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Abstract This work proposes a method to decompose the
kernel within-class eigenspace into two subspaces: a reliable
subspace spanned mainly by the facial variation and an unre-
liable subspace due to limited number of training samples.
A weighting function is proposed to circumvent undue scal-
ing of eigenvectors corresponding to the unreliable small and
zero eigenvalues. Eigenfeatures are then extracted by the dis-
criminant evaluation in the whole kernel space. These efforts
facilitate a discriminative and stable low-dimensional fea-
ture representation of the face image. Experimental results
on FERET, ORL and GT databases show that our approach
consistently outperforms other kernel based face recognition
methods.

Keywords Face recognition · Kernel discriminant
analysis · Feature extraction · Subspace methods

1 Introduction

Face recognition has drawn considerable attention in bio-
metric society because of its property of non-intrusiveness,
which is recognizing a person from a distance. Numerous
linear and nonlinear subspace based face recognition
methods are proposed in the last two decades [25,30,35].
The most popular nonlinear methods are kernel principal
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component analysis (KPCA) [29] and kernel Fisher discrim-
inant analysis (KFDA) [22]. These kernel based methods
and their variations encode pattern information based on
higher order dependencies and are tactful to the dependen-
cies among pixels in the samples. The kernel mappings can
capture the nonlinearities and complex relationships among
the input data that exist due to the expression, illumination
and pose variations.

The basic idea of these kernel methods is to apply nonlin-
ear mapping Φ : X ∈ R

n → Φ(X) ∈ H in the image space
R

n , followed by linear subspace methods like PCA and FDA
in the mapped feature space H. Examples include KPCA [29]
and KFDA [22,23]. Since the feature space H can be very
high or possibly infinite dimensional and the orthogonality
needs to be characterized in such a space, it is reasonable to
view H as a Hilbert space. It is difficult to compute the dot
products in the high dimensional feature space H. Instead of
mapping the data explicitly, the feature space can be com-
puted by using the kernel trick, in which the inner products
〈Φ(Xi j ),Φ(Xst )〉 in H can be replaced with a kernel function
K (Xi j , Xst ), where K (Xi j , Xst ) = 〈Φ(Xi j ),Φ(Xst )〉 and
Xi j , Xst are sample vectors in the image space R

n . So, the
nonlinear mapping Φ can be performed implicitly in image
space R

n [28,31]. Numerous studies [8,30,34] demonstrate
that these kernel based approaches are effective in some
real-world applications. However, the basic subspace analy-
sis has still outstanding challenging problems when applied
to the face recognition due to the high dimensionality of
the face image and the finite number of training samples in
practice.

Most of the kernel subspace based face recognition meth-
ods perform dimensionality reduction or discard a subspace
before the discriminant evaluation. A popular method called
kernel Fisherface [34] applies PCA first for dimensional-
ity reduction so as to make the within-class scatter matrix
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36 X. Jiang et al.

nonsingular before the application of LDA. However, apply-
ing PCA for dimensionality reduction may lose important
discriminative information [3,4,12,32]. The null space
approach, NKDA [17] eliminates the principal subspace and
extracts eigenfeatures only from the eigenvectors correspond-
ing to the zero eigenvalues. Therefore, NKDA assumes that
the null space contains the most discriminative information
which is contradictory to KFDA.

Kernel Direct-LDA (KDDA) method [18] first removes
the null space of the between-class scatter matrix and then
extracts the eigenvectors corresponding to the smallest eigen-
values of the within-class scatter matrix. It is an open ques-
tion of how to scale the extracted features as the smallest
eigenvalues are very sensitive to noise. A common problem
of KFDA, NKDA and KDDA approaches is that they all lose
some discriminative information, either in the principal or in
the null space because they perform the discriminant evalu-
ation in a subspace.

In fact, the discriminative information resides in both sub-
spaces. Recently, Yang et al. [33] proposed a complete ker-
nel Fisher discriminant framework (CKFD), where features
extracted from the two complementary subspaces are com-
bined by a summed distance measures in the recognition
phase [33]. Dual-space based LDA approach is proposed
in [32], where features are scaled in the complementary
subspace by an average eigenvalue of the within-class scat-
ter matrix over this subspace. As eigenvalues in this sub-
space are not well estimated, their average may not be a
good scaling factor relative to those in the principal sub-
space. Open questions of these approaches are how to divide
the space into the principal and the complementary sub-
spaces and how to apportion a given number of features to
the two subspaces. Furthermore, as the discriminative infor-
mation resides in the both subspaces, it is inefficient and
only suboptimal to extract features separately from the two
subspaces.

In this paper, we propose a method which utilizes the ratios
of the successive eigenvalues of the eigenspectrum (shown
in Fig. 1) to decompose the kernel within-class eigenspace
into two subspaces: a reliable subspace spanned mainly by
the facial variation and an unreliable subspace due to limited
number of training samples. A weighting function (shown
in Fig. 2) is proposed which circumvents undue scaling of
projection vectors corresponding to the unreliable small and
zero eigenvalues. Finally, features are extracted based on the
discriminant evaluation in the whole kernel eigenspace. In
the next section, we first study the behavior of the unreli-
able small eigenvalues of within-class variation matrix, then
propose a methodology to decompose the eigenspace into
principal and unreliable subspaces. Eigenfeature scaling and
extraction are presented in Sect. 3. Experimental results and
discussions are presented in Sect. 4 before drawing conclu-
sions in Sect. 5.
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Fig. 1 Eigenratiospectrum (13) from a typical real kernel eigenspec-
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Fig. 2 Weighting functions of (12) and (16) in the principal- and
unreliable-subspaces based on a typical real kernel eigenspectrum

2 Kernel feature scaling and subspace decomposition

2.1 Overview of kernel discriminant analysis

For a nonlinear mapping Φ, the image data space R
n can be

mapped into the feature space H

Φ : X ∈ R
n → Φ(X) ∈ H. (1)

Consequently, a pattern in the original image space R
n is

mapped into a potentially much higher dimensional feature
vector in the feature space H. Given a set of properly aligned
and normalized h-by-w face images, we can form a training
set of column vectors {Xi j }, where Xi j ∈ R

n = hw is called
image vector, by lexicographic ordering the pixel elements
of image j of person i . Let the training set contain p persons
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Complete discriminant evaluation and feature extraction in kernel space for face recognition 37

and qi sample images for person i . The number of total train-
ing sample is l = ∑p

i=1 qi . The within-class scatter matrix
is defined by

Sw = 1

p

p∑

i=1

1

qi

qi∑

j=1

(Φ(Xi j )−Φ(Xi ))(Φ(Xi j )−Φ(Xi ))
T ,

(2)

whereΦ(Xi ) = 1
qi

∑qi
j=1Φ(Xi j ). The between-class scatter

matrix Sb is defined by

Sb = 1

p

p∑

i=1

(Φ(Xi )−Φ(X))(Φ(Xi )−Φ(X))T , (3)

where Φ(X) = 1
p

∑p
i=1Φ(Xi ), assuming all classes have

equal prior probability.
The well known Fisher objective function [7] can be writ-

ten in the mapped space H as

J (�) = arg max
Ω

| �T Sb� |
| �T Sw� | . (4)

Because any solution � ∈ H must lie in the span of all the
samples in H, there exist coefficients ψi j , such that

� =
p∑

i=1

qi∑

j=1

ψi jΦ(Xi j ). (5)

Combining (4) and (5), we have [14]

�T Sw� = �T SwΦ�, (6)

�T Sb� = �T Sb
Φ�, (7)

where � = {ψi j } and
{

SwΦ = 1
p

∑p
i=1

1
qi

∑qi
j=1(ζi j − µi )(ζi j − µi )

T ,

ζi j = (K (X11, Xi j ), K (X12, Xi j ), . . . , K (X pqp , Xi j ))
T,

(8)
{
µi = 1

qi

∑qi
j=1 ζi j ,

Sb
Φ = 1

p(p−1)

∑p
i=1

∑p
j=1(µi − µ j )(µi − µ j )

T .
(9)

So the solution of function (4) can be obtained by maximizing

J (�) = arg max
Ψ

| �T Sb
Φ� |

| �T SwΦ� | (10)

and the problem of kernel discriminant analysis is converted
into finding the leading eigenvectors of SwΦ

−1Sb
Φ [5]. How-

ever, in practice, the inversion of SwΦ is impossible as it is
often singular due to the limited number of training samples.

Let Sg
Φ, g ∈ {w, b} represent one of the above scatter

matrices. If we regard the elements of the kernel vector or

the class mean vector as features, these preliminary features
will be de-correlated by solving the eigenvalue problem

�g = �g T Sg
Φ�g, (11)

where �g = [ψg
1 , . . . , ψ

g
l ] is the eigenvector matrix of Sg

Φ ,
and �g is the diagonal matrix of eigenvalues λg

1, . . . , λ
g
l cor-

responding to the eigenvectors. We assume that the eigen-
values are sorted in descending order λg

1 ≥, · · · ,≥ λ
g
l . The

plot of eigenvalues λg
k against the index k is called eigen-

spectrum of the training data in the nonlinear plane. It plays
a critical role in the subspace methods as the eigenvalues are
used to scale and extract features.

2.2 Problems in feature scaling and extraction of KFDA

If we compute all the eigenvalues diag(�w) = [λw1 , . . . , λwl ]
and eigenvectors �w = [ψw1 , . . . , ψwl ] of the l-by-l dimen-
sional matrix SwΦ using (11), the projection matrix �̄

w =
[ψw1 /σw1 , . . . , ψwl /σwl ] is so called whitened eigenvector
matrix of SwΦ with ||ψwk || = 1 and σwk = √

λwk . This implies
that if any one of the eigenvalues in (11) of these matri-
ces is zero then the corresponding eigenvector (10) gets an
infinite weighting factor. Since the scatter matrices (8) and
(9) are singular [7,18,19], in practice, most of the subspace
based algorithms circumvent this problem by ignoring the
eigenvectors corresponding to zero eigenvalues. However, as
pointed out earlier that the null space of SwΦ contains indis-
pensable discriminative information essential for improving
recognition accuracy.

The above argument can be viewed as an l-dimensional
pattern vector ζi j is first represented by an l-dimensional
eigenfeature vector Yi j = �wT ζi j , and then multiplied by a
weighting function

wwk =
{

1/
√
λwk , k ≤ rw

0, rw < k ≤ l
, (12)

as shown in Fig. 2, where rw is the rank of SwΦ . It is appar-
ent from (12) that the eigenvectors {ψwk }l

k=rw+1 or the null
space of SwΦ are weighted by zero and thus the corresponding
eigenvectors fail to contribute to the whole space discrimi-
nant evaluation, which is done in the later portion of the
algorithm. This is unreasonable because features in the null
space have zero within-class variances based on the training
data and hence should be more heavily weighted. It seems
anomalous that the weighting function increases with the
decrease of the eigenvalues and then suddenly has a big drop
from the maximum value to zero as shown in Fig. 2. Further-
more, weights determined by the inverse of σwk is, though
optimal in terms of the ML estimation, dangerous when σwk
is small (m < k ≤ rw). The small and zero eigenvalues are
training-set-specific and very sensitive to different training
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sets [9]. Adding new samples to the training set or using dif-
ferent training set may easily change some zero eigenvalues
to nonzero and make some very small eigenvalues several
times larger. Therefore, these eigenvalues of the within-class
scatter matrix are unreliable.

2.3 Eigenratiospectrum and subspace decomposition

In order to alleviate the above problem we first work on the
eigenspectrum of the within-class variation matrix. It is not
difficult to estimate the rank of SwΦ , which is rw ≤ (l − p).
The eigenvalues whose indices are close to rw(m < k ≤ rw)
are very small or close to zero, their inverses give undue over-
emphasis to the eigenvectors corresponding to this region (or
indices) as shown in Fig. 2.

Jiang et al. [10] regularize eigenvalues in the linear space
by modelling the eigenspectrum using a 1/ f function to fit the
most reliable portion of the eigenspectrum. The less reliable
portion of the eigenspectrum is then replaced by the model.
Consistent improvement of the face recognition performance
is reported in [10]. However, in the kernel space, the model
of 1/ f function cannot fit the kernel eigenspectrum well due
to the nonlinear transform of face images. A very clear fact
in our experiments is that the eigenspectrum in the kernel
space decays much faster than that in the linear space. Thus,
in this work, we shall employ different approach to find the
unreliable eigenvalues in the kernel space and replace them
by a constant instead of the 1/ f function.

To differentiate the unreliable eigenvalues from the larger
ones we employ the ratios of the successive eigenvalues of the
eigenspectrum to decompose the whole eigen-space into two
subspaces: a principal or reliable subspace spanned mainly
by the facial variation, P = {ψwk }m

k=1 and an unreliable or
noise dominating subspace due to limited number of training
samples, P̄ = {ψwk }l

k=m+1. For a clearer illustration, we first
define the eigenratios as �wΦ = {γ w1 , . . . , γ wrw−1}, such that

γ wk = λwk

λwk+1
, 1 ≤ k < rw. (13)

The plot of eigenratios γ wk of a typical real eigenspectrum
against the index k is called kernel eigenratiospectrum of the
training data as shown in Fig. 1.

For a robust training, the database size should be signif-
icantly larger than the (face or reliable) dimensionality m.
We examined several different face databases, the eigenra-
tio plots shown in Fig. 1 is a general behavioral pattern that
all the eigenratios of different databases portray. It is appar-
ent from the graph that the eigenratios first decreases very
rapidly, then stabilizes and finally increases. The increase of
the eigenratios should not be the behavior of the true vari-
ances but occurs due to the limited number of training sam-
ples. The corresponding eigenvalues are therefore unreliable.

Thus, one robust way of finding such a point would be find-
ing the minimum of the eigenratios. The start point of the
unreliable region m + 1 is estimated by

γ wm+1 = min{∀γ wk , 1 ≤ k < rw}. (14)

A typical such m value of a real kernel eigenspectrum is
shown in Fig. 1.

The main purpose of finding the value of m using the ei-
genratios is to distinguish the reliable eigenvalues from the
unreliable ones, which facilitates the decomposition of the
entire eigenspace into reliable P and unreliable P̄ subspac-
es. Eigenvalues in the unreliable subspace P̄, spanned by
{ψwk }l

k=m+1, will be regularized to facilitate the discriminant
evaluation and feature extraction from the whole space of SwΦ
matrix (as described in the next section).

3 Scaling of kernel eigenvectors and feature extraction

3.1 Scaling of kernel eigenvectors

As pointed out in [6], the largest sample-based eigenvalues
are biased high and the smallest ones are biased low due
to the finite number of training samples. The eigenspectrum
in the principal/reliable subspace is dominated by the face
structural component, hence, we keep the eigenvalues in the
principal subspace unchanged. In the unreliable subspace P̄,
however, the limited number of training samples results in
faster decay of the eigenvalues than the true variances. There-
fore, the decay of the eigenvalues should be slowed down to
compensate the effect of the finite number of training sam-
ples.

From Fig. 2 it is evident that when the inverses of the
eigenvalues {λwk }l

k=m+1 are used for feature weighting (12),
the corresponding eigenvectors get undue over-scaling in this
range. We should not trust the eigenvalues, λk, k > m as
they are greatly effected by the finite number of training
samples. Moghaddam et al. [24] replaces the small and zero
eigenvalues by the average eigenvalue over the unreliable
subspace and Wang et al. [32] adopted it in the dual-space
approach. However, this may introduce additional over-
fitting problem in dimensions of the unreliable subspace
whose eigenvalues are larger than the average. (There must
be some eigenvalues in the unreliable subspace larger than
the average being replaced by the smaller average eigen-
value). As eigenvalues in this subspace are biased smaller,
their average may not be a good scaling factor relative to
those in the principal subspace. Therefore, we propose to
replace the unreliable eigenvalues {λwk }l

k=m+1 by the upper
bound eigenvalue of the unreliable subspace, i.e.,

λwconst = max{∀λwk , k ≥ m}. (15)
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Complete discriminant evaluation and feature extraction in kernel space for face recognition 39

Thus, the final weighting function can be written as

w̃wk =
{

1/
√
λwk , k ≤ m

1/
√
λwconst, m < k ≤ l

. (16)

Figure 2 shows the proposed feature weighting function
w̃wk calculated by (13), (14), (15) and (16) comparing with
that wwk of (12). The new weighting function w̃wk is identi-
cal to wwk in the principal space and remains constant in the
unreliable and null subspaces. Note that, different from those
in [24,32], no eigenvalue in the unreliable space becomes
smaller in our approach.

Using this weighting function and the eigenvectors ψwk ,
training pattern data are transformed to

Ỹi j = �̃
wT

l ζi j , (17)

where

�̃
w

l = [w̃wk ψwk ]lk=1 = [w̃w1 ψw1 , . . . , w̃wl ψwl ]. (18)

There is no dimension reduction in this transformation as Ỹi j

and ζi j have the same dimensionality l.
Problems of dimensionality reduction of KFDA were also

discussed in [5], where a kernel machine-based regularized
Fisher discriminant (K1PRFD) algorithm was proposed. This
approach regularizes the within-class scatter matrix by add-
ing a constant to all eigenvalues. As pointed out in [6], the
bias of eigenvalues is most pronounced when the eigenvalues
tend toward equality, and it is much less severe when their
values are highly disparate. For the application of face rec-
ognition, it is well-known that the eigenspectrum first decays
very rapidly and then stabilizes. Hence, adding a constant to
the eigenspectrum may bias back the rapidly changing eigen-
values in principal space too much that introduces additional
error source, and bias back the flat eigenvalues in null space
too little at the same time [6].

3.2 Kernel eigenfeature extraction

After the feature scaling, a new between-class scatter matrix
is formed by vectors Ỹi j of the training data as

S̃b
Φ = 1

p

p∑

i=1

(Ỹ i − Y )(Ỹ i − Y )T , (19)

where Ỹ i = 1
qi

∑qi
j=1 Ỹi j and Y = 1

p

∑p
i=1

1
qi

∑qi
j=1 Ỹi j .

The weighted features Ỹi j will be de-correlated for S̃b
Φ by

solving the eigenvalue problem as (11). Suppose that the

eigenvectors in the eigenvector matrix �̃
b
l = [ψ̃b

1 , . . . , ψ̃
b
l ]

are sorted in descending order of the corresponding

eigenvalues. The dimensionality reduction is performed here
by keeping the eigenvectors with the d largest eigenvalues

�̃
b
d = [ψ̃b

k ]d
k=1 = [ψ̃b

1 , . . . , ψ̃
b
d ], (20)

where d is the number of features usually selected by a
specific application. Thus, the proposed feature scaling and
extraction matrix UΦ is given by

UΦ = �̃
w

l �̃
b
d . (21)

This transforms a face sample vector ζi j of dimensionality l
into a feature vector F of dimensionality d, by

F = UT
Φζi j . (22)

Note that the dual-space approaches [32,33] extract
features separately from two subspaces. As the discrimina-
tive information resides in the whole space, it is inefficient
and only suboptimal to extract the discriminative features
separately from two subspaces by two separate discriminant
evaluations in two subspaces. Our method decomposes the
kernel space into two subspaces only for the regularization
of the eigenvalues in the unreliable subspace. We extract
the discriminative features from the whole space by search-
ing the most discriminative features in the full space. Thus,
our method is based on the global optimization instead of
two local optimizations of the dual-space approaches in
[32,33].

3.3 The proposed algorithm

The proposed complete discriminant evaluation and feature
extraction in kernel space for face recognition (CDEFE)
approach is summarized below:
At the training stage:

1. Given a training set of face image vectors {Xi j } and a
kernel function K (Xi j , Xst ), compute ζi j using (8).

2. Compute SwΦ by (8) and solve the eigenvalue problem as
(11).

3. Decompose the kernel eigenspace into principal- and
unreliable-spaces by determining the m value using (13)
and (14).

4. Transform the training pattern samples represented by ζi j

into Ỹi j by (17) with the weighting function (16) deter-
mined by (13), (14) and (15).

5. Compute S̃b
Φ by (19) with Ỹi j and solve the eigenvalue

problem as (11).
6. Obtain the final feature scaling and extraction matrix

by (18), (20) and (21) with a predefined number of
features d.
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At the recognition stage:

1. Transform each n-D face image vector X into l-D feature
pattern vector ζi j using the kernel function K and (8).

2. Transform each l-D feature pattern vector ζi j into d-D
feature vector F by (22) using the feature regularization
and extraction matrix UΦ obtained in the training stage.

3. Apply a classifier trained on the gallery set to recognize
the probe feature vectors. (A simple first nearest neigh-
borhood classifier is applied in the experiments)

3.4 Computational complexity

The difference in the computational complexity among vari-
ous kernel based approaches largely depends on the training
procedure and database structure. In general, the computa-
tional complexity of the training procedure of the proposed
CDEFE approach is O(l3), where l is the number of training
samples. This is same as other kernel based subspace meth-
ods such as KFDA, KDDA, NKDA, CKFD and K1PRFD.
However, some approaches require three eigen-decomposi-
tions and some need only two. The eigen-decomposition is
the most time consuming part in the training. The proposed
CDEFE approach requires only two eigen-decompositions.
Different from KFDA, KDDA and NKDA methods, how-
ever, CDEFE, CKFD, K1PRFD and the dual space approach
[32] need to compute all eigenvectors of the within-class
scatter matrix. In this respect, CDEFE, CKFD, K1PRFD and
dual-space approach in general may require additional com-
putation comparing to KFDA, KDDA and NKDA. Note that
K1PRFD uses an iterative conjugate gradient method to pro-
cess the eigenvalues, which is time consuming.

After the processing of the within-class scatter matrix,
CKFD and dual-space approach require two eigen-
decompositions in two complementary subspaces while
CDEFE and K1PRFD compute one eigen-decomposition in
the whole space. As the number of subjects p is at most half of
the total number of the training samples l (single sample per
subject cannot contribute to the within-class scatter matrix),
snapshot method [7] can be used. Using this method, CDEFE
only requires one eigen-decomposition of the between-class
scatter matrix of dimensionality p× p, which is smaller than
that of at least one of the two between-class scatter matrices
of CKFD and dual-space approach. In this respect, the pro-
posed CDEFE may require less computation than CKFD and
dual-space approach, depending on the database structure.

Our experiments on several face databases (the descrip-
tions of the face databases are given in the experimental sec-
tion) show that KDDA training is the fastest, followed by
NKDA and the proposed CDEFE. K1PRFD takes longer time
of training than CDEFE as it uses an iterative conjugate gra-
dient method to process the eigenvalues. KFDA and CKFD

require the longest training time because they apply three and
four eigen- decompositions, respectively.

The testing/recognition time of KFDA, KDDA, NKDA,
K1PRFD and CDEFE are the same for the same number of
features because the recognition procedure is computing a
distance between the probe image and all the gallery images.
Recognition time of CKFD is slightly more than the above
five methods because it uses summed normalized distance
between the probe and gallery images [33]. In practical face
recognition systems, training is usually an off-line process
and recognition is usually an online process. Thus, the rec-
ognition time is usually more critical than the training time.
Although, the recognition time of the CDEFE approach is
same as other approaches for the same number of features, it
can be faster than other approaches for the same recognition
rate because the proposed CDEFE approach, as we will see
in the experiments, achieves a given recognition rate with
fewer features than other approaches.

4 Experiments and discussions

In all experiments reported in this work, images are aligned
and normalized following the CSU Face Identification Eval-
uation System [2]. Four databases: ORL, GT and two from
FERET are used for testing. Each database is partitioned into
training and testing sets. For FERET databases, there is no
overlap in subject between the training and testing sets. As
ORL and GT databases have only a small number of subjects,
both training and testing sets contain all subjects. However,
there is no overlap in the sample image between the training
and testg sets. In our experiments, polynomial cosine ker-

nel function is chosen, K (Xi j , Xst ) = K̃ (Xi j ,Xst )√
K̃ (Xi j ,Xi j )K̃ (Xst ,Xst )

,

where K̃ (Xi j , Xst ) = 〈Φ(Xi j ),Φ(Xst )〉 = (a〈Xi j ·
Xst 〉+b)c, since cosine kernel gave good performances in the
experiments of [15,17] and better performances than the orig-
inal polynomial kernels [11,13,15,21]. The kernel parame-
ters are set same as that in [15–17]. The recognition error
rate given in this work is the percentage of the incorrect top
1 match on the testing set. The proposed CDEFE method is
tested and compared with KFDA [22], KDDA [18], NKDA
[17], CKFD [33] and K1PRFD [5] approaches. The param-
eters of CKFD are applied that are mentioned in the experi-
ments of [33].

4.1 Results on FERET database 1

In FERET database, the face image variations include facial
expression and other details (like glasses or no glasses), illu-
mination, pose, and aging [26]. We select 2,388 images com-
prising of 1,194 subjects (two images per subject) from this

123



Complete discriminant evaluation and feature extraction in kernel space for face recognition 41

Fig. 3 Sample images from the FERET database for four subjects with two sample images per subject

database. Some of the sample images are displayed in Fig. 3.
For this database, images are cropped into the size of 38×33.

Before comparing the proposed CDEFE method with other
state-of-the-art kernel based approaches we first test the three
contributions of this work: the subspace decomposition point
m, the eigenspectrum regularization and the discriminant
evaluation in the whole kernel space. Five hundred images
of 250 subjects are randomly selected for training and the
remaining 1,888 images of 944 subjects are used for test-
ing. Figure 4 shows the recognition error rate on the testing
set against the number of features d used in the matching.
In Fig. 4, CDEFE-95% represents a variant of our approach
where the subspace decomposition point m is determined
by keeping 95% eigenvalue energy in the reliable subspace
instead of using (14); CDEFE-Av represents another variant
of our approach by replacing λwconst in (16) with the average
eigenvalue over the unreliable subspace as used in [24] and
in [32]; and CDEFE-Dual represents the third variant of our
approach where features are extracted separately from the
principal and unreliable subspaces as the idea of the dual-
space approach in [32].

Figure 4 shows that our subspace decomposition point is
much better than the empirical setting of keeping 95% eigen-
value energy. It also illustrates the advantage of the upper
bound eigenvalue instead of the average eigenvalue for the
eigenspectrum regularization. Furthermore, Fig. 4 clearly
demonstrates that the global optimization in the whole space
outperforms the two local optimization processes in two sub-
spaces. In fact, the recent proposed CKFD approach [33]
also extracts features separately from two subspaces, whose
recognition performance is shown in all of the following
experiments.

Figure 5 compares the proposed CDEFE method with
other state-of-the-art kernel based approaches. Both KFDA
and KDDA perform badly because they extract features only
from the principal subspace. K1PRFD achieves slightly hig-
her accuracy than NKDA and CKFD as it extracts features
from the whole space. Our proposed CDEFE approach con-
sistently outperforms all other approaches for all number of
features and the accuracy gain is significant for smaller num-
ber of features.

Since this database is larger than others, we conduct a
second experiment with larger number of training samples
where 497 subjects are randomly selected for training and
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Fig. 4 Recognition error rate against the number of features used in the
matching on the FERET database of 500 training images (250 subjects)
and 1,888 testing images (944 subjects)
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Fig. 5 Recognition error rate against the number of features used in the
matching on the FERET database of 500 training images (250 subjects)
and 1,888 testing images (944 subjects)

the remaining images of 697 subjects are used for testing.
Figure 6 shows the results. CKFD that uses information from
both the subspaces performs better than KFDA, KDDA,
NKDA and K1PRFD approaches. Although K1PRFD uses
the whole space, it does not outperform CKFD. Possible rea-
sons for this are, as stated previously, that adding a constant
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Fig. 6 Recognition error rate against the number of features used in the
matching on the FERET database of 994 training images (497 subjects)
and 1,394 testing images (697 subjects)

to the eigenspectrum may bias back the rapidly changing
eigenvalues too much that introduces additional error source,
and bias back the flat eigenvalues too little at the same time.
The proposed CDEFE approach again consistently outper-
forms other approaches.

4.2 Results on FERET database 2

This database is constructed by choosing 256 subjects with
at least four images per subject. We use the same number
of images (four) per subject for all subjects. Five hundred
and twelve images of the first 128 subjects are used for train-
ing and the remaining 512 images serve as testing images.
The size of the normalized image is 150 × 130, same as that
in [20]. The i th images of all testing subjects are chosen to
form gallery set and the remaining three images per subject
serve as the probe images to be identified from the gallery
set. Therefore, for each run there is only one image per sub-
ject in the gallery data set and three images per subject in the
testing data set. Figure 7 shows the average recognition error
rates over the four probe sets, each of which has a distinct
gallery set (i = 1, 2, 3, 4).

Comparing to Fig. 6, the recognition error rates of all
methods in Fig. 7 increase due to larger variation of the test-
ing images. Unlike the previous two experiments, KDDA
performs much better than KFDA because of the availabil-
ity of more number of samples per subject during training.
K1PRFD which uses the full kernel eigenspace performs
better than CKFD, KDDA and KFDA methods. However,
K1PRFD does not outperform NKDA consistently. Similar
to the first two experiments, the proposed CDEFE approach
achieves consistently lowest recognition error rate for all
number of features in Fig. 7.
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Fig. 7 Average recognition error rate against the number of features
used in the matching on the FERET database of 512 training images
(128 subjects) and 512 testing images (128 subjects)

4.3 Results on ORL database

In the experiments on ORL database [27], images are cropped
into the size of 57 × 50. The ORL database contains 400
images of 40 subjects (ten images per subject). Some images
were captured at different times and have different variations
including expression (open or closed eyes, smiling or non-
smiling) and facial details (glasses or no glasses). The images
were taken with a tolerance for some tilting and rotation of
the faces up to 20◦. Some of the samples images are displayed
in Fig. 8.

In the first experiment, we test various approaches using
the first five samples per subject (200 images) for training
and the remaining five samples per subject (200 images) for
testing. Figure 9 shows the recognition error rate on the test-
ing set against the number of features. Similar to the previous
experiments, our method consistently outperforms others.

To obtain more reliable results on ORL database, we con-
duct another experiment with leave-one-out training and test-
ing strategy. In each of the 400 runs of the training and testing,
one sample is picked out for testing and the remaining 399
samples are included in the training set. The testing results
are numerically recorded in Table 1. KDDA outperforms both
KFDA and NKDA but not consistently. Similar to the results
of FERET database 2, KDDA performs better when more
number of samples per subject are present in the training
database. CKFD, which uses a summed normalized distance
measures from the two subspaces outperforms KDDA and
K1PRFD. However, CDEFE which evaluates the discrimi-
native information in the whole eigenspace consistently out-
performs CKFD, K1PRFD and all others. It shows that, for
this training task, the complementary subspace is still useful
but not well handled by the CKFD and K1PRFD approaches.
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Fig. 8 Sample images from the ORL database for two subjects with eight sample images per subject
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Fig. 9 Recognition error rate against the number of features used in
the matching on the ORL database of 200 training images (40 subjects)
and 200 testing images (40 subjects)

4.4 Results on georgia tech database

The Georgia Tech (GT) Face Database [1] consists 750 color
images of 50 subjects (15 images per subject). Some of the
GT sample images are shown in Fig. 10. For most of the
subjects the face images were taken in two or three sessions
over a period of three months, allowing for strong variation
in size, facial expression, illumination, and rotation in both

the image plane and perpendicular to the image plane. These
images are converted to gray-scale and cropped into the size
of 112 × 92. The first eight images of all the subjects are
used in the training and the remaining seven images serve as
testing images. The testing results are numerically recorded
in Table 1. All the approaches perform relatively similar to
the previous experiments. KDDA outperforms CKFD but
not consistently. Both KDDA and CKFD outperform KFDA,
NKDA and K1PRFD approaches but not consistently, this
probably shows that KDDA and CKFD perform better when
more number of samples per subject are present in the train-
ing database (similar to the previous experiments). The pro-
posed CDEFE approach again consistently outperforms all
other approaches for all number of features.

4.5 Summary of experiments

We have performed six sets of experiments with four differ-
ent databases. The proposed CDEFE approach shows supe-
rior performance in the following five aspects: first, CDEFE
consistently outperforms all other approaches in all six exper-
iments, while no other approach can perform the second best
consistently in all the experiments. Second, CDEFE achieves
the lowest recognition error rate consistently for all number
of features. In contrast to that, no other approach can per-
form the second best for all number of features even in a sin-
gle experiment. Third, CDEFE avoids any kind of heuristic
parameter setting in its implementation/application. Fourth,

Table 1 Recognition error rate of different approaches for different number of features

Database ORL (leave-one-out training-testing) GT (400/350 training/testing images)

# Feature 6 8 10 20 32 36 38 6 10 14 20 28 38 46

KFDA 18.00 9.75 7.25 4.25 2.75 2.75 2.50 38.57 26.57 22.00 18.00 14.86 12.86 12.57

KDDA 15.75 8.50 6.75 2.75 2.50 3.00 2.75 33.14 22.00 15.43 12.00 9.14 9.14 9.43

NKDA 20.75 11.00 8.25 3.50 2.75 2.75 2.75 35.43 20.00 17.14 13.43 13.43 12.29 12.29

CKFD 15.50 9.00 6.00 2.25 2.25 1.75 2.00 38.00 23.43 15.71 12.86 10.86 10.29 8.86

K1PRFD 17.75 10.25 7.00 3.25 3.00 2.50 2.50 31.71 19.43 17.14 13.71 13.14 11.71 12.57

CDEFE 13.25 6.50 5.00 1.75 2.00 1.25 1.25 26.29 17.71 12.86 10.00 8.29 8.29 8.29
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Fig. 10 Sample images from the GT database for two subjects with eight sample images per subject

although for certain number of features in certain experi-
ments CDEFE achieves only marginal accuracy gains
comparing to some other approaches, significant better per-
formances of the CDEFE approach comparing to these
approaches can be found in some other experiments. Fifth,
CDEFE significantly outperforms all other approaches for
small number of features. This demonstrates that the pro-
posed CDEFE approach extracts more discriminative fea-
tures than others.

4.6 Contributions of the proposed approach

There are three contributions in the proposed approach. First,
CDEFE uses the minimum point of the eigenratiospectrum to
decompose the kernel space into a reliable and an unreliable
subspaces, which circumvents the heuristic parameter selec-
tion. Second, the proposed approach regularizes the eigen-
values in the unreliable subspace to the constant determined
by the upper bound eigenvalue of the unreliable subspace.
Different from other approaches that use the average eigen-
value, our method does not diminish any eigenvalue in the
unreliable subspace. Third, CDEFE performs the discrimi-
nant evaluation in the whole kernel space, thereby, not lose
out important discriminative information. Unlike the conven-
tional methods which lose discriminative information either
in the principal or in the null space and the recently proposed
approaches which extract features separately from the two
subspaces, our method extracts features from the whole ker-
nel space which boosts its recognition performance as com-
pared to others. This is verified and demonstrated through
extensive experimentations.

5 Conclusions

In this paper, we have addressed the problems of eigenfea-
ture scaling and its extraction from the whole kernel space. To
facilitate the discriminative feature extraction from the whole
kernel space, the ratios of the successive eigenvalues in the
eigenspectrum are used to decompose the within-class eigen-

space into a reliable and an unreliable subspaces. Eigenvalues
of the unreliable subspace are regularized to the upper bound
eigenvalue of this subspace. This circumvents the undue scal-
ing of the eigenvectors corresponding to the unreliable small
and zero eigenvalues and facilitates the feature extraction
from the whole kernel space by the discriminant evaluation
in the full kernel space. Experiments on the FERET, ORL
and GT databases demonstrate that the proposed approach
consistently outperforms other popular methods.
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