rotate
each image block by 45◦ and then estimate its dominant ori-
entation again. The difference between the two orientation
estimates should be 45◦ in expectation. However, it usually
deviates from 45◦ due to the different biases at different true
orientations (see Fig. 1b). Furthermore, the original and ro-
tated blocks have some different pixels due to the square
shape of the block, which also affects the orientation differ-
ence. Therefore, the deviation of the orientation difference
from the rotation angle indirectly reflects the operator’s bias
and noise robustness. The mean square root of the deviations
(in degree) over the fingerprint is shown in Table 4. We call
it indirect error to differentiate it from the error against the
true orientation.

Table 4 shows that the proposed 3 × 3 operator outper-
forms all other operators for the good fingerprint. For the
bad fingerprint, it has higher indirect error than some other
operators due to its wider bandwidth. For the proposed and
∇G operators of size 5 × 5 and 7 × 7, various different �
values are tested to find the best scales that achieve the min-
imal errors. The best scales of the proposed (5 × 5)/(7 × 7)



X. Jiang / Pattern Recognition 40 (2007) 705–717 713

Table 3
Mean square root of orientation estimation errors in degree of various operators

Operator, Error for Fresnel pattern Error for step edge

� for Fresnel/step edge Noise free S/N = 9 db S/N = 0 db Noise free d/�n = 4 d/�n = 2

Prewitt 3 × 3 1.6069 2.3197 10.0446 3.0777 3.7534 4.8401
Isotropic 3 × 3 1.1817 2.1951 10.1499 2.4937 3.0871 4.0973
Sobel 3 × 3 0.7486 2.2680 10.8916 1.8925 2.3972 3.3702
Circular 3 × 3 0.7082 2.2855 10.9497 1.8401 2.33523 3.3072
Consistent 3 × 3 0.5102 2.3978 11.3040 1.6087 2.0500 3.0224
Optimal 3 × 3 0.5526 2.3704 11.2219 1.6783 2.1079 3.0796
∇G 3 × 3, � = 0.5 0.6217 3.6955 12.4320 2.5353 2.5028 3.3854
Proposed 3 × 3 0.1267 2.9258 11.7633 1.5131 1.7037 2.6631

Consistent 5 × 5 0.1192 1.2168 6.9815 1.0412 1.4448 2.2308
Optimal 5 × 5 0.1315 1.2046 6.8911 1.0292 1.4376 2.2220
DD 5 × 5 0.1860 1.2899 7.4251 1.0070 1.5138 2.4389
∇G 5 × 5, � = 1.43/1.04 1.9831 2.2448 5.2850 1.0331 1.4744 2.2406
Proposed 5 × 5, � = 4.3/4.3 0.1118 1.0054 5.1022 0.8232 1.2573 2.0047

Optimal 7×7 0.1262 1.1166 5.1354 0.8940 1.4227 2.3232
DD 7 × 7 0.9671 1.7227 6.0237 0.9403 1.4234 2.2757
∇G 7 × 7, � = 1.48/1.57 1.2308 1.5802 4.1259 0.9709 1.3431 2.0739
Proposed 7 × 7, � = 3.37/6 0.1184 0.9537 3.3378 0.5364 1.1321 1.9899

Fig. 5. Two fingerprints with good (left) and bad (right) quality.

operators are 4.3/2.8 and 4.3/6, respectively, for the good and
bad fingerprints. Those of the ∇G operators are 0.920/1.179
and 1.170/1.512. To study the orientation estimation error
with unmatched scales, we test operators with scales � de-
viating from their best ones �m. The proposed operators
with scales �m/2 and 2�m and the ∇G operators with scales
�m/

√
2 and

√
2�m are tested. Their results are marked with

signs − and +, respectively, in Table 4. It shows that the
proposed 5 × 5 and 7 × 7 operators, even with the scale
parameter that is half or two times of the best fitting one,
achieve the lowest indirect errors compared with all other

operators of the same size for both the real fingerprints. In
contrast to that, the ∇G operator performs badly if its scale
is not properly selected. This demonstrates again the superi-
ority of the proposed operators in respect of the orientation
accuracy and the scale flexibility.

To test the computational cost, orientation vectors of all
pixels of the above 240×270 images were computed by a C
program executed under Windows XP Professional O.S. on
a HP xw4100 (Intel Pentium 4 at 3.0 GHz) PC. The average
processing time of 7 × 7 operators over 1000 images was
recorded. For the single-scale application, all operators took
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Table 4
Deviation of orientation difference from the rotation angle caused by various operators

3 × 3 G. im. B. im. 5 × 5 G. im. B. im. 7 × 7 G. im. B. im.

Consistent 1.8085 9.1493 Consistent 1.5794 8.6014 – – –
Optimal 1.8467 9.1675 Optimal 1.5986 8.5276 Optimal 1.4635 6.5174
– – – DD 1.6322 8.8008 DD 1.7001 7.4853
∇G 2.1607 11.0528 ∇G 1.6091 6.9210 ∇G 1.4736 5.5546
Prewitt 2.6390 11.1267 ∇G− 1.7480 9.0032 ∇G− 1.6248 6.6542
Isotropic 2.2461 9.7029 ∇G+ 2.1335 7.5268 ∇G+ 2.4942 6.4415
Proposed 1.7961 9.4585 Proposed 1.4428 6.4429 Proposed 1.3747 5.0114
Circular 1.9017 9.2973 Proposed− 1.4611 6.5459 Proposed− 1.4279 5.1685
Sobel 1.9252 9.3421 Proposed+ 1.4387 6.4139 Proposed+ 1.3769 4.9780

Fig. 6. Estimated local orientations of the bad quality fingerprint in Fig. 5. Short lines marked by dot are for the proposed operator and unmarked ones
are for the ∇G operator. Both operators are of size 5 × 5.

12 ms. For the multiscale (five scales in the experiment)
application, the ∇G operator took 26 ms, while the proposed
operator took only 15 ms.

Fig. 6 shows local orientations of the bad fingerprint es-
timated by the proposed (�= 4.5) and ∇G operators of size
5×5. For the 5×5 ∇G operator, �=0.8 is applied because
it was recommended in Refs. [34,38]. Comparing the ori-
entation estimates represented by short lines with the back-
ground fingerprint, Fig. 6 shows better orientation estimates

of the proposed operator in the most cases where the differ-
ent results of the two operators are visible.

Fig. 7 shows a real high quality image of size 512 × 512
and one of its noise-contaminated version. The dominant
orientation of each 5 × 5 image block is estimated by the
average squared operator output in the block. As the true
local orientations of a real image are unknown, we compare
different operators by evaluating the orientation coherence
or anisotropy [29,30] of each image block, which shows
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Fig. 7. A high quality image (left) and its noise-contaminated version (right).

Fig. 8. Significant orientations (coherence larger than 0.95) of the high quality image in Fig. 7 by the proposed 5 × 5 operator (left) and the 5 × 5 optimal
operator (right).

the consistency or reliability of the estimated orientations
in the block.

Applying the proposed 5 × 5 operator on the high quality
image of Fig. 7, 1209 out of the total 10 201 local orienta-
tions have the coherence larger than 0.95, which are plotted
as short lines in Fig. 8 (left). Using the 5×5 optimal operator,
only 725 local orientations plotted in Fig. 8 (right) have the
coherence larger than 0.95. For the noise-contaminated im-
age of Fig. 7, the proposed operator produces 930 local ori-
entations plotted in Fig. 9 (left) having the coherence larger
than 0.65. The optimal operator generates 830 local orienta-
tions plotted in Fig. 9 (right) with the coherence larger than
0.65.

Both Fig. 8 on the high quality image and Fig. 9 on
the noise-contaminated image show that the orientations
estimated by the proposed operator have better coherence
or consistency, or equivalently, less variation compared to

the optimal operator. Fig. 9 further demonstrates that the
proposed orientation operator is more robust to noise and
captures the significant orientation information of an image
better.

6. Conclusion

This paper addresses problems of extracting local orienta-
tion features from the oriented image pattern. Noise and bias
are the two causes of the orientation estimation error. Orien-
tation bias caused by the discrete finite-size operator occurs
even in the noise-free patterns and noise may result in sig-
nificant estimation error if the operator scale does not well
fit to the oriented pattern. Unlike gradient operators that ap-
proximate to differentiations, this work designs orientation
operators by approximating to integrations. This is based on
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Fig. 9. Significant orientations (coherence larger than 0.65) of the noised image in Fig. 7 by the proposed 5 × 5 operator (left) and the 5 × 5 optimal
operator (right).

the proof that an unbiased bandpass orientation estimate is
achieved by the proper image integrations in a finite region.
It circumvents problems of the roughening effects of differ-
entiation and the limited operator size. Orientation bias of
a discrete operator is minimized by the numerical approxi-
mation to the integrations. Furthermore, the resulting oper-
ator of size larger than 3 × 3 is scalable. It has flexibility
in the scale selection as the scale change does not violate
the approximation or bias-minimization criteria. It there-
fore achieves high orientation estimation accuracy by well
fitting the pattern scale while keeping the low orientation
bias.

We develop an analytical formula to compute the orien-
tation biases of various discrete operators. This formula is
used in this work to study the characteristics of the pro-
posed operators and to compare them with eight well-known
gradient operators. It shows that the proposed operators of
sizes 3 × 3, 5 × 5 and 7 × 7 achieve the lowest orientation
bias among all operators of the same sizes. We further test
and compare the orientation estimation accuracies of various
operators with some synthetic and real images. The results
consistently demonstrate the superiority of the proposed op-
erator to other gradient operators in respect of the orien-
tation estimation accuracy and the flexibility in the scale
selection.

In practical applications, the local pattern scale is often
unknown or may vary significantly even within the image.
Multiscale processing is thus necessary to find the best scale
that fits the oriented pattern locally at a price of heavy com-
putational load. Thanks to its fixed coefficients for a given
size determined by the bias minimization and a free 1-D
variable to control the operator scale, the proposed opera-
tor can significantly reduce the computational load for the
multiscale orientation estimation comparing to other gradi-
ent operators. A future research topic is how to extend the
proposed operator to the higher dimensional images.
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