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Abstract—This paper studies the roles of the principal component and

discriminant analyses in the pattern classification and explores their problems with

the asymmetric classes and/or the unbalanced training data. An asymmetric

principal component analysis (APCA) is proposed to remove the unreliable

dimensions more effectively than the conventional PCA. Targeted at the two-class

problem, an asymmetric discriminant analysis in the APCA subspace is proposed

to regularize the eigenvalue that is, in general, a biased estimate of the variance in

the corresponding dimension. These efforts facilitate a reliable and discriminative

feature extraction for the asymmetric classes and/or the unbalanced training data.

The proposed approach is validated in the experiments by comparing it with the

related methods. It consistently achieves the highest classification accuracy

among all tested methods in the experiments.

Index Terms—Dimension reduction, feature extraction, principal component

analysis, discriminant analysis, classification, face detection.
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1 INTRODUCTION

PRINCIPAL component analysis (PCA) and discriminant analysis
(DA) are two fundamental tools of dimension reduction and
feature extraction. They are widely applied in computer vision
and pattern recognition. Both methods apply eigenvector
decomposition on the covariance matrices to decorrelate features
and hence to extract the uncorrelated features that are the most
significant in some senses. However, the objectives of the two
methods are different: one is to maximize the data reconstruc-
tion capability of the features and the other is to maximize the
discriminatory power of the features. Although some approaches
applying PCA for dimension reduction in the areas of face
recognition and object detection [1], [2], many researchers turn to
DA for feature extraction [3], [4], [5], [6] due to the predominant
view that the discrimination of features is the most important for
classification. Various variants of the discriminant analysis are
summarized in [7], [8].

As the objective of PCA is the best pattern reconstruction that

may not be optimal for classification, most approaches apply PCA

only aimed at solving the singularity problem of the within-class

scatter matrix for the subsequent DA. In fact, the role of PCA can

be far beyond solving the singularity problem of the scatter matrix

if it is properly applied. This work analyzes the role of PCA in the

classification and addresses the problem of applying PCA on the

asymmetric classes and/or the unbalanced training data. Classi-

fication of two asymmetric classes is a common problem in various

verification and object detection tasks, such as biometric person

verification, face detection, and other visual object detection. In

such tasks, the “positive” class is a single type of object while the

“negative” class is “the rest of the world” that contains all the other

objects. For such classification tasks, it is extremely difficult to

collect a training set that well represents the negative class while a

representative training set for the positive class is relatively easy to

obtain. As a result, the training data are often unbalanced for the

two classes. An asymmetric principal component analysis is

proposed in this work to alleviate this problem based on the

analysis of the role of PCA in the classification.
Although PCA can improve the classification performance, it is

not effective to extract a compact feature set for an efficient (fast)

classification. To extract a small number of features, we need

discriminant analysis to maximize the discriminatory power of the

extracted features [4]. For a two-class problem, only a single feature

can be extracted by linear discriminant analysis (LDA), which is far

from sufficient for a reasonable classification. One solution is to

apply the covariance discriminant analysis (CDA), e.g., the method

in [9], [10]. However, the unbalanced training data between the

two classes adversely affects the effectiveness of the discriminant

evaluation as it is based on the comparison of the class-conditional

covariance matrices of the two classes. This work explores this

problem and proposes an asymmetric discriminant analysis

method that integrates LDA and CDA in a single discriminant

evaluation, and regularizes the two covariance matrices. It

alleviates problems cause by the imbalance between the training

data sets of the two classes. Accordingly, the covariance matrices

are also regularized in the classification process.
It is worth noting that some other approaches, such as

cascade classification structure and AdaBoost-based algorithms,

also tackle the problem of the unbalanced training data. Some of

these approaches are successfully applied in the face detection

[11], [12]. This paper only addresses the effects of this problem

on the PCA and DA, and explores ways to alleviate this problem

within the scope of the principal component and discriminant

analyses. We also limit our discussion to two-class problem.

Some multiclass problems can be converted into two-class

problems, as shown in [7], [13].

2 ASYMMETRIC PRINCIPAL COMPONENT ANALYSIS

Given q n-dimensional column vectors for training where the

positive class !o has qo samples and the negative class !c has qc
samples, q ¼ qo þ qc, compute the class-conditional mean vectors

Mo, Mc, and covariance matrices �o, �c. The covariance matrix of

the class mean is computed as

�m ¼ 1

q
½qoðMo �MÞðMo �MÞT Þ þ qcðMc �MÞðMc �MÞT �;

where M is the mean over all training samples. It is not difficult to

get the covariance matrix of the total training data by

�t ¼ 1

q
ðqo�o þ qc�cÞ þ�m: ð1Þ

If the a priori probabilities of the two classes are estimated by

po ¼ qo=q and pc ¼ qc=q, the covariance matrix of the total training

data can be expressed as

�t ¼ po�o þ pc�c þ�m: ð2Þ
In the literature, �t is often called total scatter matrix, �m is called

between-class scatter matrix, and �w ¼ po�o þ pc�c is often called

within-class scatter matrix.
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PCA applies eigen-decomposition on �t, i.e., �t ¼ ������T , and
keeps the m eigenvectors �m, ��m 2 IRn�m, corresponding to the m

largest eigenvalues. An n-dimensional pattern vector X is trans-
formed to anm-dimensional feature vector X̂ by X̂ ¼ ��T

mX,m < n.
Since PCA is optimal for the pattern reconstruction but not
necessarily optimal for classification, people turn to the DA where
PCA is applied only to solve the singularity problem of �w before
applying DA.

In fact, the role of PCA in the classification is far beyond the
low-dimensional data representation or solving the singularity
problem of �w. For a quantitative analysis of the role of PCA in the
classification, we model the class-conditional distributions by
multivariate Gaussian density functions. The Bayes optimal
decision rule detects a positive sample X if

ðX �McÞT��1
c ðX �McÞ � ðX �MoÞT��1

o ðX �MoÞ > b; ð3Þ
where b ¼ lnðj�oj=j�cjÞ þ 2ðln pc � ln poÞ. After applying eigen-
decomposition, the Bayes decision rule (3) is simplified as

Xn
k¼1

g2k
�c
k

�
Xn
k¼1

h2
k

�o
k

> b; ð4Þ

where gk is the projection of ðX �McÞ on the eigenvector �c
k

corresponding to the eigenvalue �c
k of �c and hk is the projection of

ðX �MoÞ on the eigenvector �o
k corresponding to the eigenvalue �o

k

of �o.
However, a lot of approaches [13], [14], [15], [16], [17], [18] for

visual object detection and recognition tasks modify the above
optimal decision rule into

Xm
k¼1

g2k
�c
k

þ
Xn

k¼mþ1

g2k
�c

�
Xm
k¼1

h2
k

�o
k

�
Xn

k¼mþ1

h2
k

�o
> b; ð5Þ

which replaces the n�m smallest eigenvalues of both classes by
two constants �c and �o, respectively, and often m � n. It is worth
exploring why the decision rule (5) may outperform (3) or (4).

Eigenvalue �c
k or �o

k is the variance of the positive or negative
training samples projected on the eigenvector �c

k or �o
k. It is an

estimate of the class true (ensemble) variance based on the
available training data. If the eigenvalues deviate from the
ensemble variances, the decision rule (3) or (4) overfits the training
samples, and hence, leads to a poor generalization on the novel
testing data. This problem will become very severe if some
eigenvalues largely deviate from the ensemble variances.

Fig. 1 plots an eigenspectrum (�o
k sorted in descending order)

obtained from 2,000 face images of size 20� 20 and the variances
vok of other 2,000 face images projected on the eigenvectors �o

k.
Fig. 1 also plots eigenvalues sorted in ascending order �c

n�kþ1

obtained from 2,000 nonface images of size 20� 20 and the
variances vcn�kþ1 of other 2,000 nonface images projected on the
eigenvectors �c

n�kþ1. All images are taken from the ECU face
detection database [19]. Fig. 1 shows large deviations of the small
eigenvalues from the variances of the novel images projected on
the eigenvectors. Other sets of face and nonface images produce
results similar to Fig. 1.

This problem was well addressed in [8]. Although, in general,
the largest sample-based eigenvalues are biased upward and the
smallest ones are biased downward, the bias is most pronounced
when the population eigenvalues tend toward equality, and it is
correspondingly less severe when their values are highly
disparate [20]. In most applications, eigenspectrum often first
decays very rapidly and then stabilizes. Therefore, the smallest
eigenvalues are biased much more severely than the largest ones.
This is evidenced by Fig. 1.

Thus, similar to (5) that replaces the smallest eigenvalues by a
constant, removing the subspace spanned by the eigenvectors of

�o and �c corresponding to the smallest eigenvalues improves the
generalization of the classifier, i.e., reduces the classification error
on the novel testing data. However, the principal components of
�m should not be removed as they contain the discriminative
information. Therefore, it is clear that PCA on �t ¼ po�o þ pc�c þ
�m plays an important role in the classification. It alleviates the
overfitting problem or improves the generalization capability by
removing the subspace spanned by eigenvectors of �o and �c

corresponding to the small eigenvalues while keeping the principal
components of �m. A good example of applying PCA to improve
the face identification accuracy can be found in [21].

However, in (1) and (2), �o and �c are weighted by qo=q and
qc=q or by po and pc. These weights are required for PCA to achieve
the least-mean-square reconstruction error. For the classification
purpose, however, the objective is to remove the dimensions in
which the sample-based class-conditional variances are unreliable.
The reliability of a covariance matrix is not dependent on the class
prior probability. The Bayes optimal decision rule (3) minimizes
the sum of the two errors weighted by po and pc so that the
threshold b depends on po and pc. In practice, the threshold b is
often determined by some factors other than po and pc to achieve a
desired positive or negative error rate. More training samples of a
class may result in a more reliable covariance matrix if they are
properly collected. However, it is not the more but the less reliable
covariance matrix that should be heavily weighted so that more
dimensions characterized by the small variances of this class can
be removed. It is thus clear that PCA on the total data scatter
matrix �t (1) or (2) does not effectively remove the unreliable
dimensions because �t is not constructed from the classification
point of view.

To tackle this problem, we propose to construct an asymmetric
pooled covariance matrix by

�� ¼ �o�o þ �c�c þ�m; ð6Þ
where �o and �c are determined by the reliability of the covariance
matrices �o and �c, �o þ �c ¼ 1. Different from (1) and (2), �o and
�c are unrelated to the class a priori probabilities. The objective of
the proposed asymmetric pooled covariance matrix �� is to
facilitate an effective removal of the unreliable dimensions. Thus,
larger value of �o or �c should be assigned to the less reliable
covariance matrix so that more dimensions characterized by the
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Fig. 1. Eigen-spectra �o
k/�

c
n�kþ1 computed from 2,000 face/nonface images and

variances vok/v
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n�kþ1 of other 2,000 face/nonface images projected on the

eigenvectors �o
k/�

c
k.
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small variances of the less reliable class can be removed by eigen-

decomposition of ��.
In the applications of verification and object detection, the

positive and negative classes are highly asymmetric because the

positive class represents only one particular object while the

negative class represents the whole “rest of the world” that

contains all other objects. Thus, it is much more difficult to collect a

representative training set for the negative class than for the

positive class. As a result, the reliability of the two class-

conditional covariance matrices greatly differs from each other.

Fig. 1 clearly shows much larger biases of small eigenvalues of the

nonface class than those of the face class. Even if a huge negative

database is collected, samples could be heavily biased to a small

subset of the “whole world.” Therefore, in general, we need to

assign a larger weight �c to the negative class than to the positive

class. However, the optimal value of the weight is application

dependent that varies from one training database to another.
If there is no prior knowledge about the class characteristics and

the data collection procedure, less training samples in general result

in a less reliable covariance matrix. Thus, we suggest constructing

the asymmetric pooled covariance matrix in the form of

�� ¼ 1

q
ðqc�o þ qo�cÞ þ�m: ð7Þ

In sharp contrast to the scatter matrix �t (1) that weights the

covariance matrices proportionally to the number of training

samples, the proposed �� (7) pools them with weights inversely

proportional to the number of training samples.
Fig. 2 plots the eigenspectrum �o

k of a covariance matrix

computed from 8,000 400-dimensional samples generated from

400 independent Gaussian random variables. The ensemble

variance of the ith random variable is 1=i. The ensemble variances

projected on the eigenvectors �o
k are plotted in Fig. 2 (denoted by

vok) to show the eigenvalue bias. Fig. 2 also plots another set of

eigenvalues sorted in ascending order �c
401�k and the projected

ensemble variances vc401�k from the same random vector but using

800 samples only. Fig. 2 clearly shows that smaller number of

training samples results in larger biases of the eigenvalues.

However, PCA on �t (1) removes dimensions specified mainly

by the small �o
k as the weight of �o is 10 times larger than that of

�c. This is undesirable for classification. Obviously, PCA on the

proposed (7) that puts heavier weight on �c rather than �o

removes the unreliable dimensions more effectively.
The proposed asymmetric principal component analysis

(APCA) applies eigen-decomposition on �� (6), i.e.,

�o�o þ �c�c þ�m ¼ ���T ; ð8Þ
and extracts the m eigenvectors �̂ from � corresponding to the

m largest eigenvalues in �. Its purpose is neither to have a low-

dimensional data representation with least-mean-square recon-

struction error, nor to extract a compact feature set for fast

classification. The objective of the proposed APCA is to remove the

unreliable dimensions to alleviate the overfitting problem and

hence to achieve better classification generalization.

3 ASYMMETRIC DISCRIMINANT ANALYSIS

The objective of APCA is to alleviate overfitting problem. For a

fast classification, DA is necessary to extract a compact feature set

from the reliable APCA subspace. The Bhattacharyya distance

measures the separability between two classes. For Gaussian

distribution, its analytical form in the APCA subspace is given by

D ¼ 1

8
ðM̂o � M̂cÞT �̂o þ �̂c

2

 !�1

ðM̂o � M̂cÞ

þ 1

2
ln
jð�̂o þ �̂cÞ=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�̂ok�̂cj
q ;

ð9Þ

where M̂o ¼ �̂
T
Mo, M̂c ¼ �̂

T
Mc, �̂o ¼ �̂

T
�o�̂, and �̂c ¼ �̂

T
�c�̂.

Let �̂m ¼ �̂
T
�m�̂. The first term of the Bhattacharyya distance is

maximized by LDA

�̂m� ¼ ð�̂o þ �̂cÞ��: ð10Þ
It is proven in [22] that the second term of the Bhattacharyya

distance is maximized in the subspace spanned by the generalized

eigenvectors corresponding to the largest �k þ 1=�k, where �k is

the generalized eigenvalue of matrix pair either ð�̂o; �̂cÞ or

ð�̂c; �̂oÞ. We call it CDA. Obviously, �k is the ratio between the

two class-conditional variances projected on the eigenvector, vok=v
c
k

or vck=v
o
k. Thus, the largest �k þ 1=�k maximizes the sum of the two

ratios, vok=v
c
k þ vck=v

o
k.

There are three problems associated with this optimization

process. First, the generalized eigenvectors of ð�̂o; �̂cÞ are

different from those of ð�̂c; �̂oÞ. Which pair should we choose?

The second problem is that �̂o and �̂c are still biased although

the problem is alleviated after removing dimensions of highly

biased small eigenvalues by APCA. This adversely affects the

eigenvector selection. The last problem is the separate maximiza-

tion of the two terms.
To tackle the first problem, we propose to solve the generalized

eigenvalue problem �̂o� ¼ ð�̂o þ �̂cÞ�� or �̂c� ¼ ð�̂o þ �̂cÞ��

instead of �̂o� ¼ �̂c�� or �̂c� ¼ �̂o��. All of them find

dimensions that maximize or minimize the ratio between the

projected variances of the two classes. However, it is better to have

the eigenvectors of the former two because they are orthogonal

with respect to the pooled covariance matrix while the eigenvec-

tors of the latter two are orthogonal with respect to one of the two

covariance matrices, respectively. It is easy to prove that there is no

difference of applying �̂o� ¼ ð�̂o þ �̂cÞ�� from applying

�̂c� ¼ ð�̂o þ �̂cÞ��. Let �k denote the generalized eigenvalues

of one of them. The sum of the ratios between the two class-

conditional variances projected on the eigenvector is vok=v
c
k þ

vck=v
o
k ¼ �k=ð1� �kÞ þ ð1� �kÞ= �k. It is not difficult to prove that

this is maximized by maxkfmaxð�k; 1� �kÞg.
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Fig. 2. Eigen-spectra �o
k=�

c
401�k of covariance matrices computed from 8; 000=800

random vectors and the ensemble variances vok=v
c
401�k projected on the

eigenvectors �o
k=�

c
401�k.
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The second problem is difficult to solve. The proposed APCA

removes unreliable dimensions caused by small eigenvalues. The

remaining large eigenvalues are in general biased upward. Larger

amount of bias will be produced for the class that is worse

represented by their training data. This is evidenced by Figs. 1 and

2. Furthermore, the bias is more pronounced when eigenvalues

tend toward equality and less severe when their values are highly

disparate. This was pointed out in [20] and is further evidenced in

Fig. 3. Two thousand samples for each of the two classes are

generated by a 400-dimensional random vector that obeys multi-

variate Gaussian distribution. The ensemble variances of the

positive and negative classes decay, respectively, by 1=i andffiffiffiffiffiffiffi
1=i

p
, where i is the index of dimension. Fig. 3 shows the eigen-

spectra of the two class-conditional covariance matrices and the

ensemble variances projected on the corresponding eigenvectors. It

clearly shows that the different upward bias amounts between the

positive and negative classes.
In general, the negative class occupies a larger subspace, and

hence, has flatter eigenspectrum than the positive class. It is also

more difficult to collect a representative training set for the

negative class than for the positive class. As a result, eigenvalues of

negative class are biased higher in the APCA principal subspace

than those of the positive class, which adversely affects the

discriminant evaluation. To tackle this problem, we propose to

apply CDA to the regularized covariance matrices in the APCA

subspace as

�̂o� ¼ ð�̂o þ ��̂cÞ��: ð11Þ
The parameter �, 0:5 < � � 1, can be determined by some prior

knowledge about the asymmetry of the two classes. In general, we

have � < 1 because the negative class occupies larger subspace, and

it is more difficult to have a representative training data set than the

positive class. If the discriminant evaluation (11) is applied in a

small APCA principal subspace, e.g., m � n=2, all eigenvalues of

the negative class will most likely have higher upward biases than

those of the positive class. In this case, � < 1 should be applied. If

(11) is applied in a large principal subspace, e.g.,m � n=2, there are

both upward- and downward-biased eigenvalues. In this case, we

should let � ¼ 1. The optimal value of � is application dependent

that varies from one training task to another.
The third problem can be solved by integrating the two

optimization processes (10) and (11). It is now possible because

both solve the eigen-decomposition normalized by the same
pooled covariance matrix. The proposed asymmetric discriminant
analysis (ADA) is to solve the following generalized eigen-
decomposition problem:

ð�̂o þ ��̂mÞ� ¼ ð�̂o þ ��̂cÞ�� ð12Þ
in the APCA subspace, where � is a constant that weights the
discriminatory information about class mean against that about
covariance. If a sufficiently large value is assigned to �, the
eigenvector corresponding to the largest eigenvalue approaches to
the solution of LDA (10) and the remaining eigenvectors approach
to the solution of (11).

The proposed asymmetric principal and discriminant analysis
(APCDA) algorithm applies ADA (12) in the APCA subspace and
extracts d eigenvectors ~� from � corresponding to the d largest
maxð�k; 1� �kÞ, where �k are the generalized eigenvalues of (12).
Its purpose is to extract d discriminating features from the reliable
APCA subspace. The ADA part of the APCDA algorithm differs
from other approaches in three aspects: it extracts discriminant
features about class mean and covariance in one eigen-decom-
position; the extracted features are orthogonal with respect to the
pooled covariance matrix; and the class-conditional covariance
matrix is regularized.

For Gaussian distribution, the Bayes optimal classifier is
simplified to a minimum Mahalanobis distance classifier. Similar
to the ADA algorithm, we propose to regularize the covariance
matrix in the feature space. The minimum Mahalanobis distance
classifier is thus modified as

ð ~X � ~McÞT ð�~�cÞ�1ð ~X � ~McÞ � ð ~X � ~MoÞT ~��1

o ð ~X � ~MoÞ > b; ð13Þ
which is called minimum asymmetric Mahalanobis distance
classifier. All variables with tilde sign in (13) are the corresponding
variables in (3) projected in the APCA or APCDA feature space. An
n-dimensional pattern vector X is transformed to a d-dimensional
feature vector ~X by ~X ¼ UTX, where U ¼ �̂ ~�, �̂ 2 IRn�m,
~� 2 IRm�d, and, hence, U 2 IRn�d. The constant b is a decision
threshold determined by the compromise between the positive and
negative error rates in a specific application.

PCA and LDA only use the second-order statistics of the
training data. As the Gaussian distribution is widely applied as a
probability distribution fully specified by the second-order
statistics, the quantitative analysis in this work is based on the
Gaussian assumption. Nevertheless, it can also be applied for some
other distributions. For example, for classification, Mahalanobis
distance is only optimal under Gaussian assumption and LDA is
only optimal for Gaussian distribution with the same covariance
matrices of all classes. However, they are widely employed in
various applications. This work may not be suitable for some
classifiers where the data variance is not applied, such as the
nearest neighbor classifiers. For multimodal distribution, we can
decompose it into several single-modal distributions using
Gaussian Mixture Model or clustering technique, and then apply
the proposed approach on each single-modal distribution.

4 EXPERIMENTS

The proposed APCDA algorithm is related to the statistical feature
extraction methods PCA, LDA, CDA, and the Bayes discriminating
feature (BDF) [14], [17], [18]. We shall carry out three groups of
experiments to validate the analyses in the previous sections and
the feasibility of the proposed methods. The minimum Mahalano-
bis distance classifier is applied. We first compare APCAwith PCA
and then compare APCDA with PCAþLDAþCDA (called
PLCDA) using synthetic data. Finally, we will compare the APCA
and APCDA algorithms with PCA, PLCDA, and BDF using a real
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Fig. 3. Eigen-spectra �o
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c
k with different decaying rates and the true variances vok,

vck projected on the eigenvectors �o
k, �

c
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image database. The parameters � ¼ 10, �c ¼ 0:8, and �o ¼ 0:2 are
kept unchanged in all experiments to test the proposed approach
with significantly asymmetric parameters, �c=�o ¼ 4. For the
synthetic data, we set � ¼ 0:95 because ADA is applied in a large

subspace m > n=2. For the real image database, we set � ¼ 0:75

because ADA is applied in a small subspace m � n=2.

4.1 Results of APCA on Synthetic Data

The positive data of class !o are drawn from a 400-dimensional
random vector �o that has Gaussian distribution with zero mean
and covariance matrix of diagf1; 1=20:5; . . . ; 1=4000:5g. The negative
data of class !c are drawn from another Gaussian random vector �c

that has covariance matrix of 1=500:25diagf1; 1=20:25; . . . ; 1=4000:25g.
This leads to a same variance of the two classes at the
50th dimension. The means of �c are 1=50

0:25 in the 50th dimension

and zero in the other dimensions. With the assumption of po ¼ 0:8

and pc ¼ 0:2; 2,000 and 500 training samples are generated from
random vectors �o and �c, respectively. Similarly, 20,000 and 5,000
novel samples for !o and !c are, respectively, generated for testing.

The minimum total error rate (MTER) over different decision
thresholds b is used to measure the classification performance.
Note that the Bayes rule minimizes the total error rate. Ten runs of
experiments with independent training and testing sets are

performed, and for each run, m ¼ 400; 380; 360; . . . ; 100 are tested.
With the decrease of m, the MTERs of both PCA and APCA
monotonically decrease to their minimums and then increase.
Table 1 records the mean and the standard deviation of the MTER

over the 10 runs. The above experiments are repeated with the
uniform distribution of �o and �c. Results are recorded in the
corresponding second rows in Table 1.

Table 1 shows that the proposed APCA consistently outper-
forms PCA for all numbers of features m. The Student’s t-test is
used to compare the means of MTER of PCA and APCA. The

statistic significance or confidence level is higher than 99.95
percent for all results in Table 1. Thus, the probability of the
APCA that does not outperform PCA is less than 0.0005 based on
the Student’s t-test. To further show the consistency of the APCA

in the accuracy improvement, Fig. 4 plots the ROC curves for
m ¼ 200. It shows that APCA consistently outperforms PCA for all
different decision thresholds b.

In this training task, as the positive class is much better
represented by 2,000 training samples than the negative class that
is represented by only 500 samples, eigenvalues of the data total
scatter matrix are not good indicators of the reliability of the

corresponding dimensions. Thus, it is not a surprise that the
proposed APCA significantly and consistently outperforms PCA,
although PCA minimizes the data reconstruction error but APCA
does not.

4.2 Results of APCDA on Synthetic Data

The positive data of class !o are drawn from a 200-dimensional

Gaussian random vector �o with zero mean and covariance matrix
of diagf1; 1=2; . . . ; 1=200g. The negative data of class !c are drawn

from another Gaussian random vector �c that has covariance

matrix of 1=200:5 diagf1; 1=20:5; . . . ; 1=2000:5g. The means of �c are
1=200:5 in the 20th dimension and zero in the other dimensions. A
total of 210 samples and 10,000 novel samples for each class are

generated, respectively, for training and testing. Data dimension-
ality is reduced by PCA or APCA, and PLCDA and APCDA are
applied to extract d discriminative features with m ¼ 120. Fig. 5

shows the mean of the MTER over 10 runs of experiments with
independent training and testing sets.

Although the two classes have the same number of training
samples, Fig. 5 shows that APCA outperforms PCA for all
numbers of features as the “larger” class has flatter eigenspec-

trum, and hence, larger eigenvalue bias. However, if the
dimension is overreduced, APCA may not outperform PAC, as
shown in Fig. 5. Note that although the covariance matrices are

of full rank, the discriminant analyses LDAþCDA and ADA
perform very badly if applying them directly on the original 200-
dimensional space. However, after applying PCA or APCA to

remove the unreliable dimensions, the discriminant analysis
LDAþCDA or ADA outperforms PCA or APCA. Fig. 5 shows
that the overdimension reduction by PCA or APCA results in

sharp increase of the classification error while the discriminant
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TABLE 1
Mean � and Standard Deviation � of MTER for Different m

Fig. 4. ROC curves of PCA and APCA with m ¼ 200.

Fig. 5. Mean of the MTER against the number of features.
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methods LDAþCDA and ADA are much less sensitive to the
number of features. Among all tested methods, the best

classification results are achieved by the proposed APCDA

(APCAþADA) consistently for all number of features. Table 2
numerically records the mean and the standard deviation of the

MTER over the 10 runs of experiments. The statistic significance

comparing APCDA and PLCDA is higher than 99.95 percent for
all results in Table 1 based on the Student’s t-test. Thus, the

probability of the APCDA that does not outperform PLCDA is
less than 0.0005.

4.3 Results on Real Image Data of Face Detection

The database is taken from the ECU face and skin detection

database created by Edith Cowan University [19]. It contains

9,339 face images with various lighting, pose, and expression
variations, and 8,951 nonface images randomly extracted from

natural images and normalized into the size of 20� 20. Fig. 6

shows 20 face and nonface images in the database.
Four sets of experiments are carried out, each of which has

distinct testing set. In the database partition i, i ¼ 1; 2; 3; 4, the ith

25 percent of face and nonface images in the database are picked

out for testing and the remaining 75 percent of images serve as the

training data. Thus, all 18,290 images have served as testing
samples once and only once in the four sets of experiments. We

first apply PCA and APCA to reduce the dimension from 400 to
m ¼ 390; 380; . . . ; 30; 20. For all the four database partitions, the

equal error rates (EERs) of both PCA and APCA monotonically

decrease to their minimums at the dimensionality around 90 and
then increase. Thus, PLCDA and APCDA are applied to extract d

features with m fixed at 90. Fig. 7 plots the average EER over the

four database partitions against the number of features m (for PCA
and APCA) or d (for PLCDA and APCDA). It shows that APCA

outperforms PCA consistently, but has problem if the dimension-
ality is overreduced. The proposed APCDA achieves the best

detection results consistently for all number of features tested.
To have a full picture of the face detection performances at

various decision thresholds, Fig. 8 plots the average ROC curves
over the four database partitions with d ¼ 50. The number of the
principal components of the BDF approach isM ¼ 10, as suggested
in [18]. (Indeed, BDF has much better results withM ¼ 10 than that

with M ¼ 50.) From Fig. 8, we see that BDF performs worse than
PCA at most operating thresholds. This suggests that, for this
detection task, removing the unreliable dimensions is a better way
than keeping them and scaling them by the average eigenvalues
over these dimensions. It is a surprise that the discriminant
approach PLCDA is not always better than PCA alone. For some
operating points, APCA does not outperform PCA because the
dimension is overreduced (from 400 to 50). Although the relative
detection performances of the five approaches vary at different
operating thresholds, the proposed APCDA approach consistently
outperforms the other methods at all operating thresholds.
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TABLE 2
Mean � and Standard Deviation � of MTER for Different m or d

Fig. 6. Sample images taken from the ECU database.

Fig. 7. Average equal error rate over the four database partitions against the

number of features.

Fig. 8. Average ROC curves over the four database partitions with m ¼ 90, d ¼ 50

for PLCDA and APCDA, m ¼ 50 for PCA and APCA, and M ¼ 10 for BDF.

TABLE 3
False Face Rejection Rate in Percent at Small Number
of False Detections (#FD) out of 8,951 Nonface Images
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Table 3 numerically records the false face rejection rates (in
percent) at some small numbers of false detections out of the
8,951 nonface images with d ¼ 50 and M ¼ 10. It shows that the
proposed APCDA method delivers significant lower false rejec-
tion rate than other methods.

5 CONCLUSION

This paper analyzes the role of PCA in the classification, which is
far beyond a simple dimension reduction for a compact data
representation with the least-mean-square reconstruction error.
The crucial role of PCA in the classification is to remove the
unreliable dimensions caused by insufficient or unrepresentative
training data. This work demonstrates that applying PCA on the
data total scatter matrix does not effectively remove the unreliable
dimensions if one class is represented by its training data much
better or much worse than the other class. The proposed APCA
alleviates this problem by asymmetrically weighting the class
conditional covariance matrices. In many real-world applications
such as verification and object detection, the positive class
represents only a single object, but the negative class is a much
larger category composed of all objects of “the rest of the world.”
In general, the collected negative samples represent “the rest of the
world” much worse than the positive samples. For such an
asymmetric two-class problem, the proposed APCA is more
effective than PCA in removing the unreliable dimensions.

APCA solves overfitting problems and hence leads to better
generalization for the novel test data, but may not necessarily
produce a compact feature set for fast classification. It is the
discriminant method that plays an important role in extracting a
compact feature set. For a two-class problem, LDA and CDA can
be applied in the reliable APCA subspace. However, the amount of
eigenvalue bias of one class may differ from that of the other class
in the APCA subspace if the training data represent one class better
or worse than the other class. This adversely affects the covariance
discriminant evaluation and the classification. The proposed ADA
integrates LDA and CDA in a single discriminant evaluation and
regularizes the covariance matrix. It alleviates the problem of the
biased eigenvalues in the APCA subspace, and hence, extracts the
discriminatory features more effectively. Extensive experiments on
the synthetic data and real image database demonstrate that the
proposed APCDA approach consistently outperforms PCA,
PCAþLDAþCDA, and BDF methods, which verifies the feasibility
and effectiveness of the proposed methods.
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