PERGAMON

Pattern Recognition 36 (2003) 853-867

PATTERN
RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

www.elsevier.com/locate/patcog

Constructing and training feed-forward neural networks
for pattern classification

Xudong Jiang *, Alvin Harvey Kam Siew Wah

Laboratories for Information Technology, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore

Received 18 January 2001; accepted 18 April 2002

Abstract

A new approach of constructing and training neural networks for pattern classification is proposed. Data clusters are generated
and trained sequentially based on distinct local subsets of the training data. Obtained clusters are then used to construct a
feed-forward network, which is further trained using standard algorithms operating on the global training set. The network
obtained using this approach effectively inherits the knowledge from the local training procedure before improving on its
generalization ability through the subsequent global training. Various experiments demonstrate the superiority of this approach
over competing methods. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Classification; Neural networks; Clustering; Local and global training; Generalization

1. Introduction

Neural networks are well known as powerful tools in
the area of pattern classification. In principle, multi-layer
feed-forward networks with just a single hidden layer are
universal approximators for arbitrary finite-input environ-
ment measures. This however does not imply that a neural
network can easily learn the underlying functional mapping
between the input data and the desired output. In fact, the
main drawbacks of neural networks are problems associated
with local minima and the slow convergence of the learn-
ing process. To tackle these problems, neural networks are
increasingly using clustering techniques to reduce learning
complexity.

A cluster can be modeled by a hypersphere represented
by its center, i.e., the “prototype” and its radius, which de-
termines the “region of influence” of the cluster. Prototypes
used in initializing the weights of back propagation networks
are known to yield reductions in training time [1]. Vari-
ous clustering techniques have also been used to reduce the
number of neurons in radial basis function and probabilistic

* Corresponding author. Tel.: +65-6874-7588; fax: +65-
6776-8109.
E-mail address: xdjiang@lit.org.sg (X. Jiang).

neural networks [2—7]. In Ref. [8], a multi-objective genetic
algorithm was employed to partition the pattern space into
hyperspheres for mapping onto a hierarchical neural net-
work to facilitate subsequent learning. In addition to these
approaches devoted to reduce learning complexity and the
number of hidden nodes, several existing neural network
learning algorithms can themselves be regarded as some kind
of clustering methodology, for example competitive learn-
ing [9], self-organizing map and learning vector quantiza-
tion (LVQ) [10]. It is therefore quite evident that clustering
techniques form the core learning procedure for numerous
neural network models.

Traditional clustering methods [11-14] placed adjacent
samples of the training set in a single cluster without tak-
ing into account their class assignments. The obvious draw-
back of these approaches is the missing class membership
information, which is crucial for any classification learning
procedure. Duda presented a training algorithm for cluster
prototypes [15] while the LVQ approach [10] modifies the
position of the prototypes through a training procedure on
all input data. Both these algorithms require the number of
prototypes to be defined and good initialization of the pro-
totype values before training. Kong proposed a variant of
these basic paradigms [16]. All these methods result in piece-
wise linear classifiers. The generalization capability is thus

0031-3203/02/$30.00 © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(02)00087-0

854 X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

relatively poor. The distribution of the prototypes approx-
imates the distribution of the learning data. This results in
that each prototype of one class represents a cluster that en-
closes roughly equal number of learning samples. To form
a complicated decision boundary, a large number of pro-
totypes are therefore needed to precisely approximate the
training data distribution. In RCE approach [17], prototypes
can neither be modified nor removed, but any misclassifi-
cation reduces the scope of the prototype vector. Thus, the
RCE clustering technique does not minimize the number of
clusters that a particular classification task requires. Musavi
meanwhile presented a clustering algorithm [5] to reduce
the number of nodes of RBF networks. As clusters are re-
stricted from enclosing any samples of the other classes, this
technique usually leads to a large number of clusters.

In view of the drawbacks of methods discussed above,
we present an efficient iterative locally trained clustering
(LTC) technique, which generates clusters sequentially,
moves cluster’s centers generally away while enlarging
their scope towards the Bayes decision surfaces by us-
ing local subsets of the training data. Clusters therefore
grow to contain more and more samples within the Bayes
decision region during training. The procedure for train-
ing a cluster is based on a local subset of training data.
Thus, the complex training data-structures that are far from
a cluster will not increase the complexity of the train-
ing procedure for this cluster. The ground ideas of this
training procedure are decomposing a complicated data
structure of the whole training set into a number of sim-
ple subsets, modifying and enlarging clusters to let them
capture training samples as more as possible so long as the
clusters are within the Bayes decision region. Therefore,
this procedure simplifies the training and minimizes the
number of clusters. The obtained clusters are then used
to construct a feed-forward neural network, which con-
tains piecemeal knowledge obtained from the individual
local learning procedures. Finally, all the individual pieces
of knowledge are integrated and generalized by training
the constructed network using the entire set of training
data. The resulting locally and globally trained (LGT)
network is then applied on several benchmark classifica-
tion problems to access its performance and compare it
with other representative clustering approaches and neural
networks.

2. Local training clusters (LTC) algorithm

Consider a training data set with M classes C=C'UC?U
-~ U CM, where C is a set of N-dimensional pattern fea-
ture vectors X = (x1,x2,...,xv)" whose class memberships
are known. For each class C", we define its inverse class
as C" = C — C". Let p(X|C™) and p(X|C™) denote the
conditional probability density functions of X belonging to
class C" and C™, respectively. The ith hypersphere clus-
ter C" of the mth class C™ is represented by its center or

prototype V" and its radius r{". The simplest measure of
similarity between samples X and cluster’s center is the Eu-
clidean distance || ® ||. A sample X is a member of C}", i.e.
X e, if and only if

X =Vl <. (1)

Suppose the number of samples in cluster C;" is nj'.
It should be noted that a cluster C/* could enclose sam-
ples from class C" as well as its inverse class C™. Let
R and F/" be the two subsets that enclose the “correct”
and “wrong” samples of cluster C/", respectively, i.e.
R ={X|XeC"NnC"}, F' = {X|X €C" n C"™}. The
mean value and the number of learning samples in sub-
sets R and F}" are denoted by Mr{", nri" and M [}, nf7,
respectively.

The training procedure for clusters should move their
centers V" away while expanding their radius /" towards
the Bayes decision surfaces in the hope that clusters can
grow to enclose more samples of its own class within the
Bayes decision region. For most practical problems, we can
assume that in the decision region of class C" there are a
higher probability density for class C” and a lower proba-
bility density for class C™ in the region far away from the
Bayes decision surfaces than that near the Bayes decision
surfaces. It is therefore a right way to modify a cluster C}"
by moving its center to where there are a higher probability
density of its own class and a lower probability density of
its inverse class. It is easy to see that V;" is the geometric
center of cluster C{" and Mr{" and M [} are the centers of
gravity of the subset R and F;", respectively. Thus in most
cases:

p(X|Cm)‘X:Mr"” > p(X|Cm)|X:Vim (2)
and
PXIC™ g = pX|C™) . 3)

Formulas (2) and (3) are definitely true at least if the two
conditional probability densities vary monotonously in the
region of influence of the cluster. Therefore, cluster centers
V" should be drawn towards Mr{" and away from M [} in
the hope that the cluster can enclose more samples of the
correct class C™ and less samples of the inverse class C™°.
The cluster radius 7{" could then be enlarged somewhat since
the cluster center might be drawn away from the Bayes
decision surface.

The training data set C“ for training the first cluster of a
class is the entire training set C. We first assign an arbitrary
sample X, of class C™ to be a cluster center V;"; then search
the nearest neighboring sample X, of the inverse class and
let the initial cluster radius 7" = ||[X; — V/"||. In this way,
acluster C}" is generated with n7{" > 1 and n f7"=1. Initially,
let V"(t) = V", r/"(t) =r" and a parameter j(¢) = 0. The
proposed iterative LTC algorithm for training one cluster is

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867 855

as follows:
Step 1: VIt +1) = V(0 + 11 | "D g
n'(t)
o122 ey vy
ni'(t)
4)
Step 2: r{"(t + 1) =r"(t) + 2 ||Vt + 1)
V@ +e]. (5)
Step 3: If ny'(t+1) <nf'(t)
then Ir2(t+ 1) = 1.20r2(1).
(6)
if [ari"(t + 1) — nrf"(£)]
<[nfi't+1)—nfi'®)]
Ir2(t + 1) = 0.9/r2(¢)
then Mt + 1) =#"(1) (7)

Jjt+ 1) =)+ 1.

Step 4: if [+ 1) —)] = [nf7 ¢+ 1) —nfi")]
Vit =v"(t+1)
then (8)
rt=r"(t+1).
Step 5:if j(t+1)<Tsand (C' — C/")#®

then (¢#+ 1) =t and goto step 1,

else stop training this cluster.

Irl and /r2(t) are the learning rates and generally
0 < Irl, Ir2(t =0) < 1. ¢ is a very small positive constant
that is used to ensure r{"(¢ + 1) > r/"(t) after step 2 even if
Vi"(t+ 1) =V{"(t). The cluster is iteratively trained until it
either encloses all samples in the training set C* or cannot
be enlarged for Ts times of modification.

The detailed rationales for each processing step are as
follows. Step 1 modifies the cluster center toward the cen-
ter of mass of its own class and away from the center of
mass of its inverse class with learning rates weighted by
the corresponding numbers of samples nr/"(¢) and nf}'(t),
respectively. In most cases, especially if the cluster is near
the Bayes decision surface, the cluster center will be moved
away from the Bayes decision surfaces. Although this is not
always true, step 1 at least attempts, only with the knowl-
edge of the data distribution within the cluster, to enclose
more samples of its own class and less samples of its inverse
class. Step 2 enlarges the cluster in the hope of that the clus-
ter can be enlarged somewhat without exceeding the Bayes
decision surfaces since step 1 may move the cluster center

away from the Bayes decision surfaces. Since this is not al-
ways successful, step 3 controls the learning parameters and
the cluster growing process. Specifically, the learning rate
Ir2(¢t) will increase if the modified cluster does not enclose
more samples after step 2. This is important since the train-
ing samples are discretely distributed and the scale-space
of training data might be quite different for different learn-
ing tasks. If there exist training samples outside the cluster,
Eq. (6) ensures the cluster after step 2 enclosing more sam-
ples after some numbers of iterations. If the enlarged clus-
ter increases its inverse class samples more than the correct
class ones, the learning rate /r2 will be decreased, the cluster
not enlarged and the counter j(¢) incremented by one. The
cluster will however still be modified to reflect its new data
composition in the hope that this will lead to successful en-
largement of the cluster in the next or following iterations.
However, this is not definitely true in every case. Therefore,
step 4 records successful modifications of the cluster dur-
ing the training procedure and the final trained cluster pa-
rameters are V;" and r{" instead of V;"(¢) and r"(¢). Step 4
is important because the training procedure does not guar-
antee for each training iteration to get a better cluster than
before. It ensures the best cluster parameters, in the sense
of the largest value of (nr]" — nf7"), to be recorded during
the training procedure. Finally, step 5 provides the stopping
criterion for the procedure of training a cluster, i.e. training
will terminate if the cluster encloses all samples of the train-
ing set C* or there is no cluster enlargement for 7s times.
Otherwise, the procedure will repeat from step 1 through 5.
Thus, given a limited value of T, the training procedure is
going to converge for a finite training set. It is worth noting
that the number of learning iterations is adaptive and typi-
cally different for each cluster.

We wish to point out that this training algorithm may
not necessarily be the best method for every type of data
distribution. It however provides a simple, fast and rational
procedure to capture as many correct training samples as
possible to form a local decision region. It may be possible
to devise more sophisticated cluster models but this will lead
to a significant increase in training time with no guarantee of
performance improvements. Furthermore, the learning rates
Irl and /r2 provide the mechanism to adjust the trade-off
between the amount of training data incorporated into the
cluster for each iteration and the total training time involved.
For our experiment, we utilized a predetermined constant
value for /r1 while /r2 increases and decreases based solely
on step 3 of the training procedure.

Fig. 1 illustrates a one-dimensional example showing the
operation of the LTC algorithm in different regions with
dissimilar data distribution. p(C™) and p(C™") are the a
priori probabilities of occurrence of classes C" and C™,
respectively while DR is the Bayes decision region of class
C™. The feature space is divided into 5 regions, R1 to RS,
as shown in Fig. 1.

If a small cluster for class C™ is initially generated within
the region R2 or R4, or around the boundaries between R1

856

Probability
density

P (X1G™)p(C™)

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

P(X|IC™)p(C™)

kl

i
I
]
¢
i
7
]
i
i
i
i
i
i
i
¢

\
\
\
[Y
\
\
3
LY

|
|
|
R4 |
|
|
|

R3 : R5
o> |
(eren) |
Coom O | |
>
o> (XIS Yoy
'"* <« Cm(t+1) D)
C oD Y

Fig. 1. Examples of the LTC training procedure in different regions.

and R2 or R4 and RS, Egs. (4) and (5) will drag the cluster
center away from the Bayes decision surfaces while enlarg-
ing the cluster size (as illustrated by C{'(¢), C{"(t + 1) and
C1'(t+2) in Fig. 1). Conversely, if a small cluster for class
C™ is generated within the region R3, or between R2 and
R3 or R3 and R4, the cluster will still be enlarged by the
training procedure even though the cluster center may not
necessarily be dragged away from the Bayes decision sur-
faces (as illustrated by C5'(¢), C3'(t + 1) and C3'(¢ + 2) in
Fig. 1). When a cluster grows to a certain size, modifications
of the cluster may cause its region to exceed the Bayes de-
cision surfaces even if it is not enlarged. However, the next
modification of the cluster may draw it away from the deci-
sion boundaries while further enlarging the cluster. Exam-
ples C3'(¢), C5'(¢+ 1) and C5'(¢ +2) in Fig. 1 illustrate this
case. After a number of iterations, the region of influence of
a cluster may approximate the Bayes decision region DR.
Even if a cluster C;" could not grow large enough to cover
the decision region when its training procedure terminates,
training samples of C™ outside the region of influence of C;"
but within DR will generate other clusters, which together
with C/" will approximate the whole decision region.

If an undesired extremely small cluster for class C” is
generated within the region R1 or RS, it will not be enlarged.
Every updating iteration will likely result in the condition
of Eq. (7) to be true. The training procedure will therefore
terminate very fast and the cluster will remain very small
if the cluster is not moved out of the inverse class regions.
These extremely small clusters will be discarded from the
final cluster set. This is an important step especially in the
cases where samples of different classes are heavily over-
lapping. For example in Fig. 1, a large number of extremely
small clusters for class C" could be generated in regions R1
and RS. This will not only unnecessarily increase the num-

ber of hidden units of the neural network constructed later
on but also lead to over-fitting and consequently, poor gen-
eralization. Unfortunately, there is no general satisfactory
method to determine the minimum acceptable cluster size if
one has only the training set and no other knowledge about
the data. A similar problem is that one cannot determine the
optimal & for k-nearest neighbor classifier to perform the
best generalization if only a training data set is available.
For our experiments, clusters will be discarded if their num-
ber of correct samples nr}" is smaller than a predetermined
minimal value n7,.

Having trained C;", the set of correct samples within the
cluster C/* (all X, X € R") is removed from the training set
C* (C* — R" = C%). The algorithm then generates and
trains another cluster Cy}; for class C", using the same pro-
cedure as before but now using the reduced training set. This
procedure will be continued until there are no samples of
class C" left in the remaining training set. Then, clusters of
other classes are generated and trained based on the whole
training set C* = C, using the same procedure. Fig. 2 illus-
trates the flowchart of the proposed LTC training procedure
where ¢, is the number of clusters generated for class C™.

The above-proposed LTC algorithm generates clusters se-
quentially, trains each cluster iteratively using local data
within the cluster. It decomposes a complex learning task
represented by the entire training data set into a number of
simple sub-problems operating on small local training sets.
Each cluster captures a piece of knowledge efficiently and
rapidly without being sidetracked or affected by training data
beyond the local vicinity of the cluster. Therefore, this train-
ing procedure overcomes problems such as Moving-target
or Herd-effect [18], Crosstalk [19,20] and Catastrophic in-
terference [8,21], which often occur in monolithic network
learning. The LTC training algorithm generally minimizes

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

857

(start: m=1.)

A

&
<
y

| C3=C; C"™=C2-Cc";

i=1. |

»

>

A 4

Let V."™=V.™(t=0)=X_, r ™=r.™
1 1 r 1 1

X, ECc"NC* is randomly picked out;
find the nearest neighboring sample X_ ec™ncs;
(£=0)=[¥,-X || and j(t=0)=0.

\ 4

v.m

ifr

Vi’“(t) and rl’“, rl‘“(t) are iteratively modified with Step 1 to Step 5.

v

| (C2-R;™—C2. |

no

Fig. 2. Flowchart of the LTC training procedure.

the number of clusters for a typical classification task in
comparison to some other clustering-based approaches. This
will reduce the resultant neural network size as well as in-
crease its generalization ability. However, as the algorithm
uses hypersphere clusters, sufficiently anisotropic decision
regions might result in larger number of clusters with sub-
sequent adverse effects on network size and generalization
ability.

The LTC algorithm produces a series of clusters C;" repre-
sented by their centers V", regions of influence #;" and class
membership m. Based on the trained clusters, a two-layer
feed-forward neural network (called the LTC network) can
be constructed with threshold transfer functions as shown
in Fig. 3. The first layer classifies input samples to various
clusters by the weights 7" and the thresholds ;". Each hid-
den node that represents a cluster becomes activated if and
only if

=X =V"l+r" >0)
as the chosen threshold transfer function is given by
1 if arg > 0,
thd(arg) = . (10)
0 otherwise.

The second layer combines all clusters with the same class
membership into one class. The weights w2, between the
hidden nodes s and output nodes m are assigned to be 1 if
the cluster s has class membership m; otherwise, they take
the value of —1. The thresholds b2, are set to be —0.5. This
assignment of network structure facilitates further global
training of the network as detailed in the next section.

The LTC algorithm and network has several limitations
that need to be addressed. Firstly, the local training proce-
dure may produce sub-optimal placements of cluster centers.
Secondly, due to its dependence on hypersphere clusters,
the LTC network can only form piecewise spherical deci-
sion regions, which may leave holes (regions not covered
by any cluster) or produce some conflict regions (regions
covered by clusters of different classes). These limitations
degrade the generalization performance of the network. For-
tunately, the drawbacks could be overcome by fine-tuning
the network using standard algorithms used in feed-forward
neural networks and operating on the global set of training
data. At this training stage, each training sample will con-
tribute to the modification of each neuron parameter of the
constructed network, thereby enhancing its overall general-
ization ability.

858 X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

Fig. 4. Clusters represented by the threshold functions (—) and (a) Gaussian basis functions with A" = 1(---); 0.5(---); 0.125(- -) for
r" = 0.5, (b) and (c) sigmoid functions with #" = 10(- - -); 20(----); 80(- -) for r/* = 0.5 and 0.125, respectively and (d) #" = 160(- - -);

320(-+--); 1280(- -) for #" = 0.125.

3. Network fine-tuning with the global training set

At this training stage, it is necessary to use “soft” nonlin-
car transfer functions such as the Gaussian function used in
RBF networks or the sigmoid function used in multi-layer
perceptrons (MLPs). In the LTC network, a cluster C{" is
represented by the output of a hidden unit with the hard
threshold function

o = thd(—|\X = Vi"|| +ri"). (11)

If a Gaussian basis function is used in the network, a cluster
will be represented by

of' = exp(—||\X — V"|*/n!"), (12)

where A" is a smoothing parameter, which controls both
the radius of the cluster and the steepness of the transfer
function. This implies that an excessively flat Gaussian
function must be used to represent a large cluster. Similar
criticisms and analysis of related basis functions for RBF
networks were presented in Ref. [22]. Fig. 4a illustrates
a cluster (V" = 1, r/" = 0.5) represented by a threshold

function and Gaussian functions with different smoothing
parameter values.

If a sigmoid function is used, the cluster can be then
represented by

1
m
0; = 5
L+ exp(—=£"(—[lX = V"[]P + (1))

(13)

where #", the temperature parameter, controls the steepness
of the function. The cluster radius and function steepness
can thus be independently controlled using the parameters
r" and ¢", respectively. Fig. 4b compares sigmoid functions
with different smoothing parameter values. It is easy to see
that the sigmoid function can arbitrarily accurately approx-
imate the threshold function if the smoothing parameter is
sufficiently large. This is but not the case for Gaussian func-
tion. Comparing Fig. 4a and b, it is obvious that the sigmoid
function does a better job of representing a cluster than the
Gaussian function. This provides the essential motivation
for selecting the sigmoid function as the basis for the global
training.

Although large values of #" has the network well inherit-
ing the characteristics of the LTC network, too large values
of " would result in a network almost the same as the LTC

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867 859

network with hard threshold functions. Consequently, the
network would lack the flexibility needed to finely tune the
weights to produce the final enhanced LGT network. Con-
versely, too small values of #" results in the network deviat-
ing too far from the LTC network leading to a slow rate of
global learning. Furthermore, the values of the smoothing
parameter ¢ should be adaptive for each hidden unit due to
the different sizes of clusters involved. Fig. 4c depicts sig-
moid functions with the same values of #" as in Fig. 4b but
now used to represent a cluster with ;" of 0.125 (1/4 times
as large as that in Fig. 4b). It is obvious that the functions
in Fig. 4b and c appear starkly different despite possessing
the same values of . We thus need to normalize the tem-
perature parameter ¢ with respect to the cluster size. This
is achieved using the following heuristic formula:

m __ sc
Do

(14)

where sc is a constant and empirical studies conclude that
1 < se¢ < 5 produces good results.

Fig. 4d illustrates sigmoid functions with values of " 16
times as large as that used in Fig. 4c for a cluster with size
of 1/4 times as large as that in Fig. 4b. We believe that
if we select a smoothing parameter for a large cluster as
in Fig. 4b, the choice of the smoothing parameter in Fig.
4d is more reasonable than in Fig. 4c for a small cluster.
Eq. (14) provides the means of effectively using the nonlin-
ear sigmoid transfer function for every hidden node. For the
output layer we simply assign the smoothing parameters to
be ones.

In order to use standard algorithms (for example, BP and
its various variants, Quickprop and Rprop) to train the net-
work, it is convenient to use dot products instead of cal-
culating Euclidean distances. This can be achieved without
any loss of information by adding an additional compo-
nent to the input vector of the network. We first convert the
N-dimensional input vector X to an (N + 1)-dimensional
vector X! such that

X=X)P (15)
Then define

=107 1721 (16)
and

g =0T = IV (17)
Since

=X = VI O =200)X — |iX P
=P+ @y (18)
we have samples X € C" if and only if

"X + g > 0. (19)

Although (19) with dot product conducts the same func-
tion as (9) with Euclidean distance operation, the weights
modification in the later global training may have (19) de-
viating the Euclidean distance operation. This implies that
the introduction of the dot product may give the LGT net-
work more freedom for further training than keeping the
Euclidean distance operation in the LGT network. This will
be illustrated by examples of weights modification and non-
spherical decision regions of the LGT network in the next
section.

In practice, we multiply the weights and thresholds of the
first layer by the smoothing parameter obtained in Eq. (14)
and use the standard sigmoid transfer function with the unit
smoothing parameter, which simplifies the global training
procedure. The weight vectors W, and the thresholds b. of
the first layer are therefore initialized as follows:

Wi =d" (M, (20)
by =1"-g}. (21)
with
m—1
s:i+2q,~, i<qm qo=0. (22)
=0

The weights w2, of the second layer between the hidden
nodes s and output nodes m are given by
m—1 m
, Lif Y g<s<> g
J=0 J=0

Wins =

(23)
—1 others

while the thresholds b2, are set to be —0.5.

Now our LGT network is constructed (initialized) with
the dot product and the sigmoid transfer functions. The con-
structing procedure uses all information of the clusters ob-
tained from the LTC algorithm (V;", r{",qn and the class
membership of the cluster). After this procedure, the net-
work can be further trained with various standard methods
(such as the BP, Quickprop or Rprop algorithms) by us-
ing the global set of training data. The final result is an en-
hanced LGT network. As the global training is only used
to improve the generalization performance of the network,
only few training epochs are needed while the effective ini-
tialization procedure reduces the problem of local minima.

If the cluster radius is controlled during LTC training such
that each cluster contains no false learning samples and all
clusters are used to construct the network, the least mean
squared error of the LGT network can be made arbitrarily
small with a sufficiently large value of sc. This means that
the LGT network could overcome the problem of local min-
ima. However, a small least mean squared error does not al-
ways equate to a small classification error on an independent
test data set. In summary, to achieve optimal generalization
performance, one should allow clusters to enclose samples
of their inverse class, discard extremely small clusters and
select a reasonable value for the constant sc.

860 X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

4. Experimental results

This section illustrates the properties of the proposed LTC
and LGT networks through several numerical experiments.
It shows the placements and sizes of the clusters trained by
LTC algorithm and the improvement of decision boundaries
with global training and comparing training and classifica-
tion performance with the K-means and LVQ1 [10] cluster-
ing algorithms as well as networks trained with the Rprop
algorithm [23]. Rprop algorithm was selected for the global
training of the LGT network since it is a gradient based
method that has fast convergence properties compared to
many other gradient based algorithm. Learning procedures
were simulated by using MATLAB' and MATLAB’s Neu-
ral Network Tool [24] on a Pentium IV 1.5 GHz PC.

For the LTC algorithm, the following parameters were
fixed for all experiments: Ir1 = [r2(0) =0.5; Ts =20. Only
the parameter nrmin for the LTC algorithm and the con-
stant sc¢ for the LGT network were individually chosen for
each experiment. We used the Rprop algorithm for global
training of the LGT network with default training parameter
values provided by MATLAB: learning rate /r =0.01, incre-
ment to weight change delt_inc = 1.2, decrement to weight
change delt_dec = 0.5, initial weight change delta0 = 0.07
and maximum weight change deltamax = 50.0 [24].

For a fair comparison, the Rprop algorithm was also used
to train the MLP using sigmoid transfer functions and a
single hidden layer, which were initialized with the
Nguyen—Widrow initialization algorithm [25]. For termi-
nology simplicity, we will call this the Rprop network.
Training parameters are the same as those used for the LGT
network except the number of the hidden nodes and training
epochs. To compare the proposed LTC clustering algorithm
with other representative clustering methods, K-means and
LVQ clustering algorithm were also implemented in the ex-
periments. We selected K-means and LVQ algorithms for
comparison because they are well-known clustering meth-
ods and few parameters are required to be set by the user.
For K-means and LVQ algorithm, the number of clusters
for each class was assigned in proportion with the number
of training samples for the class. Cluster centers for each
class were initialized with Gaussian distributed random
vectors with the same mean and variance as the training
data composition for the class. For the K-means algorithm,
each class was trained using only samples of their own
class. The training will stop if the update of the clusters
does not change cluster centers any more. After training
with K-means algorithm, the 1-NNK (nearest neighbor
classifier) with all trained clusters as its prototypes was
used for classification. For LVQ training, training samples
were presented to the network in random as this seems to
produce better results.

I MATLAB is a registered trademark of The MathWorks, Inc.

To compare the proposed LGT network with networks
constructed by LVQ and K-means clusters, each K-means
and LVQ cluster was assigned a radius equal to half the
distance between its center and the center of the nearest
cluster that has different class membership. Clusters with
these assigned radii were then used to construct a network
for global training in the same way used for the proposed
LGT network described in Section 3. For all training results,
we report the mean values obtained from 50 repetitions. >
For reference, the test data were classified by the I-NNK
with all training samples as prototypes.

4.1. The double spiral problem

The double spiral problem is a common benchmark for
connectionist learning algorithms. According to Baum and
Lang [26], a 2-50-1 BP network seems unable to find a
correct solution to this problem. A 2-5-5-5-1 network with
shortcut connections solved this problem but only after
20,000 training epochs using the BP algorithm [27], the
resultant decision region is depicted in Fig. 5a. Fahlman’s
Cascade-Correlation meanwhile yielded correct solutions
using between 12 and 19 hidden nodes after 1700 training
epochs [28] with the decision region shown in Fig. Sb.
Denoeux and Lengelle initialized the back propagation net-
work with prototypes and solved this problem with a 3-20-1
network [1]. Perfect classification has been achieved after
1200 epochs of the accelerated back propagation algorithm
with the associated decision region illustrated in Fig. Sc.

The LTC network was applied to the double spiral prob-
lem of 194 samples. For this two-class problem, we let the
LTC algorithm generate clusters for only one class and cre-
ate a network with one output node. Since the task is to
achieve a perfect classification, the cluster radii were reset
after training that they enclosed only correct samples and all
clusters were reserved (i.e. nruyi» =1). An example of cluster
placement by the LTC algorithm is illustrated in Fig. 6a. For
this LTC network, regions inside the clusters are classified
as one class and regions outside as the other class.

LGT networks with sc = 2 were trained using the Rprop
algorithm. All networks in our 50 trials achieved perfect
classification only after 50 epochs. An example of the de-
cision region produced by the LGT network is depicted in
Fig. 6b. The improvement of the decision region comparing
to Fig. 6a is evident. By setting sc = 1.5, we get an almost
perfect spiral decision region as shown in Fig. 6¢ after 80
epochs of training.

Table 1 reports the mean values of the training results of
50 trials of running for the LTC, LGT, Rprop, K-means and
LVQ algorithms. While no training trial of Rprop(1) and
Rprop(4) yielded the correct solution, 23 trials of Rprop(2)
and 36 trials of Rprop(3) achieved perfect classification.
Two examples of decision regions of Rprop networks that

2 Examples of decision regions illustrated in the paper are ob-
tained on a particular random run.

X. Jiang, A. Harvey Kam Siew Wah! Pattern Recognition 36

(a)

(b)

(2003) 853867

Fig. 5. Decision regions of (a) 2-5-5-5-1 network with shortcut connections and 20 000 epochs of BP training [27], (b) Cascade-Correlation

with1700 epochs of training [28] and (c) 3-20-1 initialized network with 1200 epochs of accelerated BP training [13].

(a)

Fig. 6. (a) Cluster placement of the LTC algorithm for the double spiral problem with 194 points; decision regions of LGT network of 31
hidden nodes with (b) sc =2 and 50 epochs of Rprop training and (c) sc = 1.5 and 80 epochs of Rprop training.

Table 1

Training records of the double spiral problem

Task Networks/Algorithms Numbers of Training time Classification Examples of

hidden nodes errors (%) generalization
Epochs Time (s)

Spiral of LTC 31.17 0.26 0 See Fig. 6a

194 points LGT(sc =2/1.5) 31.17 50/80 0.79/1.05 0/0 See Figs. 6b/c
Rprop(1)/(2) 31 4000/5000 442 /54.8 4.15/1.03 —/See Fig. 7a
Rprop(3)/(4) 40 4000/3000 60.4/ 46.2 0.42/1.96 See Fig. 7b/—
K-means 32/64/96 10/12/6 0.33/0.44/0.36 29.9/24.7/13.4 —
LVQ 32/64/96 300 192/245/304 26.3/18.6/5.78 —
K-means-LVQ 32/64/96 10/11/9-300 193/246/305 20.6/6.86/5.27 —
K-means-LVQ-Rprop 64 10-300-100 248 0.52 See Fig. 7c

Spiral of LTC/LGT(sc = 1.5) 32.36 —/80 0.41/2.58 0/0 See Figs. 8a/b

776 points Rprop(5)/(6) 32/40 5000/5000 132/157 1.97/1.35 —/See Fig. 8¢
K-means-LVQ 34/68/102 41/28/34-300 769/1023/1292 15.2/2.45/1.93 —
K-means-LVQ-Rprop 68 31-300-100 1034 0.87 See Fig. 8d

862

(a)

(b)

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

Fig. 7. Decision regions of Rprop networks with (a) 31 hidden nodes and 5000 epochs of training, (b) 40 hidden nodes and 4000 epochs
of training and (c¢) of K-means-LVQ-Rprop network with 64 hidden nodes, s¢ = 1.5 and 10-300-100 epochs of training.

(b

(a)

(@

Fig. 8. (a) Cluster placement of the LTC algorithm for the spiral problem with 776 points; decision regions of (b) LGT network with 32
hidden nodes, sc = 1.5 and 80 epochs of Rprop training, (¢) Rprop network with 40 hidden nodes and 5000 epochs of training and (d)
K-means-LVQ-Rprop network with 64 hidden nodes, sc = 1.5 and 31-300-100 epochs of training.

produced perfect classification are shown in Fig. 7a and b,
which are far from a perfect spiral shape. In our experiments,
we found that much better results could be achieved if the
clusters were trained first using K-means and subsequently
LVQ, compared to K-means or LVQ alone, as shown by
the K-means-LVQ algorithm in Table 1. Therefore, clusters
trained by K-means-LVQ algorithm were used to construct
a network that was further trained by Rprop algorithm in
the way same as the LGT network. The training results of
such network with s¢c = 1.5 (called K-means-LVQ-Rprop
network) are given in Table 1 with an example of the deci-
sion region produced depicted in Fig. 7c.

To test the effect of increased number of training data on
the algorithms, these experiments were repeated with 776
training samples with results being reported in Table 1. Fig.
8a and b illustrate an example of the LTC cluster placement
and the LGT decision region, respectively. It is obvious that
the significant increase in the training data did not upset
the performance of the LTC and LGT networks. On aver-
age, only about one additional cluster was generated even
though the number of training samples increased four fold.
The Rprop network however seems to have much more dif-
ficulty with the increased training data. None of 50 training
trials of either Rprop(5) or Rprop(6) achieved perfect clas-
sification. Examples of the decision regions of Rprop(6)
and K-means-LVQ-Rprop with sc = 1.5 shown in Fig. 8c

and d are clearly poorer than that produced by our LGT
network.

These experiments clear demonstrate that the LGT net-
work requires significantly shorter training time while
producing better generalization results compared with var-
ious competing approaches for the double spiral problem.
Although there are no test data for this problem, we can
visually compare the generalization performance of differ-
ent methods through the decision regions produced. Some
recently developed neural network learning algorithms have
been benchmarked using the double spiral problem [29,30]
but the decision regions obtained are still inferior to the
LGT network’s performance obtained in this work.

4.2. A multi-model classification problem

Data for this multi-model classification problem were
generated using 16 independent two-dimensional Gaussian
random vectors X, Xp,..., X6 with different means, vari-
ances and a priori probabilities as shown in Table 2. Samples
generated by X;—Xz were labeled as class one while those
generated by Xo—Xj¢ were labeled as class two. For this
problem, the theoretical optimal Bayes classification error is
calculated to be about 0.99% with the Bayes decision region
illustrated in Fig. 9a. The nature of the training data enables
us to test if small data clusters are ignored in the training

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867 863

O O *
1 J—
= /'/ \\\
) L)
0~ . .
N / A
) {)
N /s N\ e
-1 N
N7
)
-2 AN L /‘ \ L
0 -2 -1 0 1
(a) (b)

0

= E 0
(c) ()

Fig. 9. (a) Bayes decision region, (b) cluster placement of the LTC algorithm with nry;, = 7 for clusters of one class; decision regions of
(¢) LGT network with 8 hidden nodes, sc =4 and 30 epochs of Rprop training and (d) Rprop network with 10 hidden nodes and 2000

epochs of training.

Table 2
Parameters of Gaussian random vectors

Random Mean vectors
vectors

Square roots A priori
of variance probabilities

X1/X (—1.5,1.5)/(0.5,—1.5) 0.0375 0.01389 (=1/72)

Xo/X1o (0.5,1.5)/(=1.5,—1.5) 2 x 0.0375 2 x 0.01389
X3/X11 (—0.5,0.5)/(1.5,—0.5) 3 x 0.0375 3 x 0.01389
Xi/X12 (1.5,0.5)/(=0.5,—0.5) 4 x 0.0375 4 x 0.01389
Xs/X;3 (—1.5,—0.5)/(0.5,0.5) 5 x 0.0375 5 x 0.01389
Xe/X14 (0.5,—0.5)/(—1.5,0.5) 6 x 0.0375 6 x 0.01389
X2/Xis (—0.5,—1.5)/(1.5,1.5) 7 x 0.0375 7 x 0.01389
Xo/Xi6 (1.5,—1.5)/(—=0.5,1.5) 8 x 0.0375 8 x 0.01389

procedure in favor of dominant clusters. 1440 samples were
generated for training and after each training process, an in-
dependent data set of 144,000 samples was generated for
testing. For such training and test data, the 1-NNK with all
training data as prototype achieved the classification error
on test sets of 1.53%.

The LTC algorithm with n#,;,, = 7 was used to generate
clusters for a single class with an example of cluster place-
ments produced illustrated in Fig. 9b. LGT networks were
trained with sc = 1.5. However, after 50 epochs of train-
ing, the average classification errors on both the training and
test set were found to be worse than that of the correspond-
ing LTC networks (see Table 3). Increasing training epochs
only reduced classification errors marginally. It seems that
the LGT networks could not effectively inherit the knowl-
edge acquired from prior LTC training because the value set
for the smoothing constant sc was too small. This hypothesis
was further strengthen by the fact that LGT networks with
sc =4 obtained better results only after 30 epochs of global
training (see Table 3) with an example of the decision re-
gion produced depicted in Fig. 9c. The boundary improve-
ments are however only marginal when compared with the
LTC clusters generated. The Rprop(2) network meanwhile
performed quite poorly as shown by its decision region in
Fig. 9d. It could be seen that knowledge about small clus-
ters of training data could not be learned even though the
network had undergone 2000 epochs of training. Table 3

records various training and test results of Rprop networks
with different number of hidden nodes and training epochs.

To make the LTC algorithm contribute more knowledge
towards the LGT network, we used it to generate clusters
for both classes. An example of cluster placements pro-
duced is shown in Fig. 10a with labeled class membership
for each cluster. As could be seen, there are quite a num-
ber of overlapping regions where data are covered by clus-
ters of belonging to different classes as well as regions not
covered by any cluster at all. The LGT network success-
fully resolved these problems and produced decision re-
gion very similar to that of the optimal Bayes classifier as
shown in Fig. 10b. For comparison, an example of the de-
cision region produced by the Rprop(5) network is shown
in Fig. 10c. Furthermore, we found that by using clusters
of both classes, the LGT networks showed no problems in
achieving good classification results with different values of
sc (see Table 3). For the Rprop(5-7) networks, Rprop(7)
showed effects of over-training with the lowest error rate
on the training set but highest error rate on the indepen-
dent test set (see Table 3). Training and test results for the
K-means, LVQ, K-means-LVQ and K-means-LVQ-Rprop
algorithms with different numbers of clusters are also listed
in Table 3 while an example of the decision region using
the K-means-LVQ-Rprop approach is shown in Fig. 10d.

In order to test the effects of using different values of
nrmin on the performance of the network, we retrained the
LTC network with nr,;, = 2. For this case, 21.31 clusters
were generated on average with a cluster placement example
shown in Fig. 11a. The resultant LTC networks achieved an
average classification error of 0.86% on the training set and
1.57% on the test set. Meanwhile, LGT networks with sc =
2.5 and trained with 50 epochs of Rprop, achieved an average
classification error of 0.28% on the training set and 1.12%
on the test set with a decision region example shown in Fig.
11b. One sees that the LGT network also well performed
(classification error on the test set of 1.12%) although it
was over-trained (classification error on the training set of
0.28%).

These empirical results above clearly show a significantly
lower test set classification error rate for LGT networks

864 X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

Table 3
Performance of networks for the multi-model classification problem

Numbers of
hidden nodes

Networks Training time

Classifi. errors on
test sets (%)

Classifi. errors on
training sets (%)

Epochs Time (s)
LTC(1)/ LTC(2) 8.36/16.82 — 0.21/0.39 1.21/1.02 1.72/1.64
LGT(1)(sc =1.5/4) 8.36 50/30 1.18/0.89 1.94/0.71 2.26/1.12
LGT(2)(sc =1.5/4) 16.82 50/30 1.93/1.34 0.56/0.62 1.05/1.09
Rprop(1)/(2) 10 1000/2000 20.5/40.38 3.31/2.22 4.12/3.06
Rprop(3)/(4) 15 500/1000 13.8/26.7 2.02/0.81 2.37/1.63
Rprop(5)/(6)/(7) 20 500/300/600 16.7/10.2/20.0 0.67/0.76/0.47 1.23/1.48/1.63
K-means 16/20/24 13/13/15 1.02/1.08/1.13 8.41/7.78/6.79 8.93/7.94/7.14
LvVQ 16/20/24 50 197/206/216 9.19/7.22/5.02 10.26/7.28/5.16
K-means-LVQ 16/20/24 12/14/14/—-50 198/207/217 8.11/6.71/4.14 8.66/6.85/4.27
K-means-LVQ-Rprop 24 14-50-100 225 0.63 1.52

0
(b)

0

E 0
(© (d)

Fig. 10. (a) Cluster placement of the LTC algorithm with nry;, = 7 for clusters of both classes; decision regions of (b) LGT network with
16 hidden nodes, sc = 1.5 and 50 epochs of Rprop training, (c) Rprop network with 20 hidden nodes and 500 epochs of training and (d)
K-means-LVQ-Rprop network with 24 hidden nodes, sc = 1.5 and 13-50-100 training epochs.

Fig. 11. (a) Cluster placement of the LTC algorithm with nr,,;,, = 2 for clusters of both classes and (b) decision region of LGT network

with 21 hidden nodes, sc = 2.5 and 50 epochs of Rprop training.

achieved with substantially reduced training time compared
with competing Rprop, K-means and LVQ approaches. Fur-
thermore, experiments also demonstrate the robustness of
LGT networks to different values of nr,;,, and smoothing
constant sc as long as clusters of the both classes are used
to construct the networks.

Table 4 lists the weights and biases of sample LTC and
LGT networks for this learning task. Although the difference
of weight magnitudes between the LTC and LGT networks
is significant, knowledge transfer from the LTC network is
evident from the similar signs of corresponding weights for
both networks (exception being the biases of the first layer).

Table 4

Weights and biases of the LTC and the corresponding LGT networks

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867 865

LTC network trained with nry;, =7

LGT network (sc = 1.5, after 50 epochs of Rprop training)

Wi, Wl bl,....blg Wi, b} Wi, W bl,...,blg Wi, b}
14885 —15375 0.7344 1 4.0595 —4.4564 —1.2826 —5.4293 2.3702
05851 —04952 0.6510 1 3.8401 —4.6233 —0.5018 —0.2478 2.1476
1.5412 05152 0.4300 1 12.6614 3.7982 —4.0975 —9.9557 8.9640

—04645 —15103 0.7812 1 05786 —21.2692 —0.5338 1.8863 4.7073

—1.5233 —04553 0.4060 1 —13.7766 —5.3244 —49919 —112169 3.5769

—0.4684 04956 0.3734 1 —5.8937 53699 —7.5615 —0.4369 13.2057
0.5076 14872 0.2697 1 10.1727 307147 —105127 —24.5525 15.8206

—1.5249 14993 0.2551 1 —35.3146 337207 —11.3452 —52.0506 19.2293

—0.5103 14867 0.7811 -1 —1.2808 4.6301 —0.3497 —1.1028 —2.0747
15270 —0.4998 0.3290 -1 21.4047 —5.7079 —6.9260 —17.1750 —19.5038
1.5556 15563 0.7352 -1 4.0272 4.4272 —1.1551 —6.3004 —4.4206

—0.4680 —0.4601 0.2621 -1 —11.2833 —-92719 —11.3995 —2.7146 —18.7471

—1.4542 05229 0.6298 -1 —5.5045 6.0064 —1.5145 —3.9867 —3.6655
0.4701 05528 0.5524 -1 3.6045 4.4388 —4.1826 —0.8931 —7.7200
04986 —1.4888 0.1664 -1 269165 —80.7624 —27.1137 —65.8550 —15.4203

—14955 —15054 0.2757 -1 —29.7446 —29.2777 —9.6711 —44.1128 —11.6775

—0.5 —0.8172

4.3. Glass problem in Pobenl data sets

Probenl is a collection of real world problems with
actual data [31] to benchmark neural network learning
algorithms. We particularly selected the “glass problem”
from the Probenl data sets because it was reported to
show complex decision boundaries and heavy overlapping
of classes, which severely test the ability of a classifier
in achieving good generalization [32]. In addition, the
glass problem is to classify the nine-dimensional data into
six classes, which is different from the two previously
examined problems in Sections 4.1 and 4.2 (classifying
two-dimensional data into two classes). The problem es-
sentially lies in classifying glass based upon the description
of its splinters. For algorithm evaluation, the dataset of 214
samples was divided into three sets, i.e., the test, training
and validation sets, which are built from three different par-
titions of the dataset and contain 50%, 25% and 25% of the
total data samples, respectively. This partition is applied to
three different orders of the whole dataset, leading to three
different sequences for training, glassl, glass2 and glass3
[31]. The 1-NNK with all training samples as prototypes
achieves test data classification errors of 37.74%, 35.85%
and 22.64% for the glass1, glass2 and glass3.

In training the LTC network, we set nruy, = 2. Only
the training data sets (exclusive validation sets) were used
for cluster training and clusters of all classes were used
to construct the network. Meanwhile for LGT training, we
set sc = 3. The LGT network was trained with Rprop al-
gorithm until the least mean squared error on the valida-
tion set increased for 20 epochs. The network weights at
the minimum validation error rate were then used for the

classification of the test data. This procedure was similarly
applied in the Rprop training of networks initialized with the
Nguyen—Widrow and K-means algorithm. Table 5 records
the training and test results for glass1, glass2 and glass3.

For glass3 problem, the 1-NNK achieves surprisingly
much better classification error on test data than all other
classifiers implemented in this work. Nevertheless, it could
be seen from Table 5 that our LGT approach performed
significantly better for all the three glass problems than the
K-means, LVQ, Rprop and K-means-Rprop networks in
terms of classification errors on both the training and test
sets. In addition, classification errors on both the training and
test sets of glass1, glass2 and glass3 achieved by the LGT
network in this work are much lower than the results re-
ported in Refs. [31,32]. Although the global training epochs
of LGT networks were less than that of Rprop networks ini-
tialized with the Nguyen—Widrow algorithm, the absolute
training time of the LGT network was slightly longer for
glass2. This is due to the early stopping of the Rprop train-
ing procedure for this data set with the application of the
validation method.

5. Conclusion

A new method of constructing and training feed-forward
neural networks for difficult pattern recognition problems
is developed. Network construction is based on using clus-
ters, which are generated and trained sequentially using the
local subsets of the training data set. The proposed local
training algorithm can rapidly learn about distinct local data
subsets without being affected by the complicated global

866 X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867

Table 5

Performance of networks for the glass problems (glassl, glass2 and glass3)

Data sets/networks Hidden nodes Training times

Classification errors on

the training set (%)

Classification errors on
the test set (%)

Epochs Times Min Mean Max Min Mean Max
1/LTC 12.17 — 0.17 15.36 21.24 31.46 33.56 36.74 42.72
1/LGT 12.17 46.75 0.61 8.41 17.61 24.30 22.64 28.04 32.71
1/Rprop 12 72.36 0.78 17.36 23.41 42.63 24.42 32.56 47.06
1/K-means 12 5.12 0.24 28.97 38.75 53.27 32.30 44.98 60.38
1/LVQ 12 50 14.02 37.38 42.52 53.27 33.19 44.38 55.73
1/K-means-Rprop 12 5.1-45.4 0.94 11.44 18.85 25.76 22.76 35.79 49.06
2/LTC 12.34 — 0.18 18.33 25.56 43.56 32.25 36.37 48.46
2/LGT 12.34 48.70 0.64 6.78 15.33 21.34 26.30 34.68 41.36
2/Rprop 12 51.83 0.62 18.84 28.54 54.47 35.96 48.74 58.15
2/K-means 12 4.74 0.21 29.31 42.61 49.25 35.85 49.17 58.49
2/LVQ 12 50 14.11 34.58 48.75 55.80 49.06 52.27 56.61
2/K-means-Rprop 12 4.7-51.2 1.02 7.55 16.56 21.98 30.19 39.44 49.17
3/LTC 12.75 — 0.17 12.34 20.05 26.53 26.42 3243 41.51
3/LGT 12.75 46.56 0.65 10.28 14.72 21.23 25.43 31.54 40.17
3/Rprop 13 72.38 0.87 18.20 26.28 4523 29.47 43.32 64.31
3/K-means 13 4.72 0.23 28.04 39.44 54.21 35.85 48.98 60.38
3/LVQ 13 50 14.09 37.38 43.27 57.94 52.83 60.76 79.24
3/K-means-Rprop 13 4.7-47.9 0.98 11.55 15.79 26.42 28.31 37.21 56.60

training data structure. It therefore overcomes the drawbacks
of monolithic network training methods, which depends on
the average characteristics of the entire training data set.
Given the values of its learning parameters, the algorithm
automatically determines the number of clusters, which cor-
respond to the number of hidden units of the resultant LGT
network. The number of LTC clusters tends to be minimal
since clusters are permitted to enclose samples of their own
as well as their inverse classes and the training algorithm
always attempts to have a cluster growing to enclose more
and more samples within the Bayes decision region. This
effectively reduces the network size besides increasing its
generalization ability.

However, since hypersphere clusters are used, the LTC
network can only form piecewise spherical decision regions
that limit the generalization ability. To overcome this draw-
back, the LTC network is converted to a network that both
inherits the knowledge of the LTC network and is capable
of further training using established training methods oper-
ating on the global training set. The resulting LGT network
converges rapidly due to its inherited knowledge with good
generalization ability from the global training.

We believe our proposed algorithm mimics the knowl-
edge discovery approach of the human brain, which typ-
ically decomposes a complicated concept or idea into
simpler subsets and learning the details of each subset seq-
uentially before integrating and generalizing all the indi-
vidual pieces of knowledge acquired. The effectiveness of
the LGT network has been amply demonstrated through its
superior results in terms of accuracy and learning speed

(compared with other representative clustering and learning
approaches implemented in this work) on three benchmark
problems operating on both synthetic and real data sets.

References

[1] T. Denoeux, R. Lenglle, Initializing back propagation
networks with prototypes, Neural Networks 6 (1993)
351-363.

[2] P. Burrascano, Learning vector quantization for the
probabilistic neural network, IEEE Trans. Neural Networks 2
(1991) 458-461.

[3] H.G.C. Traven, A neural network approach to statistical
pattern classification by ‘semi-parametric’ estimation of
probability density functions, IEEE Trans. Neural Networks
2 (1991) 366-377.

[4] C.L. Scofield, D.L. Reilly, Into silicon: real time learning
in a high density RBF neural network, IJCNN’91, Seattle,
Washington, 1991, pp. 551-556.

[5] M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris, D.M.
Hummels, On the training of radial basis function classifiers,
Neural Networks 5 (1992) 595-603.

[6] D.F. Specht, Enhancements to probabilistic neural networks,
IJCNN’92, 1992, pp. 761-768.

[71 W. Pedrycz, Conditional fuzzy clustering in the design of
radial basis function neural networks, IEEE Trans. Neural
Networks 9 (1998) 601-612.

[8] R. Kumar, P. Rockett, Multiobjective genetic algorithm
partitioning for hierarchical learning of high-dimensional
pattern spaces: a learning-follows-decomposition strategy
IEEE Trans. Neural Networks 9 (1998) 822-830.

X. Jiang, A. Harvey Kam Siew Wah/ Pattern Recognition 36 (2003) 853-867 867

[9]1 S. Grossberg, Studies of Mind and Brain, Reidel, Boston,
1982.

[10] T. Kohonen, The self-organizing map, Proc. IEEE 78 (1990)
1464-1480.

[11] R.O. Duda, P.E. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[12] J.B. MacQueen, Some methods for classification and analysis
of multivariate observations, Proceedings of Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1967,
pp. 281-297.

[13] H. Spath, Cluster Analysis Algorithms for Data Reduction
and Classification of Objects, Elis Horwood Publishers, New
York, 1980.

[14] J. Moody, C.J. Darken, Fast learning in networks of locally
tuned proceeding units, Neural Comput. 1 (1989) 281-294.

[15] R.O. Duda, H. Fassum, Pattern classification by iteratively
determined linear and piecewise linear discriminate
functions, IEEE Trans. Electron. Comput. 15 (1966)
220-232.

[16] Y.H. Kong, A.S. Noetzel, The piecewise linear neural
network: training and recognition, IJJCNN90, Vol. III, San
Diego, CA, 1990, pp. 245-250.

[17] D.L. Reilly, et al., A neural model for category learning, Biol.
Cybern. 45 (1982) 35-41.

[18] S.E. Fahlman, Ch. Lebiere, The cascade-correlation learning
architecture, Advances in Neural Information Processing
System, Vol. 2, Morgan Kaufmann Publishers, Los Aleos,
CA, 1990, pp. 524-532.

[19] R.S. Sutton, Two problems with backpropagation and
other steepest descent learning procedures for networks,
Proceedings of the Eighth Annual Conference on Cognitive
Science Society, 1986, pp. 823-831.

[20] D.C. Plaut, G.E. Hinton, Learning sets of filters using
backpropagation, Computer Speech Languages 2 (1987)
35-61.

[21] N.E. Sharkey, A.J.C. Sharkey, An analysis of catastrophic
interference, Connection Sci. 7 (3) (1995) 310-329.

[22] A.R. Webb, S. Shannon, Shape-adaptive radial basis
functions, IEEE Trans. Neural Networks 9 (1998)
1155-1166.

[23] M. Riedmiller, H.A. Braun, A direct adaptive method for
faster backpropagation learning: The RPROP algorithm, IEEE
ICNN-93, San Francisco, CA, 1993, pp. 586-591.

[24] The Math Works, Inc., Neural Network Toolbox User’s Guide:
For Use with MATLAB, 1998.

[25] D. Nguyen, B. Widrow, Improving the learning speed of
2-layer neural networks by choosing initial values of the
adaptive weights, IICNN’90, Vol. 3, 1990, pp. 21-26.

[26] E.B. Baum, K.J. Lang, Constructing hidden units using
examples and queries, In: P. Lippman, J.E. Moody, D.S.
Touretzky (Eds.), Advances in Neural Information Processing
Systems, Vol. 3, Morgan Kaufman, San Mateo, CA, 1991,
pp. 904-910.

[27] K.J. Lang, M.J. Witbrock. Learning to tell two spirals apart,
Proceedings of the Connectionist Models Summer School,
1988, pp. 52-59.

[28] S.E. Fahlman, An empirical study of learning speed

in back-propagation networks, Proceedings
of the 1988 Connectionist Models Summer School, 1988,
pp. 17-26.

[29] S. Young, T. Downs, CARVE—A constructive algorithm for
real-valued examples, IEEE Trans. Neural Networks 9 (1998)
1180-1190.

[30] S. Behnke, N.B. Karayiannis, Competitive neural trees for
pattern classification, IEEE Trans. Neural Networks 9 (1998)
1352-1369.

[31] L. Prechelt, PROBEN 1—A set of neural network benchmark
problems and bench marking rules, Technical Report 21/94
Fakultdt fir Informatik, Universitdit Karlsruhe, Germany,
1994.

[32] D. Heinke, F.H. Hamker, Comparing neural networks: a
benchmark on growing neural gas, growing cell structure,
and fuzzy ARTMAP IEEE Trans. Neural Networks 9 (1998)
1279-1291.

About the Author—XUDONG JIANG received the B.E. and M.E. degree from the University of Electronic Science and Technology of
China in 1983 and 1986, respectively, and received the Ph.D. degree from the University of German Federal Armed Forces Hamburg,
Germany in 1997, all in Electrical and Electronic Engineering. From 1986 to 1993, he was a Teaching Assistant and then a Lecturer at the
University of Electronic Science and Technology of China where he received two Science and Technology Awards from the Ministry for
Electronic Industry of China. He was a recipient of the German Konrad-Adenauer Foundation young scientist scholarship. From 1993 to
1997, he was with the University of German Federal Armed Forces Hamburg, Germany as a scientific assistant. From 1998 to 2002, He was
with the Centre for Signal Processing, Nanyang Technological University, Singapore, first as Research Fellow and then as Senior Research
Fellow. Currently he is a Senior Member of Research Staff and appointed as research leader for project Fingerprint Recognition at the
Laboratories for Information Technology, Singapore. His research interest includes pattern recognition, neural networks, image processing,
computer vision, biometrics, adaptive signal processing and spectral analysis.

About the Author—ALVIN HARVEY KAM SIEW WAH received his B.E. (Electrical) degree with 1st Class Honours from the University
of Malaya, Malaysia, in 1996, graduating top of his class. He later obtained his Ph.D. degree in the area of computer vision in 2000, from
the University of Cambridge, United Kingdom where his studies was fully funded by the Cambridge Commonwealth Trust, Trinity College
and the Kuok Foundation. He is currently an associate research member and research leader at the Laboratories of Information Technology,
Singapore. His research interest includes computer vision, machine learning, intelligent systems and artificial intelligence.

	Constructing and training feed-forward neural networksfor pattern classification
	Introduction
	Local training clusters (LTC) algorithm
	Network fine-tuning with the global training set
	Experimental results
	The double spiral problem
	A multi-model classification problem
	Glass problem in Poben1 data sets

	Conclusion
	References

