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Abstract

This paper presents a minutiae detection procedure based on adaptive tracing the gray-level ridge of the "ngerprint

image with piecewise linear lines of di!erent length. The original "ngerprint image is smoothed with an adaptive-oriented

smoothing "lter only at some selected points. This will greatly reduce the computational time. Each ridge in the skeleton

is labeled with a number so that each detected minutia is associated with one or two ridge numbers, which is useful for

post processing. We objectively assess the performance of this approach by using two large "ngerprint

databases. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Highly reliable automatic personal authentication is

fast becoming important in our electronically intercon-

nected society, especially for electronic commerce. Bio-

metrics is seen as an important research area that can

satisfy the high security requirement and yet easy to use.

The most widely used biometrics is "ngerprint because of

its uniqueness and immutability. In order to compare

two "ngerprints, a set of invariant and discriminating

features have to be extracted from them. It is well known

for "ngerprint research that minutiae are discriminating

and reliable features. Most "ngerprint veri"cation sys-

tems required to provide a high degree of security are

so far based on minutiae matching. Unfortunately, noise,

contrast de"ciency, improper image acquisition, geomet-

rical transformation, deformation and skin elasticity

often make reliable minutiae detection very di$cult. Spu-

rious minutiae can be produced and valid minutiae can

be hidden due to the low image quality of the "ngerprint.
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Therefore, minutiae detection is a very crucial process in

"ngerprint matching.

Various approaches for minutiae detection have been

investigated. Most of these approaches consist of a series

of processing operation: preprocessing, binarization,

thinning, minutiae extraction and post-processing.

A brief survey of the published literature in minutiae

detection can be found in Refs. [1}3]. In the preprocess-

ing, various approaches have been suggested, such as

using bandpass "lter [4], contextual/directional "lter
[3,5], directional Fourier transform "lter [6], Gabor

"lter [7] and fuzzy approach [8] to enhance or smooth

each pixel of the raw gray-level "ngerprint image. To

binarize the "ngerprint image, several thresholding

methods such as the local [4,9], dynamic [10] and adap-

tive [8] thresholding have been proposed. A number of

thinning algorithms [11}15] have been investigated to

obtain the skeleton of the ridge. A few post processing

approaches can be found in Refs. [3,5,10,16}18]. In addi-

tion, neural network based approaches were introduced

in Refs. [19,20].

Maio and Maltoni proposed a rather di!erent ap-

proach to minutiae detection [2]. They proposed an

approach that follows the ridge lines on the gray-scale

image and detects the minutiae directly from the gray-

scale image during the ridge following. Their results
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showed the superiority of this technique in terms of

e$ciency and robustness [2] as compared to the conven-

tional thresholding and thinning approaches. In our in-

vestigation of this technique we found that the e$ciency

and robustness can be further improved.

In this work, we present an improved minutiae detec-

tion approach which uses the basic idea in Ref. [2] but

di!erent from it in many details. Our approach adaptive-

ly traces the gray-level ridge of the original "ngerprint

image and applies adaptive oriented "lters to the image

only at some regions that need to be smoothed. One of

the noticeable advantages of ridge detection by tracing is

that it approximates the ridge with piecewise linear lines.

Ridge detection is therefore not pixelwise but stepwise.

Because of the large variance of the bending level of the

ridge at di!erent points, the tracing step should be adap-

tive to the bending level of the ridge. This will speed up

the tracing and at the same time maintaining the tracing

precision. Another major contribution of our algorithm

is the post-processing. Unlike most approaches, our ap-

proach is based not only on the location relationship of

the minutiae, but also the associate ridge relationship

and the certainty level of the minutiae. This is very

important for noisy "ngerprint image where a large num-

ber of spurious minutiae will be initially detected. Reli-

ably di!erentiating spurious minutiae from true minutiae

is therefore crucial for accurate "ngerprint recognition.

In addition, some "ngerprint image smoothing and en-

hancement methods are discussed because they are essen-

tial and important for the minutiae detection to be robust

with respect to the quality of "ngerprint images.

In the following sections, we will describe in detail our

minutiae detection approach. Section 2 discusses our

proposed adaptive ridge tracing algorithm. Section 3 de-

scribes the minutiae detection method based on this

adaptive ridge tracing algorithm. In Section 4 we give an

approach of post-processing to remove spurious minu-

tiae. Section 5 describes the implementation of the pro-

posed minutiae detection algorithm and the performance

of the proposed approach in a veri"cation test. Section 6

then concludes the paper.

2. Adaptive tracing the ridge of 5ngerprint

A gray-level "ngerprint image I of size H�= can be

considered as an oriented texture pattern that contains

ridges separated by valleys. Let g(i, j) be the gray value of

a "ngerprint image at pixel (i, j) and �(i, j) be the orienta-

tion at this pixel with 0)g(i, j))255, !�/2(�(i, j))
�/2 and (i, j)3I. The orientation �(i, j) represents the

ridge line local orientation at pixel (i, j) and can be

computed using one of the several methods proposed in

the literature [21}24]. We incorporate the method in Ref.

[23], which uses gradient and least-square methods to

estimate the orientation. At the same time, a certainty

level c(i, j) of the orientation �(i, j) is calculated by using

the method introduced by Jain et al. [25].

A ridge can be de"ned as a set of points along the local

orientation which are local maxima of g(i, j) relative to

sections orthogonal to the local orientation �(i, j). De-

tecting the skeleton (one pixel width ridge) is therefore

locating these local maxima.

2.1. Locating the section maximum

Given a pixel (i�, j�), (i�, j�)3I, a section set �� ortho-

gonal to the local orientation �(i�, j�) can be de"ned as

follows:

��"�(i, j)�(i, j)3I, i"i�#round(( j!j�) tan(��
�
)), j3�

�
�,

(1)

�
�
"[ j�!round(� cos(��

�
)), j�#round(� cos(��

�
))], (2)

��
�
"�

�(i�, j�)!�/2 if �(i�, j�)'0,

�(i�, j�)#�/2 otherwise,
(3)

where round( ) ) rounds its argument to the nearest integer

and � is a predetermined constant. With Eq. (3), we keep

!�/2(��
�
)�/2.

Determining a local maximum of the section set �� is

important for accurate minutiae detection as it will a!ect
the skeleton of the ridge produced in the tracing process.

This skeleton image will then be used to detect and locate

the minutiae of the "ngerprint. Noise and contrast de"-
ciency may cause breaks in the ridges, bridges between

ridges, and overall gray-level intensity variation. This will

make a simple maximum not be located at the ridge

center or worse, be located in another ridge. A large

number of spurious minutiae will therefore be produced

if proper care is not taken to minimize the location error

of the local maximum of the section set. To smooth and

enhance the "ngerprint image, various "ltering tech-

niques were proposed in the literature.

A band-pass "lter along the orientation orthogonal to

the ridge orientation can be used to separate cluttered or

linked parallel ridges. O'Gorman and Nickerson [5] and

Mehtre [3] performed image enhancement by using band

pass "lters. Jain et al. [25,26] detected the ridge with two

masks, which in principle perform some kinds of band

pass "ltering. Hong et al. [7] introduced a "ngerprint

image enhancement method that employed a Gabor "lter
together with ridge frequency estimation. They reported

a good performance enhancement. Gabor "lter actually

also performs a band pass "ltering along the orientation

orthogonal to the ridge orientation. The oriented band-

pass "lter undoubtedly increases the clarity of ridge

structure or the contrast between the ridges and valleys

and therefore gives a good visual appearance of the

image. Moreover, it is also able to separate some linked
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ridges in cases where the ridge frequency is similar to the

value estimated during the design of the band-pass "lter.
However, a "ngerprint enhancement algorithm based on

the orientated band-pass "lter may result in spurious

ridge structures. Although this can be avoided by using

the correct ridge frequency information, the exact estima-

tion of the ridge frequency is a di$cult task, especially in

the noisy regions and in the regions in which the minutiae

exist. The performance of the band-pass "lter strongly

relies on the accurate estimation of the ridge frequency.

In our experiments, the ridge frequency estimation error

may cause ridge location error, introduce false ridge

structure and consequently result in a large number of

spurious minutiae.

The employment of the band-pass "lter is aimed at

separating the cluttered or linked parallel ridges that will

produce spurious minutiae. Such spurious minutiae can

be e!ectively removed by using some features of these

minutiae in the post-processing. This will be discussed

later. Our ridge detection algorithm determines the skel-

eton ridge by searching the maximum and minimum

points of the local ridge section set while tracing the

gray-level ridge. The low contrast between the ridges and

valleys and the contrast inconsistency throughout the

"ngerprint image will not cause signi"cant inconsistency

in the correct detection of the skeleton ridge. Therefore,

sharpening of the image is not necessary for our skeleton

ridge detection although it will give a better visual ap-

pearance of the image. In contrast, image smoothing is

very important for reducing the noise, linking the ridge

breaks and having the maximal gray values of the image

located at the ridge center. In order to avoid the minutia

location error and spurious minutiae which may be

caused by band-pass "ltering due to estimation error of

the ridge frequency, we use oriented low-pass "lter to

reduce the noise of "ngerprint image and to link the small

breaks in a ridge.

Maio and Maltoni [2] smoothed the "ngerprint image

with a low-pass "lter mask typically of size 3 along the

ridge orientation and 7 along the orientation orthogonal

to the ridge orientation. However, a "lter with a short

length along the ridge orientation cannot e!ectively link

the ridge break. A "lter with a long length along the

orientation orthogonal to the ridge orientation may link

two parallel ridges that are not well separated. Therefore,

the length of the "lter along the ridge orientation should

be distinctly greater than along the orientation ortho-

gonal to the ridge orientation.

A low-pass "lter can reduce the noise, smooth the

small hole and even link the small break in a ridge if the

length of the "lter mask along the ridge orientation is

long enough or the cuto! frequency is low enough. A

one-dimensional low-pass "lter with very low cuto! fre-

quency along the ridge orientation can be employed

because the desired one-dimensional signal along the

ridge orientation is a constant in the local window. We

choose a Hanning window [27] of length N as our

low-pass "lter along the ridge orientation:

hl(n)"�
0.54!0.46cos�

2�n

N!1�, 0)n)N!1,

0 otherwise.

(4)

Each pixel of the section set �� is "ltered along the

ridge orientation by using such a one-dimensional "lter
of a long "xed length N (typically N"11).

In the orientation orthogonal to the ridge orientation,

the low-pass "lter should on the one hand, reduce the

noise and smooth the small hole while on other hand, not

link two not well-separated parallel ridges. The cuto!
frequency of the "lter along the orientation orthogonal

to the ridge orientation should be adaptive to the ridge

frequency because the desired one-dimensional signal

along the orientation orthogonal to the ridge orientation

is a sinusoidal-shape wave. This sinusoidal-shape wave,

which has the same frequency as that of the ridges and

valleys in the local window, should be allowed to pass

through the "lter.
The ridge frequency can be estimated based on the

calculation of the DFT of the one-dimensional section

set �� that is already "ltered with hl(n) along the ridge

orientation. The "ltering along the ridge orientation be-

fore the ridge frequency estimation increase the reliability

of the ridge frequency estimation. This is possible because

the "lter parameter along the ridge orientation is inde-

pendent to the ridge frequency. After the ridge frequency

estimation, the "lter parameter along the orientation

normal to the ridge orientation is adjusted adaptive to

the estimated local ridge frequency rf � or the local ridge

distance rd�"1/rf �.

We choose a Blackman window [27] of length M�#2

as our low-pass "lter of length M� along the orientation

orthogonal to the ridge orientation.

hb�(m)"

�
0.42!0.5cos�

2�m

M�#2!1�#0.08cos�
4�m

M�#2!1�,
0)m)M�#2!1,

0 otherwise.

(5)

For a Blackman window of length M�#2, the length

of the "lter is actually M� because hb�(0)"
hb�(M#2!1)"0. The "lter length M� is chosen to be

equal to round(2/3rd�). Although the "lter parameter is

also dependent on the ridge frequency, the "ltering out-

put is much less sensitive to the accuracy of the local

ridge frequency estimation as compared to that of the

oriented band-pass "lter.
The section set �� is then further "ltered along the

orientation normal to the ridge orientation. The de-
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Fig. 1. A horizontal oriented "lter (�"0).

Fig. 2. Frequency response of the "lter (�"0).

composition of the "ltering into two step, one before the

ridge frequency estimation and another after that, not

only increases the reliability of the ridge frequency es-

timation, but also reduces the computation time.

The equivalent two-dimensional oriented "lter mask of

size M��N, which is oriented horizontally to match the

horizontally oriented ridges, should be

h�(m, n, 0)"hl�n!N#1

2 � hb��m!M�#1

2 �. (6)

The equivalent two-dimensional "lters for the other ori-

entations can be calculated by rotating this horizontally

oriented "lter mask. The coe$cient of oriented "lter with

orientation � at location (m�, n�) is calculated by rotating

by angle � back to the location (m, n) on the horizontally

oriented "lter mask as follows:

�
n

m�"�
cos(�) sin(�)

!sin(�) cos(�)� �
n�

m��. (7)

Hence, each pixel g(i, j) of section set �� is equivalently

convolved with such a oriented "lter h�(m, n, �) as fol-

lows:

g�(i, j)" �������
�

����������

�������
�

����������

h�(m, n, n) ) g(i!m, j!n).

(8)

A 5�11 horizontally oriented "lter, h�(m, n, 0), is

shown in space domain in Fig. 1 and in frequency do-

main in Fig. 2.

This "lter smoothes the ridge near the point (i�, j�). The

small gaps caused by noise are smoothed and the small

breaks of the ridge caused by scar are linked. Therefore,

the "ltering accentuates the local maximal gray-level

values of the ridge and minimizes the location error of the

local maximum of the section set.

The proposed "ltering method reduces the noise, links

the ridge breaks and ensures that the maximal gray

values of the image is located at the ridge center. Further-

more, this method does not result in any spurious ridge

structure. Although the proposed method can not separ-

ate the linked parallel ridges, the spurious minutiae intro-

duced by such defect can be identi"ed and removed in the

post-processing stage. In addition, the proposed algo-

rithm decomposes the "ltering into two one-dimensional

"ltering and integrates the three procedures together:

section set building, ridge frequency estimation and "lter-
ing. This will avoid repeating some of the common com-

putation, which signi"cantly reduces the computation

time.

After the "ltering, a local maximum g�(i�
�
, j�

�
),

(i�
�
, j�

�
) 3��, which is closest to (i�, j�), can be easily found.

In addition, we "nd the local minimum g�(i�
�
, j�

�
),

(i�
�
, j�

�
)3��, of section set and de"ne

d�"g�(i�
�
, j�

�
)!g�(i�

�
, j�

�
). (9)

d� then represents the local contrast between the

smoothed ridge and valley. g�(i�
�
, j�

�
) is a point of the one

pixel width ridge line.

2.2. Adaptive tracing the gray-level ridge

So far, given a point (i�, j�) and the orientation at this

point �(i�, j�), we can "nd a ridge center point (i�
�
, j�

�
)

closest to the point (i�, j�), its smoothed gray value

g�(i�
�
, j�

�
) and local contrast d�. Initially, we assume a ridge

tracing direction at this point ��
	
"�(i�

�
, j�

�
) and then

compute the next point (i�
�, j�
�) at a step size 	� away

using

�
i�
�

j�
��"�
i�
�

j�
�
�#round�	��

sin(��
	
)

cos(�	
�
)�� (10)
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Fig. 3. Flowchart of the ridge tracing algorithm.

Fig. 4. Forming a skeleton ridge line (piece wise linear one pixel

width ridge line) by tracing the gray-level ridge.

A linear ridge tracing line ¹� from point (i�
�
, j�

�
) to point

(i�
�, j�
�) is de"ned as

¹�"�(i, j)�(i, j)3I, i"i�
�

#round( j!j�
�
) ) tan(��

	
)),

j3¹�
�
�, (11)

¹�
�
"[ j�

�
, j�
�]. (12)

The step size, 	�, of the tracing line is determined by

making the following criterion true:

g�(i, j)*g�(i�
�
, j�

�
)!
d� if [(i, j)3¹�]�[(i, j)O(i�
�, j�
�)],

g�(i�
�, j�
�)(g�(i�
�
, j�

�
)!
d�, (13)

where 
 is a constant and 0(
(1. g�(i, j) is the

smoothed gray value of pixel (i, j) obtained by using the

"lter h�(m, n) through Eq. (8).

Obviously, the length of the tracing line, 	�, is adaptive

to the change of the ridge contrast and the bending level

of the ridge. A long tracing line will be obtained if there is

little variation in the contrast and the bending level of the

ridge is low. High bending level of the ridge (possibly

facing a ridge bifurcation) or large contrast variation

(possibly facing a ridge ending) will result in a short

tracing line. Therefore, the algorithm speeds up the trac-

ing while maintaining the tracing precision.

From the point (i�
�, j�
�) we can as before build

a section set ��
� and "nd a ridge center point

(i�
�
�

, j�
�
�

), its smoothed gray value g�(i�
�
�

, j�
�
�

) and the

local contrast d�
�. The detected ridge is then approxi-

mated by a linear one pixel width ridge line, R�"
[(i�

�
, j�

�
), (i�
�

�
, j�
�

�
)]. The direction of this linear line, ��

�
,

is calculated using

��
�
"tan���

i�
�
�

!i�
�

j�
�
�

!j�
�
�, !�(��

�
)�. (14)

From the point (i�
�
�

, j�
�
�

), the ridge will be further

traced. To complete a ridge tracing, the algorithm

will start from k"0, trace the ridge in one direction

(represented with n"0) until a stop criterion becomes

true and then restart to trace the ridge from k"0 but in

opposite direction (n"1) until one of the stop criteria

becomes true. The stop criteria will be discussed later.

A ridge is said to be completely traced if the stop criteria

become true twice. To keep the ridge being traced toward

the forward direction and not backward to the already

traced side, the tracing direction is determined as follows:

�	
	

"�
�(i	

�
, j	

�
) if n"0,

�(i	
�
, j	

�
)!� if n"1 and �(i	

�
, j	

�
)'0

�(i	
�
, j	

�
)#� if n"1 and �(i	

�
, j	

�
))0

(15)

and for k'0,

��
	
"

�
�(i�

�
, j�

�
) if ��(i�

�
, j�

�
)!����

	
�)�/2,

�(i�
�
, j�

�
)!� if ��(i�

�
, j�

�
)!����

	
�'�/2, �(i�

�
, j�

�
)'0,

�(i�
�
, j�

�
)#� if ��(i�

�
, j�

�
)!����

	
�'�/2, �(i�

�
, j�

�
))0.

(16)

Fig. 3 illustrates the #owchart of the adaptive ridge

tracing algorithm while Fig. 4 conceptually shows the

adaptive tracing process in operation.
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Fig. 5. Flowchart of minutiae detection algorithm.

3. Minutiae detection

Minutiae will be detected while the ridges are traced

and the skeleton image is formed. Tracing should take

place only within the region of interest of the "ngerprint

image. The region of interest is segmented from the image

g(i, j), (i, j)3I, based on the local certainty level c(i, j) of

the orientation "eld �(i, j), which is similar to that used in

Ref. [25].

We form the region of interest by initializing the skel-

eton image s(i, j), (i, j)3S, which has the same size as I:

s(i, j)"�
0 if (i, j)3S�g(i, j)3Interest region,

1 if (i, j)3S�g(i, j) � Interest region.
(17)

After a ridge of gray-level image I is traced, the pixels

of S corresponding to the piecewise linear tracing ridge

line R� (n) (n"1, 2; k"0, 1, 2,2) are assigned with

a number m (m'1), called the ridge number, if the length

of the ridge is great than a predetermined threshold, 	
�
as

follows:

s(i, j)"m, (i, j)3R
�
(n), n"0, 1; k"0, 1, 2, 2

if �
�

�
�

	�(n)'	
�
. (18)

Let (i
�
, j

�
) denotes a pixel on a tracing ridge line R� of

the skeleton image S and N


(i
�
, j

�
) denotes a set that

contain element (i
�
, j

�
) and its eight neighbors. Let s

�
(i
�
, j

�
)

denotes the maximum value of s(i, j) for (i, j)3N


(i
�
, j

�
)

where

s
�
(i
�
, j

�
)"max


� �

(s(i, j)), for (i, j)3N


(i
�
, j

�
). (19)

If a piece of tracing ridge line R� is within the interest

region and do not intersect other already traced ridge

line, then s
�
(i
�
, j

�
)"0 for all pixel (i

�
, j

�
) on the tracing

ridge line R�.

While tracing the ridge, minutiae detection is per-

formed by checking for the stop criteria for all pixel (i
�
, j

�
)

on the tracing ridge line R�. The stop criteria are:

� Tracing exits from interest region. This will take place

when s
�
(i
�
, j

�
)"1. Tracing will stop without minutiae

extraction.

� Tracing ridge line intersects another already traced

skeleton ridge line. This will take place when

s
�
(i
�
, j

�
)"l with l'1. In this case, the intersection of

ridge l and current ridge m yields a bifurcation minu-

tiae. Tracing will stop and a bifurcation minutia

[i
�
, j

�
, ��

	
, c(i

�
, j

�
), m, l] will be recorded if �

�
�

�
	�(n)'

	
�
. The local certainty level c(i

�
, j

�
) of the orientation at

the point of the minutiae represents a certainty level of

this minutiae.

� Tracing ridge line excessively bends. When a ridge

ending occurs at (i�
�
, j�

�
), 	� will be very small and

(i�
�
�

, j�
�
�

) will be located in another ridge. Therefore,

the di!erence between the direction ��
�
and ��

	
will be

greater than the usual threshold value �
�
. In this case,

the point (i�
�
, j�

�
) yields an ending minutia. Tracing will

stop and an ending minutia [i�
�
, j�

�
, ��

	
, c(i�

�
, j�

�
), m, 0]

will be recorded if �
�
�

�
	�(n)'	

�
. According to this

criterion the ridge ending detection is independent of

the gray-level of the current region so that the tracing

can be performed on both saturated region as well as

on contrast de"cient region. The ridge ending is detec-

ted when the local maximum is not located in a rea-

sonable region of traced ridge but possibly in another

ridge. Therefore, the algorithm is robust to the gray

value and contrast inconsistency throughout the "n-

gerprint image.

The recorded ridge numbers m and l associated with

the minutia and the certainty level of minutia are used for

post-processing to remove possible spurious minutiae.

The post-processing will be discussed later. Fig. 5

illustrates a #owchart of our minutiae detection algo-

rithm. In Fig. 5, the variable sp is the search step used to

examine whether a ridge line should be traced starting

from the corresponding point. In order to ensure that all
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Fig. 6. Some typical spurious minutia structures and the tracing ridge lines.

Fig. 7. Some minutia structures not considered in the post processing of this work.

the ridges of the "ngerprint image I are traced, the value

for sp should be less than the smallest possible ridge

distance.

4. Post-processing

Minutia was detected in previous section without con-

sidering its spatial and structural relationship to other

minutiae and ridges in the neighborhood. Inadvertently,

some spurious minutiae will be initially detected. In our

minutiae detection algorithm that incorporates a

thoughtful oriented low-pass "ltering and a reasonable

limiting of the minimal ridge length have contributed to

a lower number of spurious minutiae. Isolated points and

blobs do not exist in our skeleton image. Similarly, for

extremely short ridges and small islands. However,

a wide ridge break caused by a large scar that cannot be

linked by oriented smoothing "lter, will cause a pair of

spurious ridge endings. Moreover ridge cross-connec-

tions can arise due to over ink, over press or clutter noise

and will result in spurious ridge bifurcation. In addition,

a not well smoothed ridge may result in a spur that

consists of a spurious ending and a spurious bifurcation.

These spurious minutiae can be eliminated based on their

spatial, structural and ridge relationships of the minutiae

in a neighborhood. Fig. 6(a) shows a spurious minutia

pair caused by a wide ridge break due to large scar.

Figs. 6(b)}(d) show three spurious minutia pairs caused

by ridge cross-connections due to over ink, over press or

clutter noise. Fig. 6(e) shows a spurious minutia pair

caused by a not well smoothed ridge. The gray-level

ridges associated with these spurious minutiae and the

possible tracing ridge lines with directions are shown in

the "gures.

Fig. 7 shows some other possible spurious minutia

structures that appeared in the literatures [17,18]. The

spurious minutia structure in Fig. 7(a) can be caused by

noised thick ridges. Our oriented low-pass "lter has the

cuto! frequency normal to the ridge orientation being
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adaptive to the estimated ridge frequency. As a result, the

noised thick ridges are well smoothed and usually not

split into two skeleton ridges. Both Figs. 7(b) and (c)

contains at least one short skeleton ridge, which can be

avoided by a reasonable limiting of the minimal skeleton

ridge length in our tracing processing. In the absence of

the short skeleton ridge, minutiae b and c in Fig. 7(b) will

disappear and minutia a should be a genuine minutia.

The spurious minutia structure in Fig. 7(c) will convert to

the structure in Figs. 6(b)}(d) depending on the tracing

processing if the short ridge a}b disappears. The minutia

structure as shown as in Fig. 7(d) may occur in our

tracing processing. However, such a structure may also

be resulted by two genuine minutiae. If we remove the

minutiae that have the structure like Fig. 7(d) some

genuine minutiae will also be removed. Therefore, there

are two reasons for only recognizing the minutia struc-

tures in Fig. 6 as the spurious minutia structures that

should be removed. One is that the proposed minutiae

detection method avoids producing some other minutia

structures. Another is that the post-processing should

rely on the reliable information because removing spuri-

ous minutiae and keeping genuine minutiae are same

important.

The crucial step of the post-processing is to di!erenti-

ate the spurious minutiae from the genuine minutiae. If

the spurious minutia structures in Fig. 6 can be correctly

and discriminatingly described, removing the spurious

minutiae is then an easy task by using these descriptions

of the spurious minutia structures. The proposed ridge

tracing process provides the ridge tracing direction at the

minutia point and the serial number of the skeleton ridge

associated with the minutia. These are reliable informa-

tion that can make the description of the spurious minu-

tia structures more discriminating.

Let the recorded parameters of minutia a in Fig. 6 be

[i
�
, j

�
, �

	�
, c(i

�
, j

�
), m

�
, l

�
] while the recorded parameters

of minutia b be [i
�
, j

�
, �

	�
, c(i

�
, j

�
), m

�
, l

�
]. We de"ne a

distance between these two minutiae and the radial angle

as follows:
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�
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�
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�
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�
)�, (20)
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For a spurious minutia pair caused by a wide ridge

break such as that in Fig. 6(a), they will satisfy
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where D
�

and 

�

are the pre-speci"ed constants.

For a spurious minutia pair caused by ridge cross-

connections due to over ink, over press or clutter noise as

shown in Figs. 6(b)}(d), they will satisfy

l
�
"l

�
'0 or (l

�
"m

�
and l

�
'0),

d
��

(D
�
,

m
�
Om

�
,

abs(�!abs(�
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!�
	�

))(

�
,

c(i
�
, j

�
)(C¸ � c(i

�
, j

�
)(C¸, (25)

where D
�
, 


�
and C¸ are the pre-speci"ed constants. C¸

can be typically equal to or slightly smaller than the

mean value of orientation certainty levels at all the minu-

tiae points detected. We incorporate the certainty level of

the orientation at minutiae point in the determination of

the spurious bifurcation because the over ink, over press

or clutter noise which cause the link of ridges often

results in a lower orientation certainty levels in the re-

gion.

For a spurious minutia pair caused by a not well

smoothed ridge as shown in Fig. 6(e), they will satisfy

l
�
"m

�
,

d
��

(D
�
,

m
�
Om

�
,

abs(�!abs(�
	�

!�
	�

))(

�
,

l
�
"0, (26)

where D
�

is a pre-speci"ed constant.

Eqs. (22), (25) and (26) describe and therefore recognize

the spurious minutia structures based on the minutia

location relationship (d
��

, ��
�

and ��
�
), the direction

relationship (�
	�

and �
	�

), the associate ridge serial num-

ber relationship (m
�
, l

�
, m

�
and l

�
) and the minutia cer-

tainty level (c(i
�
, j

�
) and c(i

�
, j

�
)). In the proposed post-

processing algorithm, we eliminate all minutia pairs from

the minutiae list that make the Eqs. (22) and (25) or (26)

hold true.

Algorithm. Suppose K minutiae, K'1, were initially

detected from the "ngerprint image and the parameter of

each minutia was recorded with [i
�
, j

�
, �

	�
, c(i

�
, j

�
),

m
�
, l

�
]. Initially, all minutiae k, 1)k)K, are marked

with f
�
"0. The algorithm starts with k"1.
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(1) If ( f
�
"1) go to Step (6); else let n"k#1;

(2) If (f
�
"1) go to Step (5);

(3) If (Eq. (22), (25) or (26) with a"k and b"n holds

true) let f
�
"f

�
"1 and go to Step (6);

(4) If (Eq. (25) or (26) with a"n and b"k holds true)

let f
�
"f

�
"1 and go to Step (6);

(5) n#1Nn; If (n)K) go back to Step (2);

(6) k#1Nk; If (k(K) go back to Step (1);

(7) Remove all minutiae k, 1)k)K, which have

f
�
"1, from the minutia list.

After the post-processing procedure is performed, a

large percentage of the spurious minutiae will be deleted.

The surviving minutiae are treated as true minutiae. Our

post-processing procedure is not only based on the spa-

tial and structural relationship between the minutiae but

also the associated ridge relationship and the certainty

level of the minutiae. This makes the task of di!erenti-

ating spurious minutiae from true minutiae more re-

liable.

In the proposed minutiae detection algorithm, the pro-

cedures of the ridge frequency estimation, image "ltering,

section set building, ridge tracing and detecting as well

as minutiae extraction are not sequentially employed

throughout the image one by one, but incorporated and

alternately applied to the original raw gray-level "nger-

print image. This will avoid repeating some of the com-

mon computation, which signi"cantly reduces the com-

putation time. Furthermore, since the tracing steps, 	�, is

adaptive to the degree of ridge bending and ridge con-

trast variation, our algorithm will be faster than a "xed

tracing step while maintaining a good tracing precision.

A larger tracing step implies that less section set �� need

to be processed. Consequently, only a small portion of

the image needs to be smoothed with an oriented low-

pass "lter. The proposed adaptive oriented low-pass "lter
will smooth the noise and contrast de"ciency and to link

small ridge break. The problems of wide ridge breaks due

to wide scar and ridge cross-connections due to over ink,

over press or clutter noise are solved in the post-process-

ing stage.

Fig. 8(a) shows a "ngerprint image and Fig. 8(b) illus-

trates the detected skeleton ridges and minutiae before

post-processing, where the black dots represent bifurca-

tions and the white dots represent endings. Thirty-eight

minutiae were initially detected. We see that the pro-

posed approach produced very clean skeleton ridges and

contributed to a lower number of spurious minutiae.

Isolated points, blobs, extremely short ridges and small

islands do not exist in our skeleton image. For a closer

examining, Fig. 8(c) shows a combination of Figs. 8(a)

and (b). Fig. 8(d) depicts the "nally obtained minutiae

after post-processing. Six minutiae were removed in the

post-processing, where one ending pair satis"ed Eq. (22),

another bifurcation pair satis"ed Eq. (25) and one ending

and one bifurcation together made the conditions in

Eq. (26) true. For this example the whole time of minutiae

extraction taken by a IBM
� PC compatible with Pen-

tium I, 133 MHz processor is 0.892 s, in which the post-

processing took only 0.074 s.

5. Experiments and performance evaluation

Like many other problems in the pattern recognition,

the performance of the proposed minutiae detection al-

gorithm has to be evaluated through proper experiments.

Some experimental evaluation methods for minutiae de-

tection were proposed in Refs. [1,2,7]. Because these

evaluation methods depend on the sample minutiae de-

tected by human experts, the database used is very small

(several to several tens of "ngerprints). However, the

result of minutiae detection is heavily dependent on the

characteristics and quality of the "ngerprint images. As

such a meaningful comparison and evaluation can only

be achieved with a large database.

In our experiments we avoid the use of sample minu-

tiae detected by a human expert so that a large database

can be used in the experiments. Moreover, we include the

performance of the "ngerprint matching as well since it is

also a performance indicator for the minutiae detection

process. It is di$cult to assess the performance of minu-

tiae detection based solely on the detected minutiae

alone.

5.1. Evaluation of the adaptive ewects

The proposed algorithm employs an adaptive tracing

step as opposed to a "x step as proposed in Ref. [2].

Intuitively, the adaptive step provides a more accurate

minutiae location as compared to a large "xed tracing

step; or a higher processing speed as compared to a small

"xed tracing step. In order to verify this, we proposed

a goal-directed performance evaluation to test the minu-

tiae location accuracy and processing speed of the pro-

posed adaptive tracing algorithm relative to various "xed

tracing steps.

Let M
�
"( f �

�
, f �

�
,2) be the set of minutia location

vectors detected by minutiae extraction algorithm using

a "xed tracing step of n pixels (n*1). Let M
�

with n"0

represent the set of minutia location vectors detected by

minutiae extraction algorithm using an adaptive tracing

step. Let M
�
with minimal tracing step n"1 be a sample

minutiae set. The location error of a minutia in M
�

re-

lated to the kth minutia of the sample minutiae set is

de"ned as

e�
�
"�

min(�� f 

�
!f �

�
��) if min




(�� f 

�
!f �

�
��))d,

d otherwise,
(27)
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Fig. 8. A sample "ngerprint (a), the detected skeleton ridges and minutiae before the post processing (b), (c) and after the post

processing (d).

where d is a constant. In this evaluation, we set d to 10.

The location error index is then de"ned as follows:

EI
�
"�

��
���

(e�
�
)�

K�d�
, (28)

where K is the number of the minutiae of the sample set.

The location error index EI
�
(0)EI

�
)1), measures the

average normalized location error of minutiae set

M
�

related to sample minutia set M
�
.

Our minutiae detection algorithm was implemented

using visual C program in an IBM
� PC compatible with

Pentium I, 133 MHz processor. This program was tested

on 410 "ngerprint images of size 300�300 captured by

a Veridicom
� CMOS sensor and on 4000 "ngerprint

images of size 512�512 from NIST Database 4. Table 1

shows the mean of EI
�

values and the processing time of

the algorithms with various "xed tracing steps and with

an adaptive tracing step. For adaptive step, the average

tracing step length is calculated.

1008 X. Jiang et al. / Pattern Recognition 34 (2001) 999}1013



Table 1

Means of EI
�

values and means of processing times for various

"xed tracing steps and adaptive tracing step

For 410 CMOS "ngerprint

images

For 4000 NIST 4 "ngerprint

images

Step length EI
�

Time Step length EI
�

Time

1 0 1.719 1 0 6.93

3 0.33 1.181 3 0.33 4.99

5 0.44 1.079 5 0.39 4.47

7 0.56 0.981 7 0.50 4.19

9 0.67 0.938 9 0.68 4.04

11 0.73 0.895 11 0.83 3.87

Adaptive

(11.6)

0.31 0.934 Adaptive

(11.2)

0.24 3.90

Fig. 9. Examples of detected minutiae with "xed step 1(a) and with adaptive step (b) for an image captured with Veridicom CMOS

sensor.

From the Table 1 we see that the location error index,

EI
�
, for adaptive tracing step of average length 11 is

smaller than those for "xed tracing steps of 3 and above.

The processing speed of the algorithm for adaptive trac-

ing step is higher than those for "xed tracing steps of

9 and below. This implies that the minutiae detection

with adaptive step outperforms those with "xed steps of

between 3 to 9 in both minutiae location error and

processing speed.

Examples of detected minutiae with reference "xed

tracing step of 1 and the adaptive tracing step are shown

in Fig. 9 for a "ngerprint image captured using the

Veridicom
� sensor and in Fig. 10 for a "ngerprint image

f0001 in NIST 4 database. No signi"cant di!erence of

minutiae location between the minutiae detected using

the minimal tracing step of 1 and that using an adaptive

tracing step is found.

The length of the adaptive tracing step depends on the

parameter 
 of Eq. (13). Larger values of 
 speed up the

tracing process but lead to poorer minutiae extraction

results. Smaller values of 
 improve the minutiae extrac-

tion performance but consume more computation time.

After some trials, 
 was chosen to be 0.25 as a compro-

mise proposal in all experiments of this work. To illus-

trate the e!ectiveness of the proposed algorithm we de-

creased the value of 
 and found that the same minutiae

detection results as Figs. 9(a) and 10(a) were achieved

when the value of 
 decreased from 0.25 to 0.12. How-

ever, the average processing time was increased from

0.934 to 1.135 s for the CMOS "ngerprint database and

from 3.90 to 4.62 s for the NIST4 "ngerprint database,

respectively. At the same time, the value of the location

error index EI
�

was reduced from 0.31 to 0.11 for the

CMOS "ngerprint database and from 0.24 to 0.16 for the

NIST4 "ngerprint database, respectively. The average

processing time given above and in Table 1 are for the

whole minutiae extracting process (including "ngerprint

image processing, ridge detection, minutiae detection and

postprocessing).

5.2. Evaluation using verixcation performance

After the minutiae in the "ngerprint image are detec-

ted, the "ngerprint can be recognized by matching it with

a given template. If the same matching algorithm but

di!erent minutiae detection algorithms are used, the

matching performance will objectively demonstrate the
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Fig. 10. Examples of detected minutiae with "xed step 1(a) and with adaptive step (b) for image f0001 from NIST 4 database.

Fig. 11. Receiver operating curves for various "xed tracing steps

and adaptive step.

performance of the various minutiae detection algo-

rithms. We integrate the minutiae detection algorithm

(with various "xed tracing steps and the adaptive tracing

step) into our "ngerprint veri"cation system. Each of the

410 "ngerprint images in our database was matched

against the other 409 "ngerprint images in the database,

which yields 167,690 matching operations. The receiver

operating curves (ROCs) [7] are used to provide an

empirical assessment of the matching performance.

The ROCs of the tests resulting for di!erent "xed

tracing steps (tracing step"1, 3, 5, 7, and 9) and the

adaptive tracing step are shown in Fig. 11. In this "gure,

the top solid line is the ROC for adaptive tracing step, the

dotted line for minimal tracing step 1, the dash-dot line

for step size of 3, the dashed line for step size of 5 and the

two lower solid lines for step size of 7 and 9, respectively.

From the results, we can observe that the performance

of the "ngerprint veri"cation using an adaptive tracing

step having an equivalent average step length of 11.6, is

similar to that obtainable using minimal "xed step size of

one. The performance obtained from the adaptive tracing

step is better than those obtained using "xed step of sizes

3 and 5 while signi"cantly better than those obtained

using "xed step sizes of 7 and 9. In our experiments, we

did not directly compare the proposed algorithm with

other minutiae detection approaches. Some comparisons

of di!erent minutiae detection approaches can be found

in Ref. [2].

The performance of the proposed approach was stat-

istically evaluated based on two "ngerprint databases

that contain "ngerprint images of high, middle and poor

qualities. Our approach of image "ltering, which is adap-

tive to the ridge orientation and ridge frequency, and the

proposed postprocessing approach take e!orts to make

the algorithm robust to the "ngerprints of poor quality.

Fig. 12(a) shows a "ngerprint image of poor quality. The

detected skeleton ridges and minutiae before and after

postprocessing were respectively, depicted on the "nger-

print image in Figs. 12(b) and (c). Sixty-four minutiae

were initially detected where only 44 minutiae survived

after post processing. From this example we see that the

proposed algorithm can also achieve a good performance

for the poor-quality "ngerprint images. However, if the

quality of a "ngerprint is too poor to obtain the accept-

able estimation error of ridge orientation ((�/4) or ridge

frequency ((50% of the true ridge frequency) in the

majority of the "ngerprint area, the proposed approach

cannot work properly.
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Fig. 12. A poor-quality "ngerprint (a), the detected skeleton ridges and minutiae before the post processing (b) and after the post

processing (c).

6. Conclusion

We have presented an improved approach of minutiae

detection, based on adaptive tracing the gray-level ridge

of the original "ngerprint image. One of the main advant-

ages of ridge detection by tracing the gray-level ridge is

that it approximates the ridge with piece wise linear lines.

Ridge detection is therefore not pixel wise but step wise.

Because of the large variance of the bending level of the

ridge at di!erent points of the image, the tracing step of

our algorithm is adaptive to the bending level of the ridge

to speed up the tracing while maintaining the tracing

precision. The original "ngerprint image is smoothed

with an adaptive orientated low-pass "lter only at some

pixels that need to be smoothed. The "lter size along the

orientation normal to the ridge orientation is adaptive to

the estimated ridge distance. This prevents the "ltering

from linking two not well-separated parallel ridges. In

the proposed minutiae detection algorithm, the proced-

ures of the ridge frequency estimation, adaptive image

"ltering, section set building, adaptive ridge tracing and

detecting as well as minutiae extraction are not sequen-

tially employed throughout the image one by one, but

incorporated and alternately applied to the original raw
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gray-level "ngerprint image. This will avoid repeating

some of the common computation, which signi"cantly

reduces the computation time. After tracing all ridges

a piece-wise linear skeleton is obtained. Each ridge in the

skeleton is labeled with a number so that each minutia is

associated with one or two ridge numbers. Such labeling

is shown useful for post-processing. The post-processing

is then based not only on the location relationship of the

minutiae, but also the associated ridge relationship and

the certainty level of the minutiae. This is important

because reliably di!erentiating the false minutiae from

true minutiae is crucial for a robust detection of minutiae

in noisy "ngerprint images. The e$ciency and perfor-

mance of the proposed algorithm have been objectively

shown in the experiments using large "ngerprint

databases.
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