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Abstract—Sparse representation provides an effective tool for classification under the conditions that every class has sufficient
representative training samples and the training data are uncorrupted. These conditions may not hold true in many practical applications.
Face identification is an example where we have a large number of identities but sufficient representative and uncorrupted training images
cannot be guaranteed for every identity. A violation of the two conditions leads to a poor performance of the sparse representation-
based classification (SRC). This paper addresses this critic issue by analyzing the merits and limitations of SRC. A sparse- and dense-
hybrid representation (SDR) framework is proposed in this paper to alleviate the problems of SRC. We further propose a procedure of
supervised low-rank (SLR) dictionary decomposition to facilitate the proposed SDR framework. In addition, the problem of the corrupted
training data is also alleviated by the proposed SLR dictionary decomposition. The application of the proposed SDR-SLR approach in face
recognition verifies its effectiveness and advancement to the field. Extensive experiments on benchmark face databases demonstrate that
it consistently outperforms the state-of-the-art sparse representation based approaches and the performance gains are significant in most

cases.

Index Terms—Sparse representation, classification, dictionary learning, low-rank matrix recovery, face recognition

1 INTRODUCTION

IGH data dimensionality and lack of human knowl-
H edge about the effective features to classify the data
are two challenging problems in computer vision and pat-
tern recognition. Face recognition remains a hot research
topic after extensive research in the past two decades not
only due to its huge application potential. It provides a
good test bed to show how the two key computer vision
problems are solvable because large and unambiguous
test databases are available for face recognition problem.
Holistic approach, or called appearance based approach,
which applies machine learning techniques on the whole
image for the both feature extraction and classification,
provides a plausible tool to tackle these two difficult
computer vision problems.

For the machine learning based feature extraction or
dimensionality reduction, representative approaches in-
clude the principal component analysis [1], [2], the linear
discriminant analysis [3], [4], probabilistic subspace learn-
ing [5], [6] and their extensions to the locality preserva-
tion [7], [8] and in the kernel space [9], [10]. Some of them
are successful in reducing the data to a very low dimen-
sional subspace yet keeping the same or even enhancing
the classification performance. The principle and rationale
behind the classification performance enhancement by
dimensionality reduction are analyzed in [11].

Comparing to the machine learning based feature ex-
traction or dimensionality reduction, research on the clas-
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sification had not been very active in this area before
the sparse representation based classification was intro-
duced a few years ago. Most approaches simply apply
the nearest neighborhood (NN) classifier or the minimum
Mahalanobis distance classifier in a subspace obtained
by a dimensionality reduction procedure. Extensions of
the NN classifier in the high dimensional space include
the nearest feature line [12], the nearest plane [13] and
the nearest subspace [13]-[15] classifiers. Although the
linear regression classifier (LRC) [16], [17] represents the
query image by a linear combination of the class-specific
training samples, it is not difficult to see that it is in fact
equivalent to the nearest subspace [13]-[15] classifiers. The
commonalities of all these classifiers are that they are not
robust to the heavy image corruption caused by the outlier
pixels and occlusions and that they evaluate the relation
between the query image and the training samples of each
individual class one by one separately.

Different from the above classifiers, the sparse represen-
tation [18]-[20] of the query image by training samples
of all classes is applied to design the classifier for face
recognition [21]. The sparse representation-based classifier
(SRC) [21], in our opinion, significantly differentiates itself
from the above classifiers in three aspects. One is the
utilization of training samples of all classes collaboratively
to represent the query images and another is the sparse
representation code that coincides with the general classi-
fication target. The last is the £;-norm minimization of the
representation error that enables SRC to recognize query
images heavily corrupted by outlier pixels and occlusions.
These three merits of SRC lead to some encouraging and
impressive face recognition results, which attract great in-
terest in further research on SRC. Many extensions of SRC
are proposed in recent years, such as Gabor feature based
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SRC [22], SRC with nonnegative constraint [23], Locality-
constraint SRC [24], Gaussian kernel error term [25],
modular weighted global SRC [26], pose alignment with
SRC [27] and regularized robust coding [28].

These extensions, however, have not solved the two
fundamental constraints of SRC. One is the carefully
controlled training images and the other is the sufficient
training samples of each class. A violation of these two
conditions results in poor performance of the sparse
representation-based classification [27], [29]. The first con-
strain makes SRC based approaches do not perform well
for the corrupted training data caused by outlier pixels
and occlusions. The second constraint limits their ap-
plications to large scale identification problems where
the training data contains large number of identities but
sufficient representative images for every identity cannot
be guaranteed. Therefore, it is not a surprise that, despite
of the impressive results of SRC and many of its variants
and extensions developed, a number of works [30]-[33]
show questions and doubts about the effectiveness of SRC
for image classification.

The both fundamental constraints of the sparse
representation-based classification are related to the train-
ing data. As SRC directly applies training images as the
dictionary for the sparse representation, questions may
arise if dictionary learning [34] can help alleviate these
two problems of SRC. The objective of the general dictio-
nary learning [35], [36] is to find different optimal dictio-
naries in representing different target data. The atoms in a
dictionary computed from the training database in general
capture the most important constitutive component of
the target data. However, there is no good reason why
the set of atoms is also best for differentiating different
classes in the target data. The discriminative dictionary
learning [37]-[40] makes a compromise between the data
representation and the class separation in finding the
optimal atoms of dictionary. This, however, also does
not solve the problem of SRC when not all classes have
sufficient representative training samples. In addition, all
these dictionary learning approaches do not work well if
the training images are heavily corrupted by the outlier
pixels and occlusions [34]. Instead of the conventional
dictionary learning approaches, it seems that we need
separate the image corruptions of the training samples
from the dictionary.

To overcome the first constraints of SRC — corrupted
training data, low-rank matrix recovery, also called robust
PCA (RPCA) [41], provides a tool to separate outlier pixels
and occlusions from the training images. A sub-dictionary
is learnt from each class separately by decomposing the
training data of each class into a low-rank matrix and
a sparse matrix in [42], [43]. However, optimizing sub-
dictionaries to be low-rank for each class might reduce
the diversity of atoms within the sub-dictionary and hence
might decrease the dictionary’s representation power [44].
Following the idea of subspace clustering by low-rank
representation [45], low-rank representation (coefficient
matrix of the dictionary) is learnt for image classifica-
tion [44]. However, the natural cluster structure of the
training data may not coincide with the class (identity)
structure for a face identification problem due to the
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small differences between the face identities and the large
variations of face images of the same identity. As a result,
in seeking a low rank dictionary or a low rank repre-
sentation, these methods may undesirably remove some
components of face identity and/or some face variations
needed to represent the query images.

There are some attempts to alleviate the second problem
of SRC - lack of variations in the training images for
some classes. The extended SRC (ESRC) [46] creates an
intra-class variation matrix by subtracting a natural or
prototype or centroid image of each class from training
images of the same class. The variation matrix is then
appended to the raw training data matrix as the second
part of the dictionary. The classification only utilizes the
representation coefficients of the first part. Although the
query images can be better represented by some variations
of other classes in the second part of the dictionary,
the same variations are also contained in the first part.
Therefore, the introduced second part of the dictionary
may not well solve the problem of the first part. This
leads the same authors of ESRC to further propose a
superposed SRC (SSRC) [47] by replacing the first part
with a natural or prototype or centroid image of each class.
However, this brings another problem that the identity of
the query image is represented and determined by only a
single image, which may result in unstable or unreliable
classification.

This work aims to solve the two fundamental limi-
tations of SRC - the lack of variations in the training
images for some classes and the corrupted training data.
We propose a hybrid representation of the query image by
a sparse combination of a class-specific dictionary and a
dense combination of a common intra-class variation dic-
tionary. Thus, a query image is better represented with the
collaboration of image variations of other classes, which
leads the sparse representation part better to coincide
with the specified class membership. Towards this end,
we further propose a procedure to decompose the raw
training data into a class-specific dictionary, a common
intra-class variation dictionary and a sparse corruption
matrix. In this way, the corruption matrix will also be
better separated from two lower-rank matrices than from
the higher-rank mixture of them. In implementation, the
proposed approach needs solve a nuclear norm regular-
ized optimization, which is a convex minimization prob-
lem solvable in polynomial time.

2 SPARSE AND DENSE HYBRID REPRESENTA-
TION

An image of m pixels is arranged in a column vector.
Let D; € R™*™ stack n; m-dimensional training samples
of the ith class. An unlabeled query image y € ™ is
represented or approximated by a linear combination of
the training samples from a class as

y:Diai+ei7 1= 1727"'705 (1)

where, a; is a coefficient vector associated with the train-
ing samples of class i and e; is the approximation error.
It is widely assumed that images of a specific class lie
in a linear subspace [3], [48]. Thus, the linear regression



X.D. JIANG AND J. LAI: SPARSE AND DENSE HYBRID REPRESENTATION VIA DICTIONARY DECOMPOSITION FOR FACE RECOGNITION

classifier (LRC) [16], [17] assigns the class label of y to
class i that produces the smallest error ||e;||2. This is in
fact equivalent to a nearest subspace [13]-[15] classifier as
|lei]]2 is the distance from y to the subspace spanned by
columns of D;.

There is a problem if n, << m or some classes do
not have representative training samples. The variation
between the query image and the training samples of
the same class could be larger than those of some other
classes, which results in misclassification. Even for a large
number of training samples of each class, there is another
problem that errors of some classes could be so small that
the classification based on them is unreliable. This can be
understood by the fact that there exists a representation
a; leading to e; = 0 for any class as long as its training
samples are not linear dependent and n; > m.

Now consider a collaborative representation of the
query image by training samples of all classes as

y = Da + e, ()

where D = [Dy,D,,...,D;/] € R™*™ stacks training
samples of all ¢ classes, n = >_;_, n;. If rank(D) = m = n,
we can have a unique perfect representation a that leads
to e = 0 for any query image y. If the dictionary D is
over-complete, i.e. n > m, the perfect representation a is
not unique, i.e. there are an infinite number of solutions &
that lead to e = 0. Thus, a perfect representation with the
sparsity constraint on a can be found. We can achieve
a more sparse solution a, or get it even on an under-
complete dictionary, n < m, by relaxing the requirement
for the perfect representation. Therefore, we look for a
sparse linear representation & of y over D with a bounded
energy of the representation error |lel|3 < e.

The sparsity of a is measured by the number of its
nonzero elements, i.e. {y-norm of «, ||a||o. This optimiza-
tion problem is formulated as

min ||a/|o, s.t. |le||3 < ¢, where e =y — Da. ©)]
[o3

Although this minimization problem is NP-hard, the com-
pressed sensing theory reveals that, if its solution is
sufficient sparse, it is equivalent to the following convex
relaxation /;-norm minimization [49]

min |||y + B]le||3, where e =y — Da, 4)
e

where [ is a constant for a compromise between the
sparsity of @ and the representation error ||e]|3.

To enable a robust representation of heavily corrupted
query image by outlier pixels and occlusions, SRC [21],
[29] replaces the {o-norm of the representation error by
{1-norm in the optimization

min laf|y + flle[lr, s.t. y = Da +e. ®)

From (2) and (5) we see three merits of SRC: the
collaborative representation using training samples of all
classes D; the sparse representation code «; and the ¢;-
norm minimization of the representation error ||e||;. These
merits make the sparse representation based approaches
a great success in image restoration [50], [51] and face
recognition [21], [27], [29] in some scenarios. However,

SRC does not perform well for corrupted training data
or if the sufficient representative training samples are not
provided for every class. Thus, a number of works [30]-
[33] show questions and doubts about the effectiveness of
sparse representation for image classification.

We argue that the sparse representation directly co-
incides with the general objective of the classification
because the desired output or target of a classification
system is 1 for correct class and 0 for all others, which
is exactly a sparse code of the query image. In addition,
the collaborative representation compensates the limited
number of representative samples of a single class, though
only partially due to the sparse constraint. The optimiza-
tion of the sparse coefficients lets every training sample
compete against the others to win its representation share
of the query image. This is a good discriminating process.

Problem is that images contain not only the identity
information but also much other information such as age,
gender, ethnic, expression and illumination. Why must
the significant coefficients in & be won by the samples
of the same identity as the query image, not of the same
expression or the same illumination? Neither (2) nor (5) re-
ceives any information about the class label assignment of
the training data that specifies the particular classification
task. If we can separate the class-specific information from
others, the sparse representation of the former will fully
coincides with the particular classification target specified
by the class labels of the training data.

Therefore, we propose to decompose an image y into
three components as

y=a+b+s, (6)

where a is the class-specific component, b the non-class-
specific variations and s contains random sparse noise
or image corruption. If a dictionary A that only contains
class-specific component of the image is available, we can
apply SRC as

a=Aa+e,. (7)

The sparse vector a of (7) will directly coincide with the
class label vector of the query image y while that of (2)
only coincides with the natural image clusters as a and
A only have the class-specific components but y and D
contain all other image information.

Although it might be possible to separate the class-
specific component a from y based on the human knowl-
edge in some applications, it is very difficult if not im-
possible for many computer vision tasks such as face
recognition. Given a labeled training database D, it is
possible to decompose it into a class-specific dictionary
A, a non-class-specific dictionary B and a random sparse
noise E based on machine learning. This will be presented
in the next section.

However, it is very difficult if not impossible to separate
the class-specific component a from a single unknown
query image y. To circumvent this problem, we also repre-
sent the non-class-specific component b by the dictionary
B as

b = Bx + ey. (8)

The only purpose of the representation (8) is to make the
representation error ey, as small as possible. Therefore, it is
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not necessary to put the sparse constraint on x and hence
(8) should be in general a dense representation.

The summation of (7), (8) and s yields the proposed
sparse- and dense-hybrid representation (SDR) of the
query image

y =Aa +Bx +e, )

where e = e, + €, +s is the combined representation error.
Fig. 1 illustrates a face image projected to the identity
subspace (spanned by A), the common variation subspace
(spanned by B) and its sparse residual.

Class-specific subspace

"

Non-class-specific subspace

Fig. 1. Image decomposition: a face image projected to the
class-specific subspace, the non-class-specific subspace
and their residual random sparse noise.

To be robust to the heavily corrupted query image by
outlier pixels and occlusions, ¢;-norm minimization of
the representation error e is applied. The solution of the
proposed SDR, a, x and e is obtained by solving the
following optimization problem:

min [y +7[x/3 + Blle]

st.y=Aa+Bx+e. (10)

The optimization problem (10) can be solved by the
Augmented Lagrange Multiplier (ALM) scheme [52]. The
ALM function for (10) is derived as:

§
leells + I3 + Bllell + lly —Aa—Bx - el3

+¢"(y —Aa—Bx —e), (11
where ¢ is a vector of Lagrange multipliers and £ a
penalty parameter. Algorithm 1 summarizes the solution
to problem (10). The subproblem for e in step 1 can be
solved by the soft-thresholding operator [53], the result of
a can be achieved by /;-norm minimization and x has a
closed-form solution.

Let L; € R™*™ be a class-label matrix of the training data
D for class i, its element L;(k, k) = 1 if the kth training
sample (the kth column of D) originates from class i and
all other elements of L; are zero. The representation of
the query image y by the class-specific component of
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Algorithm 1: Solving Problem(10) by Inexact ALM

Input: A, B, y, parameter § and 7.

Initialize: a =0, x=0,e=0,¢=0,{ =1,

Emar = 10%, p=1.5, and € = 1076,

while not converged do

1. fix the others and update e by

e = argmin e + Lle — (y — Aa — Bx + L)}

2. fix the others and update a by
o = argmin|ef; + §[|Aa— (y —Bx —e+ %¢)||§
3. fix the others and update x by
x =21+ ¢BTB) !B (y — Aa —e + {9)
4. update the multipliers
$=¢+E(y—Aa—Bx-e)

5. update £ by & = min(p, &maz)
6. check the convergence conditions:

ly — Aa—Bx —e|} < ¢

end
Output: o, x and e

class ¢ and the non-class-specific component of all classes
collaboratively is then

As discussed earlier, the sparse vector a coincides with
the class-label vector (the sum of L; over all columns).
Therefore, the representation error e; will be the closest to
e if the query image y originates from class i. The class-
wise representation residual is defined by

ri(y) = lle —eill2 = [A(T - Li)e|2, (13)

where I is an identity matrix. The query image y is clas-
sified into the class that produces the minimum residual
ri(y).

Sparse representation (2) coincides with the general
objective of classification: degenerate all query images to
only two different states: one for the correct class and
the other for all other classes. However, the competition,
in which a training sample gains its share to represent
the query image by (2) and (5), is unsupervised. As a
result, all information contained in the query image and
training samples participates in this competition. Thus,
there is no reason why the nonzero significant coefficients
should coincide with a specific one of many possible class
arrangements that (2) and (5) do not know. For many
computer vision tasks, such as face recognition, the class-
specified information is only a very small portion of the
whole information carried by an image. Therefore, SRC
can only work well if all non-class-specific information is
nulled out by sufficient representative training samples for
every class that enclose all non-class-specific information.
This problem is visible in the first row of Fig. 2, which
shows an example of SRC where the top 3 significant
coefficients are not for the training samples of the same
identity as the query image.
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Fig. 2. Comparison of SRC (1*" row) and the proposed SDR (2" row) on AR database D of 100 persons with 3 images
per person: (a) query image; (b) SRC coefficients of D and SDR coefficients of A and B; (c) top 16 images in D of SRC
and in A and B of SDR; (d) residuals. Sparse coefficients of the correct person are in red lines and its training samples
are in yellow rectangles. Images are normalized into the same mean and ¢5-norm.

The proposed sparse- and dense-hybrid representation
(SDR) alleviates this problem. To represent a query image,
every training sample only uses its class-specific com-
ponent to compete against the others (through a sparse
minimization) collaboratively with the non-class-specific
component of all training samples (through a dense rep-
resentation). This makes the sparse code of the proposed
SDR completely coincide with the specifically assigned
class membership. It overcomes a fundamental limitation
of SRC that sufficient representative training samples are
required for every class. If a class does not have suffi-
cient training samples to represent some variations (non-
class-specific component) of its query image, they are
represented by the non-class-specific component of other
classes and their class memberships do not participate in
the classification competition. This is visible in the second
row of Fig. 2, which shows an example of the proposed
SDR where the top and the fourth significant coefficients
are for the training samples of the same identity as the
query image.

3 DICcTIONARY DECOMPOSITION

The sparse- and dense-hybrid representation (SDR) pre-
sented in the last section requires a class-specific dictio-
nary A and a non-class-specific dictionary B decomposed
from training data D. Towards this end, we apply the
proposed conceptual SDR model (9) to every training
image in D = [dy, ... dg, ... d,,] as

d, = Ao, +Bxp +ex, k=1, ..., n. (14)

Here we set o, be the sparsest vector as a(j) = 1if j =k
and ay(j) = 0if j # k for j,k = 1,2, ...n. This is plausible
as full information of training sample d;, can be utilized in
the right side of equation (14). Stacking vectors dy, ax, x,
e, of all different & in (14) into respective matrices yields

D=A+BX+E (15)

The sparse coefficients of A disappear because [a1, ..., o)
forms an identity matrix.

To realize the proposed SDR framework, we further pro-
pose to decompose the training data D according to the
model (15) into a class-specific dictionary A, a non-class-
specific dictionary B and a sparse noise or corruption E,
where X helps the dictionary B have good representation
(prediction) power. If the training data are meaningful,
we can reasonably assume D be a full rank matrix, i.e.
rank(D) = min(m,n). This is true with the existence of
the random noise in the training data. As the training data
D does not contain all kinds but only a particular type of
images — human faces for example, D — E should be a low
rank matrix. Consequently, A, BX and B are all low rank
matrices. Therefore, the dictionary decomposition (15) is
regularized by

. 2
, lnin Erank(A) + Arank(B) + 7| X||% + 7l|El|o
(16)

sy 4y

st. D=A+BX+E.

However, the minimization of the ranks of A and B
and the number of nonzero elements in E is a highly non-
convex optimization problem, which is difficult to solve.
Fortunately, it is proven in [41] that the solution of low-
rank matrix recovery problem can be well approximated
by replacing the rank operator with the nuclear norm ||-||.
and replacing the fy-norm with the ¢;-norm, which turn
it into a convex optimization problem. It is proven that
this convex relaxed optimization well recovers the low-
rank matrix and the sparse error if the rank of the matrix
to be minimized is not too high and the respective error
matrix is sparse [41]. A number of algorithms [41], [54],
[55] are proposed to solve this convex relaxed problem.
Therefore, we relax the regularization of the dictionary
decomposition to

A 00 LAl A+ B + 7l X + nll B

st. D=A+BX +E. 17)
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The squared Frobenius norm [|X|% is the sum of the
squared fy-norms, ||x|3. A\, 7 and 7 are parameters to
balance the minimization of the four terms.

The decomposition regularization (17) can be solved by
minimizing two of the four unknowns with fixed others
iteratively. Some initial values are required for the iterative
minimization. The random sparse noise is initialized as a
null matrix, E = 0. Vector x;, is a dense representation
over the non-class-specific dictionary B. We initialize it
as the sparsest vector and let it approach a dense vector
during the subsequent learning process. Thus, x;(j) = 1
if j =k and xx(j) = 0if j # k for j,k = 1,2,...n. Thus,
X is initialized as an identity matrix X = I. Although we
decompose the training data D into four parts A, B, X
and E, only the two dictionaries A, B are utilized by the
proposed SDR. The above initialization of E and X yields
D = A + B. Thus, the dictionaries A and B have not lost
any information from the training data D in the above
initialization of E and X.

As the decomposition regularization (17) involves two
low-rank matrices A and B simultaneously, there is no
reason why A must capture the class-specific information
while B the non-class-specific one. Therefore, knowledge
about the different roles of these four matrices in the
proposed SDR must be applied to help decompose the
training data D properly into meaningful A, B, X and E
for the proposed SDR.

Towards this end, we try to allot all possible
class-specific information we can have to A =
[A, .., Ay oy A, A € R™™If we let A; be
some kind of class-conditional center such as the mean or
median of the training samples of class i, A should have
captured the most significant class-specific information.
This is supported by the fact that all approaches of the lin-
ear discriminant analysis only utilize the class-conditional
mean as the class-specific information. For a better repre-
sentation power of A;, this work applies singular value
decomposition (SVD) on every class-specific training data
D;

D; = U, V/, (18)
and lets A; be the reconstructed images by the singular
vectors corresponding to the largest singular value

A =U;(1:m, DE;(1,1)Vy(1:n, 1), (19)
This makes A; the lowest rank (rank 1) and the best
approximation of D; in terms of the Frobenius norm of
the difference between A; and D;. Therefore, A captures
the most significant class-specific information with the
lowest possible rank, rank(A) = c. In other words, it
allots the least amount of the most significant class-specific
information of the training data D into A. The matrix
B = D— A then contains all non-class-specific information
and the remaining class-specific information. Obviously,
rank(B) = min (m,n) — ¢. In most applications we have in
fact rank(B) > rank(A). Thus, the subsequent dictionary
learning should target at transferring the remaining class-
specific information from B to A.

We first separate the remaining class-specific informa-
tion from B by applying the decomposition regularization
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(17) with fixed A and X
min A|[ B[ + [ T[]y
B,T

st.D—A=BX+T. (20)

Symbols E and 7 of (17) are changed to T and § in (20)
to indicate that more component than the random sparse
noise should be captured by T to enable the information
transfer. This can be achieved by assigning a smaller
weight § to ||'T||;.

The minimization of rank(B) minimizes rank(BX) as
rank(BX) < rank(B). Thus, the optimization (20) decom-
poses D — A into a sparse matrix T and a low rank matrix
BX. It coincides with the dense representation part of
the proposed SDR (9), which helps the non-class-specific
dictionary B better represent (predict) unknown query
image in SDR than directly taking BX as the dictionary.
Given a small parameter §, the sparse matrix T will
capture not only the random sparse noise but also the
remaining class-specific information in D — A.

To make the problem (20) solvable, an auxiliary variable
J is introduced to convert (20) to the following equivalent
optimization problem:

min A1), + [T,
B,J, T

st D-A=BX+T, B=1J. 1)

This can be solved by the ALM method [52] that converts
(21) to minimizing an unconstrained function:

A+ I Ty +tr(Y](D — A = BX - T))
+ ZID-A-BX-T|} + (Y] (B-J)

+ SIB -3l (22)
where Y;,Y; are the Lagrange multipliers, and  is a
penalty parameter. Algorithm 2 summarizes the solution
to problem (20) where step 1 is solved via the Singular
Value Thresholding [56].

Now by fixing A and B, we optimize X and T by
employing the regularization (17) again:

. 2
T
g@ﬂxmﬂﬁﬂﬂ1

st.D—A=BX+T. (23)

Again, the ALM method is applied to covert (23) into an
unconstrained minimization function

7|XIZ + T +tr(Y'(D-A-BX-T))

+ %D—A—BX—ﬂ@ (24)
where Y is the Lagrange multiplier and p a penalty pa-
rameter. The inexact ALM method to solve (24) is outlined
in Algorithm 3.

With the optimized B and X, the remaining class-
specific information in D — A is separated from BX.
The last step of the proposed dictionary decomposition
is to transfer it to A. This is achieved by using the
regularization (17) again with fixed B and X

in||All, E
ggHH+MIM

st. D-BX =A+E. (25)
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Fig. 3. Sample images produced by the proposed SLR: images of a person in D corrupted by random noise (a); their
initial components assigned to A (b) and B (c); final images in A (d), BX (e) and E (f).

Algorithm 2: Solving Problem(20) by Inexact ALM

Algorithm 3: Solving Problem(23) by Inexact ALM

Input: D, A, X and parameter A and 4.
Initialize: B=J=0,T=0,Y;=0,Y2=0,
(=103, fmas = 105, p = 1.5, and € = 10,
while not converged do
1. fix the others and update J by

J = argmin 2[Jl. + 317 — (B + Ya/u)|

2. fix the others and update B by
B=(D-A-T)XT4+J+(Y:1XT-Y5)/p)(XXT+1)~!
3. fix the others and update T by

T = arg min 2| ||, + T - (D — A - BX + Y1/}
4. update the multipliers

Y, +u(D—-A-BX-T)

Y.+ u(B-1J)

Y, =
Y, =
5. update pu by p = min(pp, pmas)

6. check the convergence conditions:

ID-A-BX-T|%<ecand |[B-J|2 <e¢

end
Output: B

As (25) is a standard low-rank matrix recovery problem,
it can be solved by the algorithm in [41]. To ensure only
random sparse noise being captured by E, a high weight
n should be assigned to ||E||;.

The optimizations (20), (23) and (25) need iterate a few
times due to two unknowns in the form of BX. Experi-
ments show that only 3 to 5 iterations yield the stable best
results. Thus, all experiments of this work iterate (20), (23)
and (25) 4 times. We call the above proposed procedure
the supervised low-rank (SLR) dictionary decomposition,
which is summarized in Algorithm 4. It utilizes the low-
rank matrix recovery to transfer information from the
supervised assigned dictionary B to A. The matrix T
serves as a medium of the information transfer, which
leads the final dictionary A containing more class-specific
information than that used in the conventional linear

Input: D, A, B, and parameter 7 and .
Initialize: T=0,Y =0, u = 1073, fiy02 = 106,
p=15and e =105,
while not converged do
1. fix the others and update X by
X =pu2rI+uBTB)"'BT(D-A-T+Y/p)

2. fix the others and update T by

T = argmin 2| T}y + 2|IT - (D — A - BX + Y/p) |3

3. update the multiplier
Y=Y+uD-A-BX-T)

4. update p by p = min(pu, tmaz)
5. check the convergence conditions:

ID-A-BX-T|% <e

end
Output: X

discriminant analysis that is equivalent to the initial A.
The matrix X improves the quality of dictionary B for the
representation (prediction) of unknowns in the proposed
SDR framework. The proposed SLR dictionary decom-
position not only delivers a class-specific dictionary A
and a non-class-specific dictionary B, it also alleviates the
other fundamental problem of SRC — corrupted training
data, since the random sparse noise of training data E is
removed from the two learnt dictionaries.

Fig. 3 visualizes some results of the proposed SLR dic-
tionary decomposition on AR database. Training images
of one of 100 persons corrupted by strong sparse noise in
D are shown in Fig. 3 (a). Their initial assignments to A
and B are shown in Fig. 3 (b) and (c), respectively. The
final components of Fig. 3 (a) in D decomposed by the
proposed SLR in A, BX and E are shown in Fig. 3 (d), (e)
and (f), respectively. Fig. 3 also serves as a visual compar-
ison of the dictionaries decomposed by the proposed SLR
to those used in SSRC [47], a further development from
ESRC [46]. SSRC uses the class-wise means of D as one
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Algorithm 4: SLR Dictionary Decomposition

Input: D = [Dy, ..., D;, ..., D] and parameter «.

Initialize: X =1, D; = U; %, V7,

Ai = Uz(l tm, 1)27,(17 1)V1(1 Ny, 1)T,

A=A, .., Ay ., A

for 1:x do
1. obtain B by solving the optimization problem
(20) using Algorithm 2.
2. update X by solving the optimization problem
(23) using Algorithm 3.
3. update A by solving standard low-rank matrix
recovery problem (25).

end

Output: A and B

(f)

Fig. 4. Examples of RPCA and the proposed SLR: train-
ing images (a); low-rank (b) and sparse (c) images from
RPCA; class-specific (d), non-class-specific (€) and sparse
(f) images decomposed by SLR.

dictionary and the class-wise centralized D as the other.
They are similar to Fig. 3 (b) and (c) except for a scaling
factor.

Fig. 4 shows a further visual example of the proposed
SLR comparing to RPCA. The data set contains 301 face
images from AR database, where 1 wears scarf and each of
100 persons has 1 image wearing sunglasses and 2 undis-
guised images. Fig. 4 (b) and (c) show that sunglasses and
scarf in Fig. 4 (a) are not fully removed from the dictionary
but shared by it and the sparse noise by RPCA. In contrast,
they are fully removed from the class-specific dictionary
by SLR as shown in Fig. 4 (d). Moreover, sunglasses,
though much small than scarf, is allotted in the non-class-
specific dictionary. This is desirable as over 30% samples
in the data set wear sunglasses and so is expected for the
query images. Allotting it in B increases its representation
power. This improves rather than damages the classifica-
tion.

4 EXPERIMENTS

The proposed SDR framework with the proposed SLR
dictionary decomposition algorithm, SDR-SLR, is evalu-
ated on 4 face databases: CMU Multi-PIE [57], Extended
Yale B [58], AR [59] and FERET [60]. It is compared with
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related state-of-the-art SRC [21], ESRC [46], SSRC [47],
LR (Low-Rank SRC) and LRSI (LR with structural inco-
herence) [42] as well as baseline classifiers NN (nearest
neighbor) and LRC [17]. The parameters of the proposed
SDR-SLR approach are fixed over all experiments of this
paper to 5 = v = 10 for the SDR and « = 4, A = 1,
7 = 001, 6 = 0.8y and n = 1.2v for SLR, where
v = 1/y/maz(size(D)) [54], though better performance
may be achieved if they are fine tuned to fit each specific
experiment.

The CMU Multi-PIE database contains face images
captured in 4 sessions with variations in illumination,
expression and pose. The first 105 subjects that appear
in all 4 sessions are used in the experiments. Images are
cropped based on the eye locations provided by [61] and
down-sampled to 50 x 40 pixels.

The cropped Extended Yale B database has 2,414 frontal-
face images of size 192 x 168 from 38 subjects, captured
under different lighting conditions. 64 images per subject
are divided into 5 subsets according to the angle of the
light direction with 7, 12, 12, 14 and 19 images respectively
in subset 1 to 5.

The AR database used in this paper has 2600 frontal-face
images of size 165 x 120 from 100 subjects (50 males and 50
females). In each of two separate sessions, 7 undisguised
images with expression or illumination variation, 3 images
in sunglasses and 3 images in scarf disguise are taken from
each subject.

A subset of FERET database contains 1024 images from
256 subjects with 4 frontal images per subject. Images
are normalized by an affine transformation, scaled and
cropped to the size of 121 x 121. Fig. 5 shows the normal-
ized and cropped images.

Fig. 5. Normalized images from FERET database.

4.1 Face Recognition on Single Variation

This subsection tests the effectiveness of the proposed
SDR-SLR on isolated single type of variation: illumination,
expression or pose. Misalignment is not tested as it can be
alleviated by using alignment insensitive features such as
histogram of gradient [62] or LBP [63], [64]. Recent efforts
that recover the misalignment can be found in [27], [65].

Experiment 1(illumination): following the procedure
in [57], 18 flash-only images are generated as the differ-
ence between flash images (illuminations {1-18}) and non-
flash image (illumination {0}) of the Multi-PIE database
as shown in Fig. 6(a). For each of these 18 different
illuminations, 4 frontal images with neutral expression
per subject are chosen from 4 different sessions, which
produces 18 x 4 x 105 = 7560 images for training and
testing. For each subject, ¢ different illuminations are ran-
domly selected for training and the rest 18—t illuminations
are used for testing. The averaged recognition rates of



X.D. JIANG AND J. LAI: SPARSE AND DENSE HYBRID REPRESENTATION VIA DICTIONARY DECOMPOSITION FOR FACE RECOGNITION

10 runs are plotted against the reducing ¢ in Fig. 7.
Much to our surprise, ESRC, SSRC, LR and LRSI, which
try to solve the problems of SRC, in fact underperform
SRC. Nevertheless, the proposed SDR-SLR consistently
outperforms the others in all cases where the performance
gain increases with decreasing illumination variations in
the training data.

=

|

Fig. 6. Sample images in Multi-PIE database with varia-
tions of (a) illumination, (b) expression, (c) pose.
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Fig. 7. Face recognition rate versus number of training
illuminations per subject on Multi-PIE database.

Experiment 2(illumination): to further verify the perfor-
mances of various methods in tackling the illumination
variation, another experiment is done on Extended Yale
B database. For each subject, 2 subsets are randomly
chosen for training and the other 3 subsets for testing.
Different image sizes are tested. The average recognition
rates of 10 runs in Table 1 further show that ESRC, SSRC,
LR and LRSI underperform SRC on data set that has
only illumination variation. Again, the proposed SDR-SLR

visibly outperforms the others consistently for all image
sizes.

TABLE 1
Face Recognition Rate on Extended Yale B
[ dimensions | 810 [ 1400 [ 2016 |
NN 42.1% | 43.9% | 44.6%
LRC [17] 72.8% | 73.1% | 73.2%
SRC [21] 77.9% | 78.5% | 78.7%
ESRC [46] | 77.6% | 78.6% | 78.6%
SSRC [47] | 74.8% | 75.2% | 76.5%
LR [42] 77.3% | 77.6% | 78.0%
LRSI [42] 77.8% | 78.0% | 78.5%
SDRSLR | 81.7% | 84.3% | 84.5%

Experiment 3(expression): all frontal images with illu-
mination {7} are taken from the Multi-PIE database. The
6 expressions (neutral, smile, surprise, squint, disgust and
scream) are shown in Fig. 6(b). For each subject, ¢ different
expressions are randomly selected for training and the rest
6 —t expressions are used for testing. The averaged recog-
nition rates of 10 runs are plotted against the reducing
t in Fig. 8. It shows that LR and LRSI performs similar
or even inferior to SRC as the database is uncorrupted.
As no similar expression of the query image appears in
the training samples of the same subject, ESRC, SSRC
and SDR-SLR significantly outperform SRC. The proposed
SDR-SLR consistently and visibly performs the best for
all values of ¢ where the performance gain increases with
decreasing expression variations in the training data.
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t: number of training expressions per subject

Fig. 8. Face recognition rate versus number of training
expressions per subject on Multi-PIE database.

Experiment 4(pose): 20 images of neutral expression
from 4 sessions captured by 5 cameras (from -30% to
+30%) and flashed by the capturing camera are taken
from Multi-PIE database as shown in Fig. 6(c). For each
subject, ¢ different poses are randomly chosen for training
and the rest 5 — ¢ poses are used for testing. Table 2
details the average results over 10 runs. LR and LRSI
only slightly outperform SRC on the uncorrupted data.
Similar to the experiment 3, ESRC, SSRC and SDR-SLR
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TABLE 2
Face Recognition Rate on the Multi-PIE Face Database
with Pose Variation.

I [ 4 [3 [2 l
NN 17.0% | 13.7% | 11.4%
LRC [17] | 41.9% | 29.5% | 18.4%
SRC [21] | 65.8% | 57.8% | 45.2%
ESRC [46] | 73.0% | 69.0% | 57.3%
SSRC [47] | 79.3% | 73.8% | 61.2%
IR [42] 66.2% | 59.4% | 46.6%
LRSI [42] | 66.6% | 58.6% | 45.2%
SDRSLR | 87.2% | 814% | 67.1%

significantly outperform SRC, where the proposed SDR-
SLR consistently and visibly performs the best for all
values of t.

4.2 Face Recognition on Mixed Variations

This subsection tests the effectiveness of the proposed
SDR-SLR on databases whose face images have mixed
types of variations without image corruption.

Experiment 5: all undisguised images from Session 1
of the AR database are used for training and those from
Session 2 are used for testing. Images down-sampled to 4
different sizes are tested. The results are recorded in Table
3. Unfortunately, ESRC, SSRC, LR and LRSI again do not
outperform SRC though the data have the both expression
and illumination variations. Probably the training and
testing sets, though taken from two separate sessions,
have very similar variations. Nevertheless, the proposed
SDR-SLR approach again visibly outperforms the others
consistently for all image sizes.

TABLE 3
Recognition Rate on All Undisguised Images of AR Dataset
[ dimensions | 540 [ 850 [ 1200 [ 2200 ]
NN 69.5% | 70.4% | 71.2% | 71.8%
LRC [17] T4.1% | 75.2% | 76.0% | 76.4%
SRC [21] 90.7% | 91.6% | 92.4% | 92.8%
ESRC [46] 90.9% | 90.8% | 91.4% | 91.8%
SSRC [47] 87.7% | 90.7% | 90.7% | 90.7%
LR [42] 90.8% | 91.3% | 91.7% | 92.8%
LRSI [42] 91.1% | 91.3% | 91.6% | 92.5%
SDR-SLR 96.4% | 96.7% | 96.9% | 97.6%

Experiment 6: to show the cases where the problems of
SRC become severe, we repeat the above experiment for
the image dimensions of 2200 with reduced number of
training samples per subject to 6, 5, 4, and 3. The average
results of 10 runs in Table 4 show that, except for the
case of 6 training samples, LR and LRSI underperform
SRC as the training data have no corruption. ESRC and
SSRC start outperforming SRC from 5 training samples,
yet marginally. The best accuracy gain of ESRC or SSRC
over SRC is 2.8% at 3 training samples. In contrast, that
of the proposed SDR-SLR reaches almost 10%.

Experiment 7: for each subject of the FERET data set,
we randomly pick out two images, one for training and
the other for testing. Then, the half of the remaining 512
images is randomly taken for training and the rest are
for testing. Thus, there are 512 images in training and the
other 512 images in testing with at least one in training
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TABLE 4
Recognition Rate of Fewer Training Samples of AR Dataset
[ train. samples [ 6 [ 5 [ 4 [ 3 ]
NN 65.4% | 60.4% | 53.5% | 46.1%
LRC [17] 72.8% | 67.4% | 60.5% | 53.7%
SRC [21] 91.7% | 88.7% | 87.7% | 82.3%
ESRC [46] 90.4% | 89.4% | 88.4% | 85.1%
SSRC [47] 90.3% | 89.4% | 89.0% | 84.7%
LR [42] 91.9% | 87.8% | 86.7% | 79.5%
LRSI [42] 91.7% | 88.6% | 87.3% | 79.7%
SDR-SLR 96.4% | 96.3% | 95.6% | 92.1%

and another in testing per subject. Images down-sampled
to 4 different sizes are tested. The average results of 10
runs in Table 5 show that LR and LRSI have about the
same accuracy as SRC. For this small number of training
samples per class, the both ESRC and SSRC outperform
SRC with the gains between 2% and 4.1%. Much more
significant gains in recognition performance over SRC are
achieved by the proposed SDR-SLR consistently over all
different image dimensions. They are between 9.2% and
10.7%.

TABLE 5

Face Recognition Rate on FERET Database

[ dimensions | 400 [ 900 [ 1600 [ 2500 |
NN 68.5% | 67.6% | 67.0% | 66.7%
LRC [17] 68.0% | 67.5% | 66.9% | 66.5%
SRC [21] 80.8% | 80.1% | 79.9% | 79.1%
ESRC [46] | 83.5% | 83.5% | 82.9% | 82.4%
SSRC [47] 83.3% | 84.2% | 81.9% | 82.9%
LR [42] 80.9% | 79.6% | 79.2% | 79.0%
LRSI [42] 81.1% | 80.0% | 79.7% | 79.4%
SDR-SLR 90.0% | 90.1% | 90.6% | 89.5%

4.3 Face Recognition on Corrupted Data

This subsection tests the effectiveness of various ap-
proaches on training data with different types and levels
of corruption.

Experiment 8: the undisguised subset of AR database
is used. 5 images per subject from Session 1 are randomly
chosen as training set and all images from Session 2 are
used as test set. All images are resized to 50 x 44 pixels.
For each training image, a certain percentage of its pixels
are randomly replaced by noise uniformly distributed
between the minimal and the maximal pixel value. The
average recognition rate over 10 runs is plotted against
the noise level in Fig. 9. It shows that ESRC and SSRC
perform about the same as SRC. LR and LRSI slightly
outperform SRC thanks to their low-rank recovery of
the training data. Fig. 9 demonstrates that the proposed
SDR-SLR significantly outperforms all other algorithms
consistently for all levels of corruption.

Experiment 9: besides the random pixel corruption, we
further test different approaches in coping with random
block occlusion on Extended Yale B database. Same as
[21], Subsets 1 and 2 containing 719 images are taken
for training and Subset 3 containing 455 images is used
for testing. Images are resized to 48 x 42. Also same as
[21], different portions of images, from 20% to 50%, are
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Fig. 9. Face recognition rate versus percentage of uniform
noise on AR database.

Fig. 10. Examples of images of Extended Yale B database
with different levels of block occlusion. From left to right,
20%, 30%, 40% and 50% of images are occluded, respec-
tively.

occluded by an unrelated image at random locations as
shown in Fig. 10. But different from [21] that corrupts all
test images, we corrupt half of the training and half of the
testing images. The result over 10 runs is plotted against
the level of occlusion in Fig. 11.

It seems a surprise that for this corrupted data, LR and
LRSI do not consistently have better performance than
SRC but ESRC and SSRC do. Possible reasons could be
that the same image is used to occlude all 50% training
and testing images so that the block occlusion causes
many training samples having a same occluded area
and even same as many testing images. As a result, the
occlusion appears more like a common variation than the
random corruption. Nevertheless, the proposed SDR-SLR
outperforms all other algorithms consistently for all levels
of occlusion.

4.4 Face Recognition with Real Disguised Images

This subsection tests the effectiveness of various ap-
proaches in dealing with real possible malicious occlu-
sions in both training and testing samples. Using all
images of size 55 x 40 in AR database,
Experiment 10 considers the following 4 scenarios:
Sunglasses only: for each of the 100 subjects, all 7
undisguised images and 1 image with sunglasses (random
chosen) from Session 1 are selected as training set. All re-
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Fig. 11. Face recognition rate versus percentage of occlu-
sion on extended Yale B database.

maining undisguised images and images with sunglasses
are used for testing. So, there are 8 training and 12 testing
images per subject.

Scarf only: replace images with sunglasses in the above
scenario by images with scarf.

Mixed 1 (Sunglasses and Scarf): for each subject, all
undisguised images, 1 image with sunglasses (random
chosen) and 1 image with scarf (random chosen) from
Session 1 are selected as training set. All remaining images
are used for testing. So, there are 9 training and 17 testing
images per subject.

Mixed 2 (Sunglasses or Scarf): 1 image randomly
taken from the 6 disguised images per subject and all
undisguised images from Session 1 are used for training.
All remaining images are used for testing. So, there are 8
training and 18 testing images per subject.

The first 3 scenarios are exactly the same as those used
in [42], [47]. The forth scenario is new and more challenge
because every class has two different disguise types in
its testing data, one of which, though presents in some
other classes, is absent in its training data. We repeat each
scenario three times and the average results are recorded
in Table 6. It shows that LR or LRSI is consistently but very
marginally better than SRC. The both ESRC and SSRC
outperform SRC more visibly, where SSRC is consistently
the second best performer, which gains accuracy over
SRC between 1.1% and 6.6%. The proposed SDR-SLR
consistently performs the best and its accuracy gain over
SRC ranges from 7.5% to 13.1%.

5 CONCLUSION

Sparse representation shows some merits in holistic image
classification. In seeking a sparse representation of a query
image, every sample competes against the others to gain
its share. This well matches the general classification
objective that only one class should stand out from the
rest. However, all information in images participates in
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TABLE 6
Face Recognition Rate on the AR Database.

[ Scenario [ Sunglass | Scarf | Mixed 1 | Mixed 2 |
NN 51.4% 49.0% | 41.8% 35.8%
LRC [17] 69.8% 64.8% | 64.2% 47.3%
SRC [21] 88.8% 86.6% | 85.8% 79.9%
ESRC [46] | 89.6% 89.5% | 88.9% 84.5%
SSRC [47] | 89.9% 90.1% | 89.3% 86.5%

LR [42] 88.6% 86.8% | 86.1% 79.9%
LRSI [42] 89.0% 86.7% | 86.3% 80.2%
SDRSLR | 963% 94.5% | 953% | 93.0%

this competition. There is no reason why the significant
coefficients must coincide with a specific one of many
different forms of class grouping, especially for some
applications where the class-specific information takes up
only a very small portion of that in images. As a result,
SRC requires sufficient representative samples for every
class, with which the non-class-specific information can
be nulled out. This requirement may not be fulfilled in
many computer vision problems such as face recognition.
Another problem of SRC is the corrupted training data
though it is robust to the corrupted query image thanks
to the ¢; minimization of the error.

This work alleviates the two fundamental problems of
SRC by a sparse- and dense-hybrid representation (SDR)
based on a supervised low-rank (SLR) dictionary de-
composition/learning. In the proposed SDR framework,
every sample only uses its class-specific component to
compete against the others collaboratively with the non-
class-specific component of all samples. This makes the
sparse code of the proposed SDR completely coincide
with the specifically assigned class membership. The co-
representation by the non-class-specific component largely
relaxes the requirement of representative samples for ev-
ery class. The class-specific dictionary decomposed by the
proposed SLR captures more information than that used in
the linear discriminant analysis. The sparse outlier pixels
and occlusions of the training data are also separated from
the two decomposed low-rank dictionaries. This alleviates
the second problem of SRC with corrupted training data.

Extensive experiments on 4 face image databases have
verified the effectiveness and advancement of the pro-
posed SDR-SLR approach. It consistently and visibly out-
performs SRC and its related extensions in all experi-
ments, whether the training data are corrupted or not and
whether every class has sufficient representative training
samples or not. In case the training data are corrupted or
are not representative for some classes, the performance
gains of the proposed SDR-SLR approach are significant.
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