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Abstract

A new approach of constructing and training neural networks for pattern classi$cation is proposed. Data clusters are generated
and trained sequentially based on distinct local subsets of the training data. Obtained clusters are then used to construct a
feed-forward network, which is further trained using standard algorithms operating on the global training set. The network
obtained using this approach e6ectively inherits the knowledge from the local training procedure before improving on its
generalization ability through the subsequent global training. Various experiments demonstrate the superiority of this approach
over competing methods. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Neural networks are well known as powerful tools in
the area of pattern classi$cation. In principle, multi-layer
feed-forward networks with just a single hidden layer are
universal approximators for arbitrary $nite-input environ-
ment measures. This however does not imply that a neural
network can easily learn the underlying functional mapping
between the input data and the desired output. In fact, the
main drawbacks of neural networks are problems associated
with local minima and the slow convergence of the learn-
ing process. To tackle these problems, neural networks are
increasingly using clustering techniques to reduce learning
complexity.

A cluster can be modeled by a hypersphere represented
by its center, i.e., the “prototype” and its radius, which de-
termines the “region of inBuence” of the cluster. Prototypes
used in initializing the weights of back propagation networks
are known to yield reductions in training time [1]. Vari-
ous clustering techniques have also been used to reduce the
number of neurons in radial basis function and probabilistic
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neural networks [2–7]. In Ref. [8], a multi-objective genetic
algorithm was employed to partition the pattern space into
hyperspheres for mapping onto a hierarchical neural net-
work to facilitate subsequent learning. In addition to these
approaches devoted to reduce learning complexity and the
number of hidden nodes, several existing neural network
learning algorithms can themselves be regarded as some kind
of clustering methodology, for example competitive learn-
ing [9], self-organizing map and learning vector quantiza-
tion (LVQ) [10]. It is therefore quite evident that clustering
techniques form the core learning procedure for numerous
neural network models.

Traditional clustering methods [11–14] placed adjacent
samples of the training set in a single cluster without tak-
ing into account their class assignments. The obvious draw-
back of these approaches is the missing class membership
information, which is crucial for any classi$cation learning
procedure. Duda presented a training algorithm for cluster
prototypes [15] while the LVQ approach [10] modi$es the
position of the prototypes through a training procedure on
all input data. Both these algorithms require the number of
prototypes to be de$ned and good initialization of the pro-
totype values before training. Kong proposed a variant of
these basic paradigms [16]. All these methods result in piece-
wise linear classi$ers. The generalization capability is thus
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relatively poor. The distribution of the prototypes approx-
imates the distribution of the learning data. This results in
that each prototype of one class represents a cluster that en-
closes roughly equal number of learning samples. To form
a complicated decision boundary, a large number of pro-
totypes are therefore needed to precisely approximate the
training data distribution. In RCE approach [17], prototypes
can neither be modi$ed nor removed, but any misclassi$-
cation reduces the scope of the prototype vector. Thus, the
RCE clustering technique does not minimize the number of
clusters that a particular classi$cation task requires. Musavi
meanwhile presented a clustering algorithm [5] to reduce
the number of nodes of RBF networks. As clusters are re-
stricted from enclosing any samples of the other classes, this
technique usually leads to a large number of clusters.

In view of the drawbacks of methods discussed above,
we present an eOcient iterative locally trained clustering
(LTC) technique, which generates clusters sequentially,
moves cluster’s centers generally away while enlarging
their scope towards the Bayes decision surfaces by us-
ing local subsets of the training data. Clusters therefore
grow to contain more and more samples within the Bayes
decision region during training. The procedure for train-
ing a cluster is based on a local subset of training data.
Thus, the complex training data-structures that are far from
a cluster will not increase the complexity of the train-
ing procedure for this cluster. The ground ideas of this
training procedure are decomposing a complicated data
structure of the whole training set into a number of sim-
ple subsets, modifying and enlarging clusters to let them
capture training samples as more as possible so long as the
clusters are within the Bayes decision region. Therefore,
this procedure simpli$es the training and minimizes the
number of clusters. The obtained clusters are then used
to construct a feed-forward neural network, which con-
tains piecemeal knowledge obtained from the individual
local learning procedures. Finally, all the individual pieces
of knowledge are integrated and generalized by training
the constructed network using the entire set of training
data. The resulting locally and globally trained (LGT)
network is then applied on several benchmark classi$ca-
tion problems to access its performance and compare it
with other representative clustering approaches and neural
networks.

2. Local training clusters (LTC) algorithm

Consider a training data set withM classes C=C1∪C2∪
· · · ∪ CM , where C is a set of N -dimensional pattern fea-
ture vectors X = (x1; x2; : : : ; xN )T whose class memberships
are known. For each class Cm, we de$ne its inverse class
as Cmo = C − Cm. Let p(X |Cm) and p(X |Cmo) denote the
conditional probability density functions of X belonging to
class Cm and Cmo, respectively. The ith hypersphere clus-
ter Cm

i of the mth class Cm is represented by its center or

prototype Vm
i and its radius rmi . The simplest measure of

similarity between samples X and cluster’s center is the Eu-
clidean distance ‖ • ‖. A sample X is a member of Cm

i , i.e.
X ∈Cm

i , if and only if

‖X − Vm
i ‖6 rmi : (1)

Suppose the number of samples in cluster Cm
i is nmi .

It should be noted that a cluster Cm
i could enclose sam-

ples from class Cm as well as its inverse class Cmo. Let
Rm
i and Fm

i be the two subsets that enclose the “correct”
and “wrong” samples of cluster Cm

i , respectively, i.e.
Rm
i = {X |X ∈Cm

i ∩ Cm}; Fm
i = {X |X ∈Cm

i ∩ Cmo}. The
mean value and the number of learning samples in sub-
sets Rm

i and Fm
i are denoted by Mrmi ; nr

m
i and Mfm

i ; nf
m
i ,

respectively.
The training procedure for clusters should move their

centers Vm
i away while expanding their radius rmi towards

the Bayes decision surfaces in the hope that clusters can
grow to enclose more samples of its own class within the
Bayes decision region. For most practical problems, we can
assume that in the decision region of class Cm there are a
higher probability density for class Cm and a lower proba-
bility density for class Cmo in the region far away from the
Bayes decision surfaces than that near the Bayes decision
surfaces. It is therefore a right way to modify a cluster Cm

i

by moving its center to where there are a higher probability
density of its own class and a lower probability density of
its inverse class. It is easy to see that Vm

i is the geometric
center of cluster Cm

i and Mrmi and Mfm
i are the centers of

gravity of the subset Rm
i and Fm

i , respectively. Thus in most
cases:

p(X |Cm)|X=Mrmi
¿p(X |Cm)|X=Vm

i
(2)

and

p(X |Cmo)|X=Mfm
i
¿p(X |Cmo)|X=Vm

i
: (3)

Formulas (2) and (3) are de$nitely true at least if the two
conditional probability densities vary monotonously in the
region of inBuence of the cluster. Therefore, cluster centers
Vm
i should be drawn towards Mrmi and away from Mfm

i in
the hope that the cluster can enclose more samples of the
correct class Cm and less samples of the inverse class Cmo.
The cluster radius rmi could then be enlarged somewhat since
the cluster center might be drawn away from the Bayes
decision surface.

The training data set Ca for training the $rst cluster of a
class is the entire training set C. We $rst assign an arbitrary
sample Xr of class Cm to be a cluster center Vm

i ; then search
the nearest neighboring sample Xf of the inverse class and
let the initial cluster radius rmi = ‖Xf − Vm

i ‖. In this way,
a clusterCm

i is generated with nrmi ¿ 1 and nfm
i =1. Initially,

let Vm
i (t) = Vm

i ; r
m
i (t) = rmi and a parameter j(t) = 0. The

proposed iterative LTC algorithm for training one cluster is
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as follows:

Step 1: Vm
i (t+1) = Vm

i (t)+ lr1
[
nrmi (t)
nmi (t)

[Mrmi (t)

−Vm
i (t)]− nfm

i (t)
nmi (t)

[Mfm
i (t)−Vm

i (t)]
]
:

(4)

Step 2: rmi (t + 1) = rmi (t) + lr2(t)�‖Vm
i (t + 1)

−Vm
i (t)‖+ �: (5)

Step 3: If nmi (t + 1)6 nmi (t)

then lr2(t + 1) = 1:2lr2(t):

if [nrmi (t + 1)− nrmi (t)]

¡ [nfm
i (t + 1)− nfm

i (t)]

(6)

then



lr2(t + 1) = 0:9lr2(t)

rmi (t + 1) = rmi (t)

j(t + 1) = j(t) + 1:

(7)

Step 4: if [nrmi (t+1)−nrmi )]¿[nfm
i (t+1)−nfm

i )]

then

{
Vm
i = Vm

i (t + 1)

rmi = rmi (t + 1):
(8)

Step 5: if j(t + 1)6 Ts and (Ca − Cm
i ) �=�

then (t + 1) ⇒ t and goto step 1;

else stop training this cluster:

lr1 and lr2(t) are the learning rates and generally
0¡ lr1; lr2(t = 0)6 1: � is a very small positive constant
that is used to ensure rmi (t + 1)¿rmi (t) after step 2 even if
Vm
i (t + 1) = Vm

i (t). The cluster is iteratively trained until it
either encloses all samples in the training set Ca or cannot
be enlarged for Ts times of modi$cation.

The detailed rationales for each processing step are as
follows. Step 1 modi$es the cluster center toward the cen-
ter of mass of its own class and away from the center of
mass of its inverse class with learning rates weighted by
the corresponding numbers of samples nrmi (t) and nfm

i (t),
respectively. In most cases, especially if the cluster is near
the Bayes decision surface, the cluster center will be moved
away from the Bayes decision surfaces. Although this is not
always true, step 1 at least attempts, only with the knowl-
edge of the data distribution within the cluster, to enclose
more samples of its own class and less samples of its inverse
class. Step 2 enlarges the cluster in the hope of that the clus-
ter can be enlarged somewhat without exceeding the Bayes
decision surfaces since step 1 may move the cluster center

away from the Bayes decision surfaces. Since this is not al-
ways successful, step 3 controls the learning parameters and
the cluster growing process. Speci$cally, the learning rate
lr2(t) will increase if the modi$ed cluster does not enclose
more samples after step 2. This is important since the train-
ing samples are discretely distributed and the scale-space
of training data might be quite di6erent for di6erent learn-
ing tasks. If there exist training samples outside the cluster,
Eq. (6) ensures the cluster after step 2 enclosing more sam-
ples after some numbers of iterations. If the enlarged clus-
ter increases its inverse class samples more than the correct
class ones, the learning rate lr2 will be decreased, the cluster
not enlarged and the counter j(t) incremented by one. The
cluster will however still be modi$ed to reBect its new data
composition in the hope that this will lead to successful en-
largement of the cluster in the next or following iterations.
However, this is not de$nitely true in every case. Therefore,
step 4 records successful modi$cations of the cluster dur-
ing the training procedure and the $nal trained cluster pa-
rameters are Vm

i and rmi instead of Vm
i (t) and rmi (t). Step 4

is important because the training procedure does not guar-
antee for each training iteration to get a better cluster than
before. It ensures the best cluster parameters, in the sense
of the largest value of (nrmi − nfm

i ), to be recorded during
the training procedure. Finally, step 5 provides the stopping
criterion for the procedure of training a cluster, i.e. training
will terminate if the cluster encloses all samples of the train-
ing set Ca or there is no cluster enlargement for Ts times.
Otherwise, the procedure will repeat from step 1 through 5.
Thus, given a limited value of Ts, the training procedure is
going to converge for a $nite training set. It is worth noting
that the number of learning iterations is adaptive and typi-
cally di6erent for each cluster.

We wish to point out that this training algorithm may
not necessarily be the best method for every type of data
distribution. It however provides a simple, fast and rational
procedure to capture as many correct training samples as
possible to form a local decision region. It may be possible
to devise more sophisticated cluster models but this will lead
to a signi$cant increase in training time with no guarantee of
performance improvements. Furthermore, the learning rates
lr1 and lr2 provide the mechanism to adjust the trade-o6
between the amount of training data incorporated into the
cluster for each iteration and the total training time involved.
For our experiment, we utilized a predetermined constant
value for lr1 while lr2 increases and decreases based solely
on step 3 of the training procedure.

Fig. 1 illustrates a one-dimensional example showing the
operation of the LTC algorithm in di6erent regions with
dissimilar data distribution. p(Cm) and p(Cmo) are the a
priori probabilities of occurrence of classes Cm and Cmo,
respectively while DR is the Bayes decision region of class
Cm. The feature space is divided into 5 regions, R1 to R5,
as shown in Fig. 1.

If a small cluster for class Cm is initially generated within
the region R2 or R4, or around the boundaries between R1
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Fig. 1. Examples of the LTC training procedure in di6erent regions.

and R2 or R4 and R5, Eqs. (4) and (5) will drag the cluster
center away from the Bayes decision surfaces while enlarg-
ing the cluster size (as illustrated by Cm

1 (t), C
m
1 (t + 1) and

Cm
1 (t+2) in Fig. 1). Conversely, if a small cluster for class

Cm is generated within the region R3, or between R2 and
R3 or R3 and R4, the cluster will still be enlarged by the
training procedure even though the cluster center may not
necessarily be dragged away from the Bayes decision sur-
faces (as illustrated by Cm

2 (t); C
m
2 (t + 1) and Cm

2 (t + 2) in
Fig. 1). When a cluster grows to a certain size, modi$cations
of the cluster may cause its region to exceed the Bayes de-
cision surfaces even if it is not enlarged. However, the next
modi$cation of the cluster may draw it away from the deci-
sion boundaries while further enlarging the cluster. Exam-
ples Cm

3 (t); C
m
3 (t+1) and Cm

3 (t+2) in Fig. 1 illustrate this
case. After a number of iterations, the region of inBuence of
a cluster may approximate the Bayes decision region DR.
Even if a cluster Cm

i could not grow large enough to cover
the decision region when its training procedure terminates,
training samples of Cm outside the region of inBuence of Cm

i

but within DR will generate other clusters, which together
with Cm

i will approximate the whole decision region.
If an undesired extremely small cluster for class Cm is

generated within the region R1 or R5, it will not be enlarged.
Every updating iteration will likely result in the condition
of Eq. (7) to be true. The training procedure will therefore
terminate very fast and the cluster will remain very small
if the cluster is not moved out of the inverse class regions.
These extremely small clusters will be discarded from the
$nal cluster set. This is an important step especially in the
cases where samples of di6erent classes are heavily over-
lapping. For example in Fig. 1, a large number of extremely
small clusters for class Cm could be generated in regions R1
and R5. This will not only unnecessarily increase the num-

ber of hidden units of the neural network constructed later
on but also lead to over-$tting and consequently, poor gen-
eralization. Unfortunately, there is no general satisfactory
method to determine the minimum acceptable cluster size if
one has only the training set and no other knowledge about
the data. A similar problem is that one cannot determine the
optimal k for k-nearest neighbor classi$er to perform the
best generalization if only a training data set is available.
For our experiments, clusters will be discarded if their num-
ber of correct samples nrmi is smaller than a predetermined
minimal value nrmin.
Having trained Cm

i , the set of correct samples within the
cluster Cm

i (all X; X ∈Rm
i ) is removed from the training set

Ca (Ca − Rm
i ⇒ Ca). The algorithm then generates and

trains another cluster Cm
i+1 for class C

m, using the same pro-
cedure as before but now using the reduced training set. This
procedure will be continued until there are no samples of
class Cm left in the remaining training set. Then, clusters of
other classes are generated and trained based on the whole
training set Ca = C, using the same procedure. Fig. 2 illus-
trates the Bowchart of the proposed LTC training procedure
where qm is the number of clusters generated for class Cm.
The above-proposed LTC algorithm generates clusters se-

quentially, trains each cluster iteratively using local data
within the cluster. It decomposes a complex learning task
represented by the entire training data set into a number of
simple sub-problems operating on small local training sets.
Each cluster captures a piece of knowledge eOciently and
rapidly without being sidetracked or a6ected by training data
beyond the local vicinity of the cluster. Therefore, this train-
ing procedure overcomes problems such as Moving-target
or Herd-e6ect [18], Crosstalk [19,20] and Catastrophic in-
terference [8,21], which often occur in monolithic network
learning. The LTC training algorithm generally minimizes
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Fig. 2. Flowchart of the LTC training procedure.

the number of clusters for a typical classi$cation task in
comparison to some other clustering-based approaches. This
will reduce the resultant neural network size as well as in-
crease its generalization ability. However, as the algorithm
uses hypersphere clusters, suOciently anisotropic decision
regions might result in larger number of clusters with sub-
sequent adverse e6ects on network size and generalization
ability.

The LTC algorithm produces a series of clustersCm
i repre-

sented by their centers Vm
i , regions of inBuence r

m
i and class

membership m. Based on the trained clusters, a two-layer
feed-forward neural network (called the LTC network) can
be constructed with threshold transfer functions as shown
in Fig. 3. The $rst layer classi$es input samples to various
clusters by the weights Vm

i and the thresholds rmi . Each hid-
den node that represents a cluster becomes activated if and
only if

− ‖X − Vm
i ‖+ rmi ¿ 0 (9)

as the chosen threshold transfer function is given by

thd(arg) =

{
1 if arg¿ 0;

0 otherwise:
(10)

The second layer combines all clusters with the same class
membership into one class. The weights w2

ms between the
hidden nodes s and output nodes m are assigned to be 1 if
the cluster s has class membership m; otherwise, they take
the value of −1. The thresholds b2ms are set to be −0:5. This
assignment of network structure facilitates further global
training of the network as detailed in the next section.

The LTC algorithm and network has several limitations
that need to be addressed. Firstly, the local training proce-
dure may produce sub-optimal placements of cluster centers.
Secondly, due to its dependence on hypersphere clusters,
the LTC network can only form piecewise spherical deci-
sion regions, which may leave holes (regions not covered
by any cluster) or produce some conBict regions (regions
covered by clusters of di6erent classes). These limitations
degrade the generalization performance of the network. For-
tunately, the drawbacks could be overcome by $ne-tuning
the network using standard algorithms used in feed-forward
neural networks and operating on the global set of training
data. At this training stage, each training sample will con-
tribute to the modi$cation of each neuron parameter of the
constructed network, thereby enhancing its overall general-
ization ability.
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Fig. 3. LTC neural network constructed with clusters.

Fig. 4. Clusters represented by the threshold functions (—) and (a) Gaussian basis functions with hmi = 1(· · ·); 0.5(-·-·); 0.125(- -) for
rmi = 0:5, (b) and (c) sigmoid functions with tmi = 10(· · ·); 20(-·-·); 80(- -) for rmi = 0:5 and 0.125, respectively and (d) tmi = 160(· · ·);
320(-·-·); 1280(- -) for rmi = 0:125.

3. Network �ne-tuning with the global training set

At this training stage, it is necessary to use “soft” nonlin-
ear transfer functions such as the Gaussian function used in
RBF networks or the sigmoid function used in multi-layer
perceptrons (MLPs). In the LTC network, a cluster Cm

i is
represented by the output of a hidden unit with the hard
threshold function

omi = thd(−‖X − Vm
i ‖+ rmi ): (11)

If a Gaussian basis function is used in the network, a cluster
will be represented by

omi = exp(−‖X − Vm
i ‖2=hmi ); (12)

where hmi is a smoothing parameter, which controls both
the radius of the cluster and the steepness of the transfer
function. This implies that an excessively Bat Gaussian
function must be used to represent a large cluster. Similar
criticisms and analysis of related basis functions for RBF
networks were presented in Ref. [22]. Fig. 4a illustrates
a cluster (Vm

i = 1; rmi = 0:5) represented by a threshold

function and Gaussian functions with di6erent smoothing
parameter values.

If a sigmoid function is used, the cluster can be then
represented by

omi =
1

1 + exp(−tmi (−‖X − Vm
i ‖2 + (rmi )2))

; (13)

where tmi , the temperature parameter, controls the steepness
of the function. The cluster radius and function steepness
can thus be independently controlled using the parameters
rmi and tmi , respectively. Fig. 4b compares sigmoid functions
with di6erent smoothing parameter values. It is easy to see
that the sigmoid function can arbitrarily accurately approx-
imate the threshold function if the smoothing parameter is
suOciently large. This is but not the case for Gaussian func-
tion. Comparing Fig. 4a and b, it is obvious that the sigmoid
function does a better job of representing a cluster than the
Gaussian function. This provides the essential motivation
for selecting the sigmoid function as the basis for the global
training.

Although large values of tmi has the network well inherit-
ing the characteristics of the LTC network, too large values
of tmi would result in a network almost the same as the LTC
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network with hard threshold functions. Consequently, the
network would lack the Bexibility needed to $nely tune the
weights to produce the $nal enhanced LGT network. Con-
versely, too small values of tmi results in the network deviat-
ing too far from the LTC network leading to a slow rate of
global learning. Furthermore, the values of the smoothing
parameter tmi should be adaptive for each hidden unit due to
the di6erent sizes of clusters involved. Fig. 4c depicts sig-
moid functions with the same values of tmi as in Fig. 4b but
now used to represent a cluster with rmi of 0.125 (1=4 times
as large as that in Fig. 4b). It is obvious that the functions
in Fig. 4b and c appear starkly di6erent despite possessing
the same values of tmi . We thus need to normalize the tem-
perature parameter tmi with respect to the cluster size. This
is achieved using the following heuristic formula:

tmi =
sc

(rmi )2
; (14)

where sc is a constant and empirical studies conclude that
16 sc6 5 produces good results.

Fig. 4d illustrates sigmoid functions with values of tmi 16
times as large as that used in Fig. 4c for a cluster with size
of 1=4 times as large as that in Fig. 4b. We believe that
if we select a smoothing parameter for a large cluster as
in Fig. 4b, the choice of the smoothing parameter in Fig.
4d is more reasonable than in Fig. 4c for a small cluster.
Eq. (14) provides the means of e6ectively using the nonlin-
ear sigmoid transfer function for every hidden node. For the
output layer we simply assign the smoothing parameters to
be ones.

In order to use standard algorithms (for example, BP and
its various variants, Quickprop and Rprop) to train the net-
work, it is convenient to use dot products instead of cal-
culating Euclidean distances. This can be achieved without
any loss of information by adding an additional compo-
nent to the input vector of the network. We $rst convert the
N -dimensional input vector X to an (N + 1)-dimensional
vector X 1 such that

X 1 = [X T; ‖X ‖2]T: (15)

Then de$ne

V ′m
i = [(Vm

i )
T;−1=2]T (16)

and

gmi = 1
2 [(r

m
i )

2 − ‖Vm
i ‖2]: (17)

Since

− ‖X − Vm
i ‖2 + (rmi )

2 = 2(Vm
i )

TX − ‖X ‖2

−‖Vm
i ‖2 + (rmi )

2 (18)

we have samples X ∈Cm
i if and only if

(V ′m
i )TX 1 + gmi ¿ 0: (19)

Although (19) with dot product conducts the same func-
tion as (9) with Euclidean distance operation, the weights
modi$cation in the later global training may have (19) de-
viating the Euclidean distance operation. This implies that
the introduction of the dot product may give the LGT net-
work more freedom for further training than keeping the
Euclidean distance operation in the LGT network. This will
be illustrated by examples of weights modi$cation and non-
spherical decision regions of the LGT network in the next
section.

In practice, we multiply the weights and thresholds of the
$rst layer by the smoothing parameter obtained in Eq. (14)
and use the standard sigmoid transfer function with the unit
smoothing parameter, which simpli$es the global training
procedure. The weight vectors W 1

s and the thresholds b1s of
the $rst layer are therefore initialized as follows:

W 1
s = tmi · (V ′m

i )T; (20)

b1s = tmi · gmi : (21)

with

s = i +
m−1∑
j=0

qj; i6 qm; q0 = 0: (22)

The weights w2
ms of the second layer between the hidden

nodes s and output nodes m are given by

w2
ms =




1 if
m−1∑
j=0

qj ¡ s6
m∑
j=0

qj

−1 others

(23)

while the thresholds b2ms are set to be −0:5.
Now our LGT network is constructed (initialized) with

the dot product and the sigmoid transfer functions. The con-
structing procedure uses all information of the clusters ob-
tained from the LTC algorithm (Vm

i ; r
m
i ; qm and the class

membership of the cluster). After this procedure, the net-
work can be further trained with various standard methods
(such as the BP, Quickprop or Rprop algorithms) by us-
ing the global set of training data. The $nal result is an en-
hanced LGT network. As the global training is only used
to improve the generalization performance of the network,
only few training epochs are needed while the e6ective ini-
tialization procedure reduces the problem of local minima.

If the cluster radius is controlled during LTC training such
that each cluster contains no false learning samples and all
clusters are used to construct the network, the least mean
squared error of the LGT network can be made arbitrarily
small with a suOciently large value of sc. This means that
the LGT network could overcome the problem of local min-
ima. However, a small least mean squared error does not al-
ways equate to a small classi$cation error on an independent
test data set. In summary, to achieve optimal generalization
performance, one should allow clusters to enclose samples
of their inverse class, discard extremely small clusters and
select a reasonable value for the constant sc.
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4. Experimental results

This section illustrates the properties of the proposed LTC
and LGT networks through several numerical experiments.
It shows the placements and sizes of the clusters trained by
LTC algorithm and the improvement of decision boundaries
with global training and comparing training and classi$ca-
tion performance with the K-means and LVQ1 [10] cluster-
ing algorithms as well as networks trained with the Rprop
algorithm [23]. Rprop algorithm was selected for the global
training of the LGT network since it is a gradient based
method that has fast convergence properties compared to
many other gradient based algorithm. Learning procedures
were simulated by using MATLAB 1 and MATLAB’s Neu-
ral Network Tool [24] on a Pentium IV 1:5 GHz PC.

For the LTC algorithm, the following parameters were
$xed for all experiments: lr1= lr2(0) = 0:5; Ts=20. Only
the parameter nrmin for the LTC algorithm and the con-
stant sc for the LGT network were individually chosen for
each experiment. We used the Rprop algorithm for global
training of the LGT network with default training parameter
values provided by MATLAB: learning rate lr=0:01, incre-
ment to weight change delt inc = 1:2, decrement to weight
change delt dec = 0:5, initial weight change delta0 = 0:07
and maximum weight change deltamax = 50:0 [24].

For a fair comparison, the Rprop algorithm was also used
to train the MLP using sigmoid transfer functions and a
single hidden layer, which were initialized with the
Nguyen–Widrow initialization algorithm [25]. For termi-
nology simplicity, we will call this the Rprop network.
Training parameters are the same as those used for the LGT
network except the number of the hidden nodes and training
epochs. To compare the proposed LTC clustering algorithm
with other representative clustering methods, K-means and
LVQ clustering algorithm were also implemented in the ex-
periments. We selected K-means and LVQ algorithms for
comparison because they are well-known clustering meth-
ods and few parameters are required to be set by the user.
For K-means and LVQ algorithm, the number of clusters
for each class was assigned in proportion with the number
of training samples for the class. Cluster centers for each
class were initialized with Gaussian distributed random
vectors with the same mean and variance as the training
data composition for the class. For the K-means algorithm,
each class was trained using only samples of their own
class. The training will stop if the update of the clusters
does not change cluster centers any more. After training
with K-means algorithm, the 1-NNK (nearest neighbor
classi$er) with all trained clusters as its prototypes was
used for classi$cation. For LVQ training, training samples
were presented to the network in random as this seems to
produce better results.

1 MATLAB is a registered trademark of The MathWorks, Inc.

To compare the proposed LGT network with networks
constructed by LVQ and K-means clusters, each K-means
and LVQ cluster was assigned a radius equal to half the
distance between its center and the center of the nearest
cluster that has di6erent class membership. Clusters with
these assigned radii were then used to construct a network
for global training in the same way used for the proposed
LGT network described in Section 3. For all training results,
we report the mean values obtained from 50 repetitions. 2

For reference, the test data were classi$ed by the 1-NNK
with all training samples as prototypes.

4.1. The double spiral problem

The double spiral problem is a common benchmark for
connectionist learning algorithms. According to Baum and
Lang [26], a 2-50-1 BP network seems unable to $nd a
correct solution to this problem. A 2-5-5-5-1 network with
shortcut connections solved this problem but only after
20,000 training epochs using the BP algorithm [27], the
resultant decision region is depicted in Fig. 5a. Fahlman’s
Cascade-Correlation meanwhile yielded correct solutions
using between 12 and 19 hidden nodes after 1700 training
epochs [28] with the decision region shown in Fig. 5b.
Denoeux and Lengelle initialized the back propagation net-
work with prototypes and solved this problem with a 3-20-1
network [1]. Perfect classi$cation has been achieved after
1200 epochs of the accelerated back propagation algorithm
with the associated decision region illustrated in Fig. 5c.

The LTC network was applied to the double spiral prob-
lem of 194 samples. For this two-class problem, we let the
LTC algorithm generate clusters for only one class and cre-
ate a network with one output node. Since the task is to
achieve a perfect classi$cation, the cluster radii were reset
after training that they enclosed only correct samples and all
clusters were reserved (i.e. nrmin=1). An example of cluster
placement by the LTC algorithm is illustrated in Fig. 6a. For
this LTC network, regions inside the clusters are classi$ed
as one class and regions outside as the other class.

LGT networks with sc = 2 were trained using the Rprop
algorithm. All networks in our 50 trials achieved perfect
classi$cation only after 50 epochs. An example of the de-
cision region produced by the LGT network is depicted in
Fig. 6b. The improvement of the decision region comparing
to Fig. 6a is evident. By setting sc = 1:5, we get an almost
perfect spiral decision region as shown in Fig. 6c after 80
epochs of training.

Table 1 reports the mean values of the training results of
50 trials of running for the LTC, LGT, Rprop, K-means and
LVQ algorithms. While no training trial of Rprop(1) and
Rprop(4) yielded the correct solution, 23 trials of Rprop(2)
and 36 trials of Rprop(3) achieved perfect classi$cation.
Two examples of decision regions of Rprop networks that

2 Examples of decision regions illustrated in the paper are ob-
tained on a particular random run.
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Fig. 5. Decision regions of (a) 2-5-5-5-1 network with shortcut connections and 20 000 epochs of BP training [27], (b) Cascade-Correlation
with1700 epochs of training [28] and (c) 3-20-1 initialized network with 1200 epochs of accelerated BP training [13].

Fig. 6. (a) Cluster placement of the LTC algorithm for the double spiral problem with 194 points; decision regions of LGT network of 31
hidden nodes with (b) sc = 2 and 50 epochs of Rprop training and (c) sc = 1:5 and 80 epochs of Rprop training.

Table 1
Training records of the double spiral problem

Task Networks=Algorithms Numbers of Training time Classi$cation Examples of
hidden nodes errors (%) generalization

Epochs Time (s)

Spiral of LTC 31.17 — 0.26 0 See Fig. 6a
194 points LGT(sc = 2=1:5) 31.17 50=80 0.79=1.05 0=0 See Figs. 6b=c

Rprop(1)=(2) 31 4000=5000 44.2 =54.8 4.15=1.03 —=See Fig. 7a
Rprop(3)=(4) 40 4000=3000 60.4= 46.2 0.42=1.96 See Fig. 7b=—
K-means 32=64=96 10=12=6 0.33=0.44=0.36 29.9=24.7=13.4 —
LVQ 32=64=96 300 192=245=304 26.3=18.6=5.78 —
K-means-LVQ 32=64=96 10=11=9-300 193=246=305 20.6=6.86=5.27 —
K-means-LVQ-Rprop 64 10-300-100 248 0.52 See Fig. 7c

Spiral of LTC=LGT(sc = 1:5) 32.36 —=80 0.41=2.58 0=0 See Figs. 8a=b
776 points Rprop(5)=(6) 32=40 5000=5000 132=157 1.97=1.35 —=See Fig. 8c

K-means-LVQ 34=68=102 41=28=34-300 769=1023=1292 15.2=2.45=1.93 —
K-means-LVQ-Rprop 68 31-300-100 1034 0.87 See Fig. 8d
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Fig. 7. Decision regions of Rprop networks with (a) 31 hidden nodes and 5000 epochs of training, (b) 40 hidden nodes and 4000 epochs
of training and (c) of K-means-LVQ-Rprop network with 64 hidden nodes, sc = 1:5 and 10-300-100 epochs of training.

Fig. 8. (a) Cluster placement of the LTC algorithm for the spiral problem with 776 points; decision regions of (b) LGT network with 32
hidden nodes, sc = 1:5 and 80 epochs of Rprop training, (c) Rprop network with 40 hidden nodes and 5000 epochs of training and (d)
K-means-LVQ-Rprop network with 64 hidden nodes, sc = 1:5 and 31-300-100 epochs of training.

produced perfect classi$cation are shown in Fig. 7a and b,
which are far from a perfect spiral shape. In our experiments,
we found that much better results could be achieved if the
clusters were trained $rst using K-means and subsequently
LVQ, compared to K-means or LVQ alone, as shown by
the K-means-LVQ algorithm in Table 1. Therefore, clusters
trained by K-means-LVQ algorithm were used to construct
a network that was further trained by Rprop algorithm in
the way same as the LGT network. The training results of
such network with sc = 1:5 (called K-means-LVQ-Rprop
network) are given in Table 1 with an example of the deci-
sion region produced depicted in Fig. 7c.

To test the e6ect of increased number of training data on
the algorithms, these experiments were repeated with 776
training samples with results being reported in Table 1. Fig.
8a and b illustrate an example of the LTC cluster placement
and the LGT decision region, respectively. It is obvious that
the signi$cant increase in the training data did not upset
the performance of the LTC and LGT networks. On aver-
age, only about one additional cluster was generated even
though the number of training samples increased four fold.
The Rprop network however seems to have much more dif-
$culty with the increased training data. None of 50 training
trials of either Rprop(5) or Rprop(6) achieved perfect clas-
si$cation. Examples of the decision regions of Rprop(6)
and K-means-LVQ-Rprop with sc = 1:5 shown in Fig. 8c

and d are clearly poorer than that produced by our LGT
network.

These experiments clear demonstrate that the LGT net-
work requires signi$cantly shorter training time while
producing better generalization results compared with var-
ious competing approaches for the double spiral problem.
Although there are no test data for this problem, we can
visually compare the generalization performance of di6er-
ent methods through the decision regions produced. Some
recently developed neural network learning algorithms have
been benchmarked using the double spiral problem [29,30]
but the decision regions obtained are still inferior to the
LGT network’s performance obtained in this work.

4.2. A multi-model classi8cation problem

Data for this multi-model classi$cation problem were
generated using 16 independent two-dimensional Gaussian
random vectors X1; X2; : : : ; X16 with di6erent means, vari-
ances and a priori probabilities as shown in Table 2. Samples
generated by X1–X8 were labeled as class one while those
generated by X9–X16 were labeled as class two. For this
problem, the theoretical optimal Bayes classi$cation error is
calculated to be about 0.99% with the Bayes decision region
illustrated in Fig. 9a. The nature of the training data enables
us to test if small data clusters are ignored in the training
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Fig. 9. (a) Bayes decision region, (b) cluster placement of the LTC algorithm with nrmin = 7 for clusters of one class; decision regions of
(c) LGT network with 8 hidden nodes, sc = 4 and 30 epochs of Rprop training and (d) Rprop network with 10 hidden nodes and 2000
epochs of training.

Table 2
Parameters of Gaussian random vectors

Random Mean vectors Square roots A priori
vectors of variance probabilities

X1=X9 (−1:5; 1:5)=(0:5;−1:5) 0.0375 0:01389 (=1=72)
X2=X10 (0:5; 1:5)=(−1:5;−1:5) 2× 0:0375 2× 0:01389
X3=X11 (−0:5; 0:5)=(1:5;−0:5) 3× 0:0375 3× 0:01389
X4=X12 (1:5; 0:5)=(−0:5;−0:5) 4× 0:0375 4× 0:01389
X5=X13 (−1:5;−0:5)=(0:5; 0:5) 5× 0:0375 5× 0:01389
X6=X14 (0:5;−0:5)=(−1:5; 0:5) 6× 0:0375 6× 0:01389
X7=X15 (−0:5;−1:5)=(1:5; 1:5) 7× 0:0375 7× 0:01389
X8=X16 (1:5;−1:5)=(−0:5; 1:5) 8× 0:0375 8× 0:01389

procedure in favor of dominant clusters. 1440 samples were
generated for training and after each training process, an in-
dependent data set of 144,000 samples was generated for
testing. For such training and test data, the 1-NNK with all
training data as prototype achieved the classi$cation error
on test sets of 1.53%.

The LTC algorithm with nrmin = 7 was used to generate
clusters for a single class with an example of cluster place-
ments produced illustrated in Fig. 9b. LGT networks were
trained with sc = 1:5. However, after 50 epochs of train-
ing, the average classi$cation errors on both the training and
test set were found to be worse than that of the correspond-
ing LTC networks (see Table 3). Increasing training epochs
only reduced classi$cation errors marginally. It seems that
the LGT networks could not e6ectively inherit the knowl-
edge acquired from prior LTC training because the value set
for the smoothing constant scwas too small. This hypothesis
was further strengthen by the fact that LGT networks with
sc=4 obtained better results only after 30 epochs of global
training (see Table 3) with an example of the decision re-
gion produced depicted in Fig. 9c. The boundary improve-
ments are however only marginal when compared with the
LTC clusters generated. The Rprop(2) network meanwhile
performed quite poorly as shown by its decision region in
Fig. 9d. It could be seen that knowledge about small clus-
ters of training data could not be learned even though the
network had undergone 2000 epochs of training. Table 3

records various training and test results of Rprop networks
with di6erent number of hidden nodes and training epochs.

To make the LTC algorithm contribute more knowledge
towards the LGT network, we used it to generate clusters
for both classes. An example of cluster placements pro-
duced is shown in Fig. 10a with labeled class membership
for each cluster. As could be seen, there are quite a num-
ber of overlapping regions where data are covered by clus-
ters of belonging to di6erent classes as well as regions not
covered by any cluster at all. The LGT network success-
fully resolved these problems and produced decision re-
gion very similar to that of the optimal Bayes classi$er as
shown in Fig. 10b. For comparison, an example of the de-
cision region produced by the Rprop(5) network is shown
in Fig. 10c. Furthermore, we found that by using clusters
of both classes, the LGT networks showed no problems in
achieving good classi$cation results with di6erent values of
sc (see Table 3). For the Rprop(5–7) networks, Rprop(7)
showed e6ects of over-training with the lowest error rate
on the training set but highest error rate on the indepen-
dent test set (see Table 3). Training and test results for the
K-means, LVQ, K-means-LVQ and K-means-LVQ-Rprop
algorithms with di6erent numbers of clusters are also listed
in Table 3 while an example of the decision region using
the K-means-LVQ-Rprop approach is shown in Fig. 10d.
In order to test the e6ects of using di6erent values of

nrmin on the performance of the network, we retrained the
LTC network with nrmin = 2. For this case, 21.31 clusters
were generated on average with a cluster placement example
shown in Fig. 11a. The resultant LTC networks achieved an
average classi$cation error of 0.86% on the training set and
1.57% on the test set. Meanwhile, LGT networks with sc=
2:5 and trained with 50 epochs of Rprop, achieved an average
classi$cation error of 0.28% on the training set and 1.12%
on the test set with a decision region example shown in Fig.
11b. One sees that the LGT network also well performed
(classi$cation error on the test set of 1.12%) although it
was over-trained (classi$cation error on the training set of
0.28%).

These empirical results above clearly show a signi$cantly
lower test set classi$cation error rate for LGT networks



864 X. Jiang, A. Harvey Kam Siew Wah / Pattern Recognition 36 (2003) 853–867

Table 3
Performance of networks for the multi-model classi$cation problem

Networks Numbers of Training time Classi$. errors on Classi$. errors on
hidden nodes training sets (%) test sets (%)

Epochs Time (s)

LTC(1)= LTC(2) 8.36=16.82 — 0.21=0.39 1.21=1.02 1.72=1.64
LGT(1)(sc = 1:5=4) 8.36 50=30 1.18=0.89 1.94=0.71 2.26=1.12
LGT(2)(sc = 1:5=4) 16.82 50=30 1.93=1.34 0.56=0.62 1.05=1.09
Rprop(1)=(2) 10 1000=2000 20.5=40.38 3.31=2.22 4.12=3.06
Rprop(3)=(4) 15 500=1000 13.8=26.7 2.02=0.81 2.37=1.63
Rprop(5)=(6)=(7) 20 500=300=600 16.7=10.2=20.0 0.67=0.76=0.47 1.23=1.48=1.63
K-means 16=20=24 13=13=15 1.02=1.08=1.13 8.41=7.78=6.79 8.93=7.94=7.14
LVQ 16=20=24 50 197=206=216 9.19=7.22=5.02 10.26=7.28=5.16
K-means-LVQ 16=20=24 12=14=14=−50 198=207=217 8.11=6.71=4.14 8.66=6.85=4.27
K-means-LVQ-Rprop 24 14-50-100 225 0.63 1.52

Fig. 10. (a) Cluster placement of the LTC algorithm with nrmin = 7 for clusters of both classes; decision regions of (b) LGT network with
16 hidden nodes, sc = 1:5 and 50 epochs of Rprop training, (c) Rprop network with 20 hidden nodes and 500 epochs of training and (d)
K-means-LVQ-Rprop network with 24 hidden nodes, sc = 1:5 and 13-50-100 training epochs.

Fig. 11. (a) Cluster placement of the LTC algorithm with nrmin = 2 for clusters of both classes and (b) decision region of LGT network
with 21 hidden nodes, sc = 2:5 and 50 epochs of Rprop training.

achieved with substantially reduced training time compared
with competing Rprop, K-means and LVQ approaches. Fur-
thermore, experiments also demonstrate the robustness of
LGT networks to di6erent values of nrmin and smoothing
constant sc as long as clusters of the both classes are used
to construct the networks.

Table 4 lists the weights and biases of sample LTC and
LGT networks for this learning task. Although the di6erence
of weight magnitudes between the LTC and LGT networks
is signi$cant, knowledge transfer from the LTC network is
evident from the similar signs of corresponding weights for
both networks (exception being the biases of the $rst layer).
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Table 4
Weights and biases of the LTC and the corresponding LGT networks

LTC network trained with nrmin = 7 LGT network (sc = 1:5, after 50 epochs of Rprop training)

W 1
1 ; : : : ; W

1
16 b11; : : : ; b

1
16 W 2

1 ; b
2
1 W 1

1 ; : : : ; W
1
16 b11; : : : ; b

1
16 W 2

1 ; b
2
1

1.4885 −1.5375 0.7344 1 4.0595 −4.4564 −1.2826 −5.4293 2.3702
0.5851 −0.4952 0.6510 1 3.8401 −4.6233 −0.5018 −0.2478 2.1476
1.5412 0.5152 0.4300 1 12.6614 3.7982 −4.0975 −9.9557 8.9640

−0.4645 −1.5103 0.7812 1 0.5786 −21.2692 −0.5338 1.8863 4.7073
−1.5233 −0.4553 0.4060 1 −13.7766 −5.3244 −4.9919 −11.2169 3.5769
−0.4684 0.4956 0.3734 1 −5.8937 5.3699 −7.5615 −0.4369 13.2057
0.5076 1.4872 0.2697 1 10.1727 30.7147 −10.5127 −24.5525 15.8206

−1.5249 1.4993 0.2551 1 −35.3146 33.7207 −11.3452 −52.0506 19.2293
−0.5103 1.4867 0.7811 −1 −1.2808 4.6301 −0.3497 −1.1028 −2.0747
1.5270 −0.4998 0.3290 −1 21.4047 −5.7079 −6.9260 −17.1750 −19.5038
1.5556 1.5563 0.7352 −1 4.0272 4.4272 −1.1551 −6.3004 −4.4206

−0.4680 −0.4601 0.2621 −1 −11.2833 −9.2719 −11.3995 −2.7146 −18.7471
−1.4542 0.5229 0.6298 −1 −5.5045 6.0064 −1.5145 −3.9867 −3.6655
0.4701 0.5528 0.5524 −1 3.6045 4.4388 −4.1826 −0.8931 −7.7200
0.4986 −1.4888 0.1664 −1 26.9165 −80.7624 −27.1137 −65.8550 −15.4203

−1.4955 −1.5054 0.2757 −1 −29.7446 −29.2777 −9.6711 −44.1128 −11.6775
−0.5 −0.8172

4.3. Glass problem in Poben1 data sets

Proben1 is a collection of real world problems with
actual data [31] to benchmark neural network learning
algorithms. We particularly selected the “glass problem”
from the Proben1 data sets because it was reported to
show complex decision boundaries and heavy overlapping
of classes, which severely test the ability of a classi$er
in achieving good generalization [32]. In addition, the
glass problem is to classify the nine-dimensional data into
six classes, which is di6erent from the two previously
examined problems in Sections 4.1 and 4.2 (classifying
two-dimensional data into two classes). The problem es-
sentially lies in classifying glass based upon the description
of its splinters. For algorithm evaluation, the dataset of 214
samples was divided into three sets, i.e., the test, training
and validation sets, which are built from three di6erent par-
titions of the dataset and contain 50%, 25% and 25% of the
total data samples, respectively. This partition is applied to
three di6erent orders of the whole dataset, leading to three
di6erent sequences for training, glass1, glass2 and glass3
[31]. The 1-NNK with all training samples as prototypes
achieves test data classi$cation errors of 37.74%, 35.85%
and 22.64% for the glass1, glass2 and glass3.

In training the LTC network, we set nrmin = 2. Only
the training data sets (exclusive validation sets) were used
for cluster training and clusters of all classes were used
to construct the network. Meanwhile for LGT training, we
set sc = 3. The LGT network was trained with Rprop al-
gorithm until the least mean squared error on the valida-
tion set increased for 20 epochs. The network weights at
the minimum validation error rate were then used for the

classi$cation of the test data. This procedure was similarly
applied in the Rprop training of networks initialized with the
Nguyen–Widrow and K-means algorithm. Table 5 records
the training and test results for glass1, glass2 and glass3.

For glass3 problem, the 1-NNK achieves surprisingly
much better classi$cation error on test data than all other
classi$ers implemented in this work. Nevertheless, it could
be seen from Table 5 that our LGT approach performed
signi$cantly better for all the three glass problems than the
K-means, LVQ, Rprop and K-means-Rprop networks in
terms of classi$cation errors on both the training and test
sets. In addition, classi$cation errors on both the training and
test sets of glass1, glass2 and glass3 achieved by the LGT
network in this work are much lower than the results re-
ported in Refs. [31,32]. Although the global training epochs
of LGT networks were less than that of Rprop networks ini-
tialized with the Nguyen–Widrow algorithm, the absolute
training time of the LGT network was slightly longer for
glass2. This is due to the early stopping of the Rprop train-
ing procedure for this data set with the application of the
validation method.

5. Conclusion

A new method of constructing and training feed-forward
neural networks for diOcult pattern recognition problems
is developed. Network construction is based on using clus-
ters, which are generated and trained sequentially using the
local subsets of the training data set. The proposed local
training algorithm can rapidly learn about distinct local data
subsets without being a6ected by the complicated global
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Table 5
Performance of networks for the glass problems (glass1, glass2 and glass3)

Data sets=networks Hidden nodes Training times Classi$cation errors on Classi$cation errors on
the training set (%) the test set (%)

Epochs Times Min Mean Max Min Mean Max

1=LTC 12.17 — 0.17 15.36 21.24 31.46 33.56 36.74 42.72
1=LGT 12.17 46.75 0.61 8.41 17.61 24.30 22.64 28.04 32.71
1=Rprop 12 72.36 0.78 17.36 23.41 42.63 24.42 32.56 47.06
1=K-means 12 5.12 0.24 28.97 38.75 53.27 32.30 44.98 60.38
1=LVQ 12 50 14.02 37.38 42.52 53.27 33.19 44.38 55.73
1=K-means-Rprop 12 5.1-45.4 0.94 11.44 18.85 25.76 22.76 35.79 49.06
2=LTC 12.34 — 0.18 18.33 25.56 43.56 32.25 36.37 48.46
2=LGT 12.34 48.70 0.64 6.78 15.33 21.34 26.30 34.68 41.36
2=Rprop 12 51.83 0.62 18.84 28.54 54.47 35.96 48.74 58.15
2=K-means 12 4.74 0.21 29.31 42.61 49.25 35.85 49.17 58.49
2=LVQ 12 50 14.11 34.58 48.75 55.80 49.06 52.27 56.61
2=K-means-Rprop 12 4.7-51.2 1.02 7.55 16.56 21.98 30.19 39.44 49.17
3=LTC 12.75 — 0.17 12.34 20.05 26.53 26.42 32.43 41.51
3=LGT 12.75 46.56 0.65 10.28 14.72 21.23 25.43 31.54 40.17
3=Rprop 13 72.38 0.87 18.20 26.28 45.23 29.47 43.32 64.31
3=K-means 13 4.72 0.23 28.04 39.44 54.21 35.85 48.98 60.38
3=LVQ 13 50 14.09 37.38 43.27 57.94 52.83 60.76 79.24
3=K-means-Rprop 13 4.7-47.9 0.98 11.55 15.79 26.42 28.31 37.21 56.60

training data structure. It therefore overcomes the drawbacks
of monolithic network training methods, which depends on
the average characteristics of the entire training data set.
Given the values of its learning parameters, the algorithm
automatically determines the number of clusters, which cor-
respond to the number of hidden units of the resultant LGT
network. The number of LTC clusters tends to be minimal
since clusters are permitted to enclose samples of their own
as well as their inverse classes and the training algorithm
always attempts to have a cluster growing to enclose more
and more samples within the Bayes decision region. This
e6ectively reduces the network size besides increasing its
generalization ability.

However, since hypersphere clusters are used, the LTC
network can only form piecewise spherical decision regions
that limit the generalization ability. To overcome this draw-
back, the LTC network is converted to a network that both
inherits the knowledge of the LTC network and is capable
of further training using established training methods oper-
ating on the global training set. The resulting LGT network
converges rapidly due to its inherited knowledge with good
generalization ability from the global training.

We believe our proposed algorithm mimics the knowl-
edge discovery approach of the human brain, which typ-
ically decomposes a complicated concept or idea into
simpler subsets and learning the details of each subset seq-
uentially before integrating and generalizing all the indi-
vidual pieces of knowledge acquired. The e6ectiveness of
the LGT network has been amply demonstrated through its
superior results in terms of accuracy and learning speed

(compared with other representative clustering and learning
approaches implemented in this work) on three benchmark
problems operating on both synthetic and real data sets.
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