
Two-Dimensional Polar Harmonic Transforms
for Invariant Image Representation

Pew-Thian Yap, Xudong Jiang, Senior Member, IEEE, and Alex Chichung Kot, Fellow, IEEE

Abstract—This paper introduces a set of 2D transforms, based on a set of orthogonal projection bases, to generate a set of features

which are invariant to rotation. We call these transforms Polar Harmonic Transforms (PHTs). Unlike the well-known Zernike and

pseudo-Zernike moments, the kernel computation of PHTs is extremely simple and has no numerical stability issue whatsoever. This

implies that PHTs encompass the orthogonality and invariance advantages of Zernike and pseudo-Zernike moments, but are free from

their inherent limitations. This also means that PHTs are well suited for application where maximal discriminant information is needed.

Furthermore, PHTs make available a large set of features for further feature selection in the process of seeking for the best

discriminative or representative features for a particular application.

Index Terms—Polar harmonic transforms, harmonic kernels, rotation invariance, Zernike moments, pseudo-Zernike moments,

orthogonal moments.

Ç

1 INTRODUCTION

HUMANS, often unfailingly and effortlessly, are able to
recognize a wide variety of objects irrespective of their

rotations. Man-made perception systems are often designed
to mimic this basic capability. One way of achieving this is
by training a certain set of classifiers to recognize the objects
by working in parallel to cater for a finite set of different
angles. Another way is to directly devise a set of features
which are invariant to the image orientation. In this paper,
we follow the latter approach.

A number of rotation-invariant features have been
proposed in the literature. Among them are the popular
Zernike moments (ZMs) [1] and also the often mentioned
together pseudo-Zernike moments (PSMs) [2]. These mo-
ments have been very successfully applied in a variety of
contexts including, but not limited to, modeling of corneal
surface [3], watermarking [4], face recognition [5], character
recognition [6], multispectral texture classification [7], and
edge detection [8]. Despite their usefulness, these two sets
of moments are often faced with the problem of computa-
tion difficulty, especially when the high-order moments are
concerned. The computational problem of these moments is
inherently related to the fact that many factorial terms are
involved in the process of calculating the moment kernels.

Other options of rotation-invariant features include
rotational moments (RMs) [2] and complex moments
(CMs) [9], [10]. However, these moments are not orthogo-
nal, as are ZMs and PZMs. Nonorthgonality implies lack of
information compactness in each of the computed moments.

On the other hand, orthogonality of the kernels means that
an image is projected onto a set of pairwise orthogonal axes,
and the classifier can hence be relatively simple. The kernels
of ZMs and PZMs can be shown to be the outcome of Gram
Schmidt orthogonalization on the CM kernels [9]. Refer to
[11], [12], [13], [14] for a comprehensive survey on moments.

In this paper, we introduce a set of transforms, called
Polar Harmonic Transforms1 (PHTs), which can be used to
generate rotation-invariant features. The computation of the
PHT kernels is significantly simpler compared with that of
ZMs and PZMs, and can hence be performed at a much
higher speed. With PHTs, there is also no numerical
instability issue, as with ZMs and PZMs, which often limits
their practical usefulness. A large part of the computation of
the PHT kernels can be precomputed and stored. In the end,
for each pixel, as little as three multiplications, one addition
operation, and one cosine and/or sine evaluation are
needed to obtain the final kernel value. In this paper, three
different transforms will be introduced, namely, Polar
Complex Exponential Transform (PCET), Polar Cosine
Transform (PCT), and Polar Sine Transform (PST). We have
grouped them under the name Polar Harmonic Transforms
as the kernels of these transforms are harmonic in nature,
that is, they are basic waves.

Another additional advantage of our framework is that it
offers the possibility of constructing limitless number of
features. In order to be able to recognize objects effectively,
apart from the issue of constructing invariant object
descriptors, one also has the problem of generating a
sufficiently large number of features, which is often required
by many recognition tasks. The more classes one has to
discriminate, the more features may be necessary. Therefore,
a mechanism is needed, capable of generating a large
number of invariant features, which do not necessarily need
to have physical or geometric meaning. The transform that
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1. We have refrained from using the term Polar Harmonic Moments
considering the fact that moments are essentially formulated with
monomials/polynomials as their basis.
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we propose in the next section has exactly this property. The
ease of computation of the PHT kernels causes the evaluation
of the higher order PHT coefficients to be more feasible
compared to ZMs and PZMs, and hence, a large pool of
features can be made available for later feature selection or
discriminant analysis.

To the best of our knowledge, the work most similar to
ours is Ren et al.’s radial-harmonic-Fourier moments [15]
(RHFMs), in which trigonometric functions are also used to
form the radial kernels. While, on the surface, their
moments might be very similar to the transforms, PCT
and PST in particular, that we are going to propose, it is not
difficult to observe that our formulation is fundamentally
different from theirs in the following ways: 1) Ren et al.’s
formulation does not have a DC term, the existence of which
might be useful for some applications; PCET and PCT have
the DC term, 2) their formulation is problematic at r ¼ 0
since one needs to compute 1=

ffiffiffi
r
p

, and 3) PCT and PST have
more variations in terms of frequency components since the
kernels of PCT and PST have a base frequency of � instead
of 2� as in Ren et al.’s formulation.

In Section 2, we will define the Polar Harmonic Trans-
forms, properties of which will be further discussed in
Section 3. We will then, in Section 4, describe a few
experiments which we have performed to gauge the
performance. Section 5 concludes this paper.

2 POLAR HARMONIC TRANSFORMS

The Polar Complex Exponential Transform of order n with
repetition l, jnj ¼ jlj ¼ 0; 1; . . . ;1, is defined as

Mnl ¼
1

�

Z 2�

0

Z 1

0

Hnlðr; �Þ½ ��fðr; �Þrdrd�; ð1Þ

where ½��� denotes the complex conjugate and the basis
Hnlðr; �Þ can be decomposed into radial and circular
components:

Hnlðr; �Þ ¼ RnðrÞeil�; ð2Þ

with the radial kernel being a complex exponential in the
radial direction:

RnðrÞ ¼ ei2�nr
2 ð3Þ

and satisfying orthogonality condition:Z 1

0

RnðrÞ Rn0 ðrÞ½ ��rdr ¼ 1

2
�nn0 ; ð4Þ

and also:Z 2�

0

Z 1

0

Hnlðr; �Þ Hn0l0 ðr; �Þ½ ��rdrd� ¼ ��nn0�ll0 : ð5Þ

Some visual illustrations of the kernels are given in Fig. 1.
The factor 1=� of (1) is due to the norm of the kernels and
can be discarded if the kernels are orthonormalized, i.e.,
by letting:

~Hnlðr; �Þ ¼
1ffiffiffi
�
p Hnlðr; �Þ; ð6Þ

and hence:

Z 1

0

~Hnlðr; �Þ ~Hn0l0 ðr; �Þ
� ��

rdrd� ¼ �nn0�ll0 : ð7Þ

The PCET coefficients fMnlg can be shown to be bounded

via Bessel’s inequality:

1

�

X
8n;l

M2
nl �

Z 2�

0

Z 1

0

fðr; �Þ½ �2rdrd�: ð8Þ

Similar to the form of PCET, we can define another two sets

of harmonic transforms, i.e., Polar Cosine Transform:

MC
nl ¼ �n

Z 2�

0

Z 1

0

HC
nlðr; �Þ

� ��
fðr; �Þrdrd�

n; jlj ¼ 0; 1; . . . ;1
ð9Þ
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Fig. 1. Some examples of the PCET kernels. (a) 3D view of the phase
angle of H23. (b) 2D views of different Hnls: the different rows show the
views for n ¼ 0; 1; 2 and the columns l ¼ 0; 1; 2.
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and Polar Sine Transform:

MS
nl ¼ �n

Z 2�

0

Z 1

0

HS
nlðr; �Þ

� ��
fðr; �Þrdrd�

n ¼ 1; . . . ;1; jlj ¼ 0; 1; . . . ;1
ð10Þ

with

HC
nlðr; �Þ ¼ RC

n ðrÞeil� ¼ cosð�nr2Þeil�;
HS
nlðr; �Þ ¼ RS

nðrÞeil� ¼ sinð�nr2Þeil�;
ð11Þ

and

�n ¼
1

�
; n ¼ 0;

2

�
; n 6¼ 0:

8><
>: ð12Þ

The polar portions of the above transforms have very
similar definitions with Fourier Cosine and Sine Transforms
on a finite interval, which cater for even and odd functions,
respectively. They are, hence, also very similar to the
definition of Discrete Cosine Transform (DCT) and Discrete
Sine Transform (DST). However, it should be pointed out
that the PCT/PST is fundamentally different from
2D-DCT/2D-DST since the latter is defined in the Cartesian
coordinates and the former in the polar coordinates. There
is also no equivalent rotation invariance for 2D-DCT/
2D-DST as compared to PCT/PST. The distinction between
PCT/PST and PCET is that the former uses only cosine/sine
functions, while the latter uses both cosines and sines (in the
form of complex exponentials). The other difference that
should be noted is that the range of angles covered by PCT/
PST in its radial kernel, i.e., ½0; ��, is half of that of PCET, i.e.,
½0; 2��. In fact, the kernels of PCET and PCT/PST are all
harmonic in the sense that they are all basic waves.
However, we have named the former PCET and the latter
PCT/PST for differentiation. PCET, PCT, and PST, though
similar in form, capture different image information, as will
be evident from the experimental results that will be shown
in a later section. In the following sections of the paper, we
will mainly focus our discussions on PCET with an
occasional foray into PCT/PST only when necessary. This
is to avoid unnecessary repetition, as PCT/PST essentially
has many properties identical to PCET.

Bhatia and Wolf [16] have shown that a polynomial2 that

is invariant in form for any rotation of axes about the origin

must be of the form:

V ðr cos �; r sin �Þ ¼ RnðrÞexpðjm�Þ; ð13Þ

where RnðrÞ is a radial polynomial in r of degree n. There

are a few sets of moments with their kernels complying

with this form, namely, Zernike moments, with their radial

kernels defined as [1]:

RnlðrÞ ¼
Xðn�jljÞ2

s¼0

ð�1Þs ðn� sÞ!
s!
� nþjlj

2 � s
�
!
� n�jlj

2 � s
�
!
rn�2s: ð14Þ

Pseudo-Zernike moments [2], a variation of Zernike
moments, with their radial kernels defined as:

RnlðrÞ ¼
Xðn�jljÞ
s¼0

ð�1Þs ð2nþ 1� sÞ!
s! nþ jlj � sð Þ! n� jlj þ 1� sð Þ! r

n�s;

ð15Þ

orthogonal Fourier-Mellin Moments [17]:

RnðrÞ ¼ QnðrÞ ¼
Xn
s¼0

�nsr
s; ð16Þ

�ns ¼ ð�1Þnþs ðnþ sþ 1Þ!
ðn� sÞ!s!ðsþ 1Þ! ; ð17Þ

Fourier-Mellin descriptors [18]:

RsðrÞ ¼ rs�1; ð18Þ

rotational moments3 [2]:

RnðrÞ ¼ rn; ð19Þ

and radial-harmonic-Fourier Moments [15]:

RnðrÞ ¼

1ffiffi
r
p ; n ¼ 0;ffiffi

2
r

q
cosð�nrÞ; n even;ffiffi

2
r

q
sinð�ðnþ 1ÞrÞ; n odd:

8>>><
>>>:

ð20Þ

Among the moments listed, Zernike moments, pseudo-
Zernike moments, Orthogonal Fourier-Mellin moments
(OFMMs), radial-harmonic-Fourier moments (RHFMs),
and also Polar Harmonic Transform are orthogonal in the
sense that their kernels satisfy orthogonality conditions
similar to (4). Fourier-Mellin descriptors (FMDs) and
rotational moments, on the other hand, are nonorthogonal
and do not satisfy the orthogonality condition. Features
based on orthogonal kernels are more efficient in terms of
information compactness since the image is projected onto a
set of axes which are pairwise orthogonal, and hence, the
overlapping of information is minimal. Note also that the
kernel computation of ZM, PZM, and OFMM involves
computation of a number of factorial terms, which
inevitably cause the numerical stability of these moments.
Recurrence equations [19] are often used in place of these
direct formulas, but although recurrence formulas do help
to push the maximal order of computable moment higher,
they eventually will suffer from numerical instability. See
[19], [20] for some ZM-computation-related issues. A
summary of comparison of the various moment kernels
and that of PHTs is given in Table 1.

3 PROPERTIES OF POLAR HARMONIC TRANSFORMS

3.1 Computation Complexity of Polar Harmonic
Transform

The computation of the kernels of PHTs is significantly
easier when compared to that of ZMs, PZMs, and OFMMs.

YAP ET AL.: TWO-DIMENSIONAL POLAR HARMONIC TRANSFORMS FOR INVARIANT IMAGE REPRESENTATION 1261

2. Complex exponential, cosine, and sine functions used to define PCET,
PCT, and PST are technically not polynomials, but they can be expressed in
the form of power series which are essentially polynomials of infinite
degrees.

3. We have left out Complex Moments [9], [10] because they are very
similar to rotational moments.
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Based on (2) and (3), we can rewrite the definition of the
PCET kernels in the following form:

Hnlðr; �Þ ¼ ei2�nr
2

eil� ¼ eið2�nr2þl�Þ: ð21Þ

We can see that in this form the computation is not complex
at all: The transformed image coordinates ðr; �Þ need to be
evaluated only once and then stored in the form of ðr2; �Þ,
which is just an extra step from the former. The rest is just
multiplications of these stored values with n and l and
followed finally by an evaluation of the complex exponential
function which can be written in the form of trigonometric
functions, i.e., eiz ¼ cosðzÞ þ i sinðzÞ. Hence, for each pixel,
only three multiplications (assuming the value of 2� is
precalculated and stored), one addition, and one cosine and
sine (complex exponential) evaluation are needed to obtain
the final kernel value. This implies PHTs have the added
advantage of offering the possibility of constructing thou-
sands of features. Indeed, in order to be able to recognize
objects, apart from the issue of invariant object descriptors,
one also has the problem of generating a large number of
features that are necessary. The more classes one has to
discriminate, the more features may be necessary for
recognition tasks. Therefore, a mechanism is needed, capable
of generating a large number of invariant features which do
not necessarily have physical or geometric meaning.

3.2 Storage

The ease of computation of PHT kernels also makes it
possible to reduce the storage space required to store the
kernels. For the case of ZMs, if N terms of ZMs are needed,
we need to typically store N different ZM kernels if the
repetitive computation of the computationally expensive ZM
kernels is to be avoided. But, on the other hand, we see that
for PHTs, there is no need to precalculate and store the
kernels since the computation needed to arrive at the kernels
is very small. Based on our discussion in Section 3.1, we

merely need to store the image-mapped coordinates ðr2; �Þ,
and kernels of any orders can be computed without much
hassle thereon. This means N times more economical in
terms of storage space.

3.3 Information Extraction and the Number of Zeros

The radial kernels of ZMs and PZMs are polynomials and
the number of zeros corresponds to the capability of the
polynomials to describe high-spatial-frequency components
of an image. It is easy to see that the radial kernel of ZM has
ðn�mÞ=2 duplicated roots in the interior of the interval
0 � r � 1, apart from the trivial case at r ¼ 0. On the other
hand, for the radial kernel of PCET, writing it in the form of:

RnðrÞ ¼ cosð2�nr2Þ þ i sinð2�nr2Þ; ð22Þ

we can observe that the real and imaginary parts have 2n
and 2nþ 1 (inclusive of r ¼ 0) zeros, respectively. Hence,
for one to have the same number n0 of zeros, the degree of
the ZM radial polynomial has to be 2n0 þm, much higher
than that of PCET, which is around n0=2.

3.4 Suppression Problem

The zeros of the radial kernels of ZMs are located in the
region of large radial distance r from the origin. On the
other hand, the zeros of the kernels of PCET are distributed
nearly uniformly over the interval 0 � r � 1. Abu-Mostafa
and Psaltis [9] in their paper term the nonuniform
distribution of zeros of complex moment kernels as the
suppression problem. We use the same term here to describe a
similar problem faced by ZMs. Suppression problem causes
unnecessary emphasis on certain part of the image and
negligence on the rest. This is illustrated in Fig. 2.

3.5 Rotation Invariance

The coefficients of PHTs have the inherent property of
rotation invariance. If image gxðx; yÞ is rotated through a
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TABLE 1
Comparison of Different Moments and Transforms—Orthogonality and Numerical Stability
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clockwise angle � to become g2ðx; yÞ, more formally if
g2ðx2; y2Þ ¼ g1ðx1; y1Þ, where:

x1

y1

� �
¼ cos� � sin�

sin� cos�

� �
x2

y2

� �
; ð23Þ

then the new set of PCET coefficients, namely, fM 0nlg, is
related to the old set fMnlg by the relation:

M 0
nl ¼Mnle

�il�: ð24Þ

This equation is the basis for derivation of invariants from
the PCET coefficients. If we cancel out the exponential
factor in (24), we get absolute invariants. For instance,
jM 0

nlj ¼ jMnlj or M 0nl½M 0nl�
� ¼Mnl½Mnl��. To avoid discard-

ing too much information from the set of PCET coefficients,
invariants can be obtained by multiplication of appropriate
coefficient terms [21]. Specifically, let N � 1 and let ki and
ni be nonnegative integers and li be integer, where
i ¼ 1; . . . ; N , such that:

XN
i¼1

kili ¼ 0: ð25Þ

Then, any product

I ¼
YN
i

Mki
nili

ð26Þ

is invariant to rotation. The invariants, as defined by (26),
are, in general, complex valued. If real-valued features are
needed, the real and imaginary parts (or equivalently, the
magnitude and phase) of each of the invariants can be
taken separately. A basis B for the invariants generated
using (26) is:

B ¼
	
Mn;l

�
Ml

n0;l0

��
; n; l � 0; Mn0;l0 6¼ 0



: ð27Þ

Set B is complete (see the Appendix for proof) as it can be

shown that invariants generated using (26) can be ex-

pressed in terms of the elements in B using only operations

consisting of addition/subtraction, multiplication, involu-

tion with a positive/negative integer exponent, and com-

plex conjugation. The above form of invariance can be

similarly applied to PCT and PST.

3.6 Orientation Estimation

In the last section, we have shown how to negate the effects

of the rotation angle by forming invariance from the PHT

coefficients. But it is also possible, on the other hand, to use

the PHT coefficients to estimate the orientation of an image

by not discarding the rotation information. The formulation

is quite straightforward as we can rewrite (24) to obtain the

angle of orientation shift:

� ¼ � 1

l
arg

M 0
nl

Mnl
: ð28Þ

Hence, if we define the orientation of an image to be !, the

rotated image has an orientation of !� �. In cases of noise

or unintentional image variations, a more accurate estimate

of � can be obtained by taking the average of the � values

returned by various PHT coefficients with different values

of ns and ls.

3.7 Image Reconstruction

The kernels of PHTs are pairwise orthogonal, and hence,

any image can be expressed in terms of the PHT coefficients

and the kernels in the following form:
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Fig. 2. Information suppression. The kernels of ZMs (a) put too much emphasis on certain portions of the signal. The same problem does not happen
to the kernels of PCET. (b) Real and (c) imaginary components of the PCET kernel. The numbers alongside the curves indicate the orders n of the
radial components of the kernels.
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fðr; �Þ ¼
X1
n¼�1

X1
l¼�1

MnlHnlðr; �Þ: ð29Þ

If only a subset ðn; lÞ 2 S0 � S ¼ ðn; lÞjjnj; jlj ¼ 0; 1; . . . ;1f g
of the PHT coefficients is available, an approximation of the
image function, denoted as f̂ðr; �Þ, can be obtained by:

f̂ðr; �Þ ¼
X
ðn;lÞ2S0

MnlHnlðr; �Þ: ð30Þ

The reconstruction error:

�2 ¼
Z 2�

0

Z 1

0

½fðr; �Þ � f̂ðr; �Þ�2rdrd� ð31Þ

can be easily proven, for the case of PCET, to be:

�2 ¼ 1

�

X
ðn;lÞ2SnS0

M2
nl: ð32Þ

It can be shown that the partial sum, given by relation (29),
converges to the image when the image is nonzero in a
limited region, is continuous, or has a finite number of finite
jumps so that fðr; �Þ and jfðr; �Þj2 are integrable and RnðrÞ
are bounded over ð0; 1Þ as n becomes infinite [22]. These
conditions are, in general, satisfied.

3.8 Relation with Rotational Moments

PCET coefficients can be expressed in terms of rotational
moments:

Dnl ¼
Z 2�

0

Z 1

0

rne�il�fðr; �Þrdrd� ð33Þ

in the following form:

Mnl ¼
X1
k¼0

ði2�nÞk

k!
D2k;l: ð34Þ

From the above equation, it can be observed that the
information captured by the PCET coefficients is two times
the frequency of that of rotational moments.

3.9 Fourier Series Interpretation

PCET coefficients can be expressed in the terms of Fourier
series by observing that:

Mnl ¼
1

2�

Z 2�

0

1

2�

Z 2�

0

gðr0; �Þe�inr0dr0
� �

e�il�d�; ð35Þ

where r0 ¼ 2�r2 and gðr0; �Þ 	 fð
ffiffiffiffiffiffiffiffiffiffiffi
r0=2�

p
; �Þ. PCET coeffi-

cients are hence 2D fourier coefficients as defined
above—first in the radial direction, followed by the
circular direction.

3.10 3D Formulation

Defining ðr; �; ’Þ as the radial distance, zenith, and azimuth,
respectively, we can form 3D PHTs with similar properties
of their 2D versions. The kernels of 3D PHTs are defined as:

Hnmlðr; �; ’Þ ¼
1

r
RnðrÞYmlð�; ’Þ: ð36Þ

The spherical harmonics [23], [24], [25] Ymlð�; ’Þ are given by:

Ymlð�; ’Þ ¼ NmlPmlðcos �Þeim’; ð37Þ

where Nml is a normalization factor:

Nml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðl�mÞ!
ðlþmÞ!

s
ð38Þ

and Pml denotes the associated Legendre functions. 3D PHT
coefficients can be computed using the above kernels to
perform volumetric integrals over a 3D object. For more
information on 3D invariants, please refer to [24] and [26]. A
3D formulation as such is important for 3D object (ranging
from sparse point sets to dense volumetric MRI or PET)
recognition, registration, segmentation, etc.

3.11 Discrete Implementation

Up to this point, the discussion has been limited to the case
where the image is assumed to be defined on a continuous
domain. In practice, however, this is not the case and
images are defined on a discrete domain. As such, (1) can be
written in Cartesian coordinates as:

Mnl ¼
1

�

Z Z
x2þy2�1

½H 0nlðx; yÞ�
�f 0ðx; yÞdxdy; ð39Þ

where H 0nlðx; yÞ ¼ H 0nlðr cos �; r sin �Þ 	 Hnlðr; �Þ and

f 0ðx; yÞ ¼ fðr cos �; r sin �Þ 	 fðr; �Þ:

Given an image defined on a discrete domain g½k; l�, where
k ¼ 0; . . . ;M � 1 and l ¼ 0; . . . ; N � 1, we map the image to
a domain of ðxk; ylÞ 2 ½�1; 1� 
 ½�1; 1� with:

xk ¼
k�M=2

M=2
; yl ¼

l�N=2
N=2

ð40Þ

and we have:

Mnl ¼
1

�

XM�1

k¼0

XN�1

l¼0

½H 0nlðxk; ylÞ�
�f 0ðxk; ylÞ�x�y

¼ 4

�MN

XM�1

k¼0

XN�1

l¼0

½H 0nlðxk; ylÞ�
�f 0ðxk; ylÞ

ð41Þ

subject to x2
k þ y2

l � 1 (only the center portion of the image is
considered in computing the transform coefficients), where
f 0ðxk; ylÞ ¼ g½k; l�, and note that �x ¼ 2=M, �y ¼ 2=N . A
more detailed discussion about this form of discretization
and mapping can be found in [27].

3.12 Feature Selection

Features generated might or might not be useful, depend-
ing on the application involved. Hence, feature selection is
a crucial step to sieve through all available features and to
pick out those which are really useful for the task at hand.
For this purpose, a general good choice of feature selector
and classifier constructer is the adaptive boosting algorithm
(AdaBoost) [28]. In essence, the learning algorithm is used
to boost the classification performance of a set of simple
(sometimes called weak) classifiers to form a strong
classifier. There are a number of formal guarantees
provided by the AdaBoost learning procedure. Schapire
et al. [29] proved that the training error of the strong
classifier approaches zero exponentially in a number of
rounds. More importantly, a number of results were later
proved about generalization performance. The key insight
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is that generalization performance is related to the margin
of the examples, and that AdaBoost achieves large margins
rapidly. We have shown in [30] how AdaBoost can be used
to boost the performance of complex moments.

4 EXPERIMENTS

PHTs are generally more feasible than ZMs/PZMs when
computationally economical kernels are needed. Moreover,
the ease of computation of PHTs makes the computation of
higher order coefficients more tractable when compared to
that of ZMs/PZMs. In this section, we will show the results
from a number of experiments which are performed to
gauge the performance of PHTs.

4.1 Kernel Computation Complexity

Here, we show in terms of computation time how much less
complex the computation of PHT kernels is when compared
to those of ZMs and PZMs. Table 2 shows a comparison of
the computation time needed for computing the ZM, PZM,
and PHT kernels. Values shown are time in seconds per
moments, averaged over 10 trials for kernels computed up
to 0 � n; l � 50 for a 100
 100 image. We have used the
coefficient method [19] for computing the ZM and PZM
kernels. The PC used for testing has a 2.50 GHz Processor
with 2 GB RAM. The test is done using MATLAB version
7.4. As can be observed, the computation time needed for
PHT kernels is much less than those of ZMs and PZMs.

4.2 Image Reconstruction and Numerical Stability

The most direct method of testing the image representation
capability of the transforms is via image reconstruction.
Image reconstruction also gives an indication of when the
numerical stability of certain feature breaks down. In this
experiment, finite sets of ZMs, PZMs,4 and PHT coefficients
of the 20 test images, shown in Fig. 4, are first calculated, and
then, from these sets of moments/coefficients, the images are
reconstructed according to (30). The difference between the
reconstructed image and the original image is then mea-
sured using the Root-Mean-Square Error (RMSE)5 as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x02þy02�1½fðx; yÞ � f̂ðx; yÞ�

2

jfðx0; y0Þjx02 þ y02 � 1gj

s
: ð42Þ

Let K be some constant. We have limited the number of
moments/coefficients used in reconstruction based on the
following:

. ZMs: n� jlj ¼ even, jlj � n � K,

. PZMs: jlj � n � K,

. PCET: jlj þ jnj � K,

. PCT: jlj þ n � K,

. PST: jlj þ n � K,

. RHFMs: jlj þ n � K.

These conditions are selected so that the moments/
coefficients capturing the lowest frequency information are
used for the reconstruction process. Some examples of the
reconstructed images are shown in Fig. 3. As more moments
are added to the reconstruction process, the reconstructed
images get closer to the original images. As can be observed
from the reconstructed images, PCT, PST, and PCET capture
the image information, especially the edges, better than ZMs
and PZMs. For the same maximum order K of moments
used, the images reconstructed using ZMs are less sharp
judging from the edges. As for PZMs, the reconstructed
images degrade quite swiftly toward the end when the
number of moments is further increased. In Fig. 5, we show
plots of the average RMSE values. It can be observed that the
numerical stability of PZMs breaks down when the number
of moments is increased up to a certain point, as evident
from the sudden upturn of the respective RMSE curve. ZMs
break down later in the curve (not shown in the figure). The
performance of PST is better than ZMs and is very close to
PZMs. PCT gives better reconstruction results when
compared to ZMs and PZMs. We have also included the
results for RHFMs here and it is as per prediction that
RHFMs have some inherent numerical stability problem.
Special care has to be taken so that r ¼ 0 is avoided while
generating the kernels of RHFMs.

4.3 Pattern Recognition Using Simulated Data

In this experiment, we gauge the noise robustness of ZMs,
PZMs, PCET, PCT, and PST under noisy conditions via a
simple pattern recognition experiment. The images utilized
in this experiment are taken from the COREL photograph
data set, which was used in [31]. The test set consists of
100 selected images which are initially stored in JPEG
format with size 384
 256 or 256
 384. Each image is
converted to gray scale and scaled to a standard size of
128
 128 before its features are extracted. Some sample
images are shown in Fig. 6. These images are the training
images, moments/coefficients of which will be taken as the
ground truth for comparison with that of the testing images.
The testing images comprise the rotated and noise-con-
taminated versions of the 100 images. The images are first
rotated at angles � ¼ 0; 45; . . . ; 315 degree and are then
added with Gaussian noise of variance6 �2 ¼ 0:00; 0:05;
0:10; 0:20. These noise-contaminated images are then classi-
fied according to their moments/coeffcients by comparing
their distance (euclidean distance) to that of the training
images. The average accuracies for three trials are shown in
Table 3. It can be seen that PCT gives performance
comparable to that of PZMs, with PCET and PST following
closely behind but still better than ZMs and RMs. The
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TABLE 2
Kernel Computation Time (s)

4. We have used the coefficient methods [19] for computing the kernels
of ZMs and PZMs for all the experiments.

5. The reconstructed images are clipped at 0 and 255 so that the pixel
values are maintained in the range of ½0; 255�.

6. The variances are normalized values. They correspond to image
intensities ranging from 0 to 1.
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results of rotational moments are included here to show that

nonorthogonal moments are often less effective when

compared to the orthogonal ones.
In this following experiment, we evaluate the performance

of rotational invariants formed with (26): More specifically,

we will only consider (27) since it forms the basis of, and

hence, encapsulates the same information as (26). We

compare our results with Flusser and Suk’s moment rotation

invariants, which are based on complex moments [9], [10]:

Cpq ¼
Z 2�

0

Z 1
0

rpþqeiðp�qÞ�fðr; �Þrdrd�: ð43Þ

For comparison, we set n ¼ pþ q, l ¼ p� q for PCT and PST

and n ¼ floorððpþ qÞ=2Þ, l ¼ p� q for PCET. The number n

for PCET is halved because the kernels of PCET have two

times the number of zeros when compared to those of PCT

and PST. Hence, to match their spatial frequencies, the

orders of the radial components of PCET are set to half of

that of PCT and PST. For the same set of images used in

Section 4.3, but scaled to 32
 32 for faster computation, the

results are shown in Table 4. The number of features used

are determined by the constant K, where 0 � pþ q � K,

which is equivalent to T ¼ ðK þ 1ÞðK þ 2Þ=2 features.7

From the table, it is evident that PCET, PCT, and PST yield

significant improvement when compared to the rotation

invariants generated based on complex moments in the

majority of cases.
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Fig. 3. Some samples of reconstructed images. K ¼ 0; 1; . . . ; 29. (a) Polar complex exponential transform, (b) polar cosine transform, (c) polar sine
transform, (d) Zernike moments, and (e) pseudo-Zernike moments.

Fig. 4. Test images. Each image is resized to 64
 64 before performing
the experiment. The range of pixel values is ½0; 255�.

7. PST has one less feature because Ms
0;0 ¼ 0, which happens when

p ¼ q ¼ 0.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on May 21,2010 at 06:13:09 UTC from IEEE Xplore.  Restrictions apply. 



4.4 Character Recognition as a Real-World Problem

We evaluate the performance of PHT using the well-known
MNIST database [32] of handwritten digits. MNIST consists
of 60,000 training and 10,000 testing images, each of which
has been size-normalized and centered in a 28
 28 box
(784 pixels). Some samples are shown in Fig. 7. The
euclidean distance nearest neighbor classifier using raw
pixels is used as the baseline for comparison. To study the
effect of the number of pixels on the classification accuracy,
we downsample the images by factors of 2 and 3
(corresponding to 14
 14 ¼ 196 and 10
 10 ¼ 100 pixels,
respectively) before feeding them into the classifier for
training and testing. Due to the large memory requirement
and computation cost, out of the 70,000 samples, only 7,000
are used for this experiment: 6,000 for training and 1,000 for
testing. For PHTs, we use a similar nearest neighbor
classifier with the coefficients normalized to prevent the
domination of a subgroup of features. The normalization is
performed by subtracting off the mean and dividing by
the standard deviation of the training samples. Following
the convention in Section 4.3 for invariants of the form (26),
we choose K ¼ 3; 4; 5 (corresponding to 60, 90, and
126 features, respectively), which we shall see later gives
results close to that of the baseline method. Instead of using
the PCET, PCT, and PST coefficients as individual features,

we combine them into a single feature vector. Since PCET,
PCT, and PST features capture different characteristics of an
image, combining all PHT coefficients into a feature vector
makes it more discriminant. The classification results are
shown in Table 5 (Original),8 where the performance of the
baseline method, with no pixel downsampling, matches
that reported in [32]. It can be seen that for a lesser amount
of features, PHTs outperform the baseline method in all
three cases. To further demonstrate the benefit of PHTs, we
randomly rotate the images in the testing set by �45 to
45 degrees, and the classification accuracy of these rotated
images is shown in Table 5 (rotated). It clearly shows that in
such a case the PHTs maintain relatively high classification
accuracy, while the baseline method unsurprisingly fails.
One should keep in mind that PHTs in general provide
plenty of features sufficient for image representation.
However, PHTs are, at the current stage, not specifically
designed for classification in the sense that some PHT
features might not be discriminative and some might even
be unstable. In light of this, a more principled scheme of
feature selection and also a more intelligent form of
classifier which properly weights each feature need to be
devised so as to take full advantage of the rich representa-
tion capability of PHTs. In this sense, this experiment is not
designed to sufficiently demonstrate the classification
performance of PHT-based features, since there is neither
feature selection nor dedicated classifier training mechan-
isms involved. Rather, it illustrates that the PHT features
extracted from the image raw pixels do contain adequate
information for pattern classification.

5 CONCLUSION

In conclusion, we have proposed a set of transforms,
namely, Polar Complex Exponential Transform, Polar
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Fig. 5. Average RMSE values yielded by the various methods in the image reconstruction experiment.

Fig. 6. Some samples of test images for the pattern recognition
experiment.

8. The digits “6” and “9” are treated the same since the invariance
property of PHTs makes them indistinguishable.
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Cosine Transform, and Polar Sine Transform, for rotation-
invariant image representation. In comparison to ZMs/
PZMs and PCET, the proposed PCT and PST are much
less complex in terms of kernel generation. This is in
addition to the fact that, for the latter, numerical stability
issue is nonexistent. This is apparently a desirable
property judging from the number of papers devoted to
the mitigation of the numerical problem of ZMs/PZMs.
Some other advantages of the set of Polar Harmonic

Transforms are economical kernel storage space, tractable
higher order coefficients, and easier implementation.
Experiments conducted show that the proposed trans-
forms exhibit performance which is comparable to that of
the popular ZMs and PZMs. Possible applications of
PHTs, just to name a few, are image retrieval, image data
mining, biomedical imaging such as MRI or PET scans
(using the 3D formulation), face detection, corneal surface
modeling, and texture classification.

1268 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 7, JULY 2010

TABLE 3
Average Classification Rates 	 (Percent) for Images Under Different Degrees of Gaussian Noise

Fig. 7. Sample images from the MNIST handwritten digits database.
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APPENDIX

PROOF OF COMPLETENESS

Equation (26) can be written as:

I ¼
YN
i

Mki
nili

M

PN

j¼1
kjlj

n0;l0

" #�

since:

XN
j¼1

kjlj ¼ 0:

Grouping terms with i ¼ j, we have

I ¼
YN
i

	
Mnili

�
Mli

n0;l0

��
ki :
Hence,

B ¼
	
Mn;l

�
Ml

n0;l0

��
; n; l � 0; Mn0;l0 6¼ 0



is the complete basis for I.
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