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Abstract—The multivariate polynomial model provides an effec-
tive way to describe complex nonlinear input–output relationships
since it is tractable for optimization, sensitivity analysis, and pre-
diction of confidence intervals. However, for high-dimensional and
high-order problems, multivariate polynomial regression becomes
impractical due to its huge number of product terms. This is espe-
cially true for the case of a full interaction model. In this paper, we
propose a reduced multivariate polynomial model to circumvent
the dimensionality problem with some compromise in its approx-
imation capability. In multimodal biometrics and many classifiers
fusion applications, as individual classifiers to be combined would
have attained a certain level of classification accuracy, this reduced
multivariate polynomial model can be used to combine these clas-
sifiers in the next level of classification taking their outputs as the
inputs to the reduced multivariate polynomial model. The model is
first applied to a well-known pattern classification problem to illus-
trate its classification capability. The reduced multivariate polyno-
mial model is then applied to combine two biometric verification
systems with improved receiver operating characteristics perfor-
mance as compared to an optimal weighing method and a few com-
monly used classifiers.

Index Terms—Biometrics, classification, data fusion and multi-
variate polynomials, pattern recognition.

I. INTRODUCTION

DUE TO A possible increase in degrees of freedom, the
fusion of multiple biometrics and other classifiers may

allow alleviation of problems intrinsic to individual classifiers.
By exploiting the specialist capabilities of each classifier, a
combined classifier may yield results which would not be
possible in a single classifier. Fusion of multimodal biometrics
and other classifiers is thus an important research topic in
pattern recognition.

The biometrics verification problem can be considered as
a classification problem wherein a decision is made upon
whether or not a claimed identity is genuine with inference to
some matching results. We thus treat the problem of combining
multimodal biometrics as a classifier combination problem in
this paper. According to the origination of various methods to
combine classifiers, different terminologies have been adopted
to reflect the essence of each approach. According to [1], these
terminologies include combination of multiple classifiers,
classifier fusion, mixture of experts, committees of neural
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networks, consensus aggregation, voting pool of classifiers,
dynamic classifier selection, composite classifier system, clas-
sifier ensembles, divide-and-conquer classifiers, pandemonium
system of reflective agents, and change-glasses approach to
classifier selection.

Generally, the approaches for classifiers combination differ
in terms of assumptions about classifier dependencies, type of
classifier outputs, combining strategies and combining proce-
dures [1]. Two main types of combination can be identified:
classifier selection and classifier fusion. The difference between
these two types lies on whether the classifiers are assumed to be
complementary or competitive. Classifier selection assumes that
each classifier is a “local expert” while classifier fusion assumes
that all classifiers are trained over the entire feature space (see,
e.g., [1]). In this paper, our focus will be on classifier fusion, and
our main effort will be towards arriving at a fusion methodology
that optimizes the accuracy of the combined decision.

According to the information adopted, three levels of combi-
nation can be identified [2], [3]: 1) abstract level; 2) rank level;
and 3) measurement level. At the abstract level, the output in-
formation taken from each classifier is only a possible label for
each pattern class, whereas at the rank level the output infor-
mation taken from each classifier is a set of ordered possible
labels which is ranked by decreasing confidence measure. At
the measurement level, the output information taken from each
classifier is a set of possible labels with associated confidence
measure. In this way, with the measurement outputs taken from
each individual system, the decision is brought forward to the
final output of the combined system. We shall work at the mea-
surement level to combine two biometric verification systems.

While the statistical approach (see, e.g., [4], [5]) has received
considerable attention, many classifiers, predictors, or estima-
tors [6] by themselves can be used for data fusion, and we shall
briefly review some of the commonly used ones. Spline interpo-
lation (see, e.g., [7]) possesses a good approximation capability,
but the selection of its control points requires a great deal of
knowledge regarding the distribution of data used. The feedfor-
ward neural network (FNN) has been shown to be a universal ap-
proximator (see, e.g., [8] and [9]), however, the training process
remains much to be a trial-and-error effort since no learning al-
gorithm can guarantee convergence to a global optimal solution
within finite iterations for general application problems. The
global FNN (GFNN) [10], [11] may provide possible speed-ups
in the training process, but it is limited to applications that do
not result in numerical ill-conditioning.
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The radial basis function network (RBFN) (see, e.g., [12])
has been widely used for approximation due to its structural
simplicity. Typically, training of the RBFN involves selecting
the hidden-layer neuron centers, choosing scaling parameters,
and estimating the weights that connect the hidden and output
layers. Although the weights can be estimated using the linear
least-squares algorithm once the centers and the scaling param-
eters are fixed, selection of these centers and scaling parame-
ters remains a nontrivial task. Other networks like ridge poly-
nomial networks (RPN) (see, e.g., [13] and [14]), though they
may exhibit a good approximation capability, have similar prob-
lems in training since the formulation is usually nonlinear. The
general regression neural network (GRNN) (see, e.g., [15] and
[16]) have good convergence and one-pass learning properties.
However, it requires substantial computation to evaluate new
points because a separate neuron is required for each sample.
Moreover, estimation of the width parameter is nontrivial. The
probabilistic neural network (PNN) [17], [18] is closely related
to GRNN where it uses a spherical kernel as the radial basis
function. Similar to the RBF, the approximation and estimation
of the center and width parameters are nontrivial matters. The
functional link network (FLN) using Chebyshev-polynomials
(CPB) possesses the capability of a universal approximator [19]
and reported a faster learning rate than the conventional feed-
forward/recurrent neural networks model. Since the network
uses the recursive least-squares method with forgetting factor
as learning algorithm, the choice of the forgetting factor affects
the convergence. For high dimensional problems, the number
of parameters to be estimated in this network tends to be be
very large. In the more general FLN and high-order percep-
trons (HOPs) using polynomial and power series expansions,
the problem of having a huge number of parameters persists un-
less a computational intensive evolutional search is performed
to reduce the model to an optimal subset of units [20].

Recently, the support vector machine (SVM) [21], [22]
receives considerable attention due to its sound theoretical
basis on optimizing the class boundary separation rather than
the usual error objective. Solving the constrained optimization
for nonlinear systems (usually the case for physical systems)
in SVM results in a quadratic programming formulation. This
quadratic formulation is normally solved in an iterative manner
where the global solution is, again, not guaranteed.

The optimal weighting method (OWM) [23] provides an effi-
cient way to combine different classifiers. However, it is limited
to systems which can be separated by linear separation hyper-
planes. As an extension to OWM, the multivariate polynomial
model (MP) [24] provides an effective way to describe complex
nonlinear input–output relationships since it is tractable for op-
timization, sensitivity analysis, and prediction of confidence in-
tervals. However, for high-dimensional and high-order systems,
multivariate polynomial regression becomes impractical due to
its prohibitive number of product terms. This is especially true
for the case of using a full interaction model. In view of these,
our problem here is to derive a model that does not possess an
exponentially increasing number of parameters with respect to
the model order and number of inputs while at the same time
preserving much of its approximation capability. We address
this problem by proposing a reduced multivariate polynomial

model (RM) where the number of parameters to be estimated in-
creases linearly with the model order and the number of inputs.
We shall demonstrate the classification capability of the RM
using physical data. To circumvent possible multicollinearity
among the classifiers and improve generalization, an optimal
regularization search and a validation procedure are proposed.
The main contributions of this paper thus include: 1) proposal of
a reduced multivariate polynomial model for multimodal clas-
sifiers fusion and 2) optimal regularization for possible multi-
collinearity.

The paper is organized as follows. In Section II, the problem
of combining multimodal classifiers is stated before some pre-
liminaries on the optimal weighting method are provided. With
these backgrounds in place, the multivariate polynomial model
is introduced in Section III. Taking the measurement outputs of
each biometric classifiers as input variables of the multivariate
polynomials, several existing polynomial models are discussed
in this section before a reduced model is derived in Section IV.
In Section V, we present the weight decay regularization for pos-
sible multicollinearity among the classifiers to be combined. A
search is also presented in this section to optimize the regular-
ization parameter. In Section VI, a well-known pattern classi-
fication example is used to illustrate the performance of the re-
duced model in terms of classification capability. In Section VII,
the proposed model is tested using physical data from the fin-
gerprint and voice verification systems. Finally, in Section VIII,
some concluding remarks are drawn.

II. PROBLEM DEFINITION AND PRELIMINARIES

A. Problem Definition

We define the problem of combining multimodal classifiers
and a corresponding problem on multicollinearity as follows:

1) The Problem of Combining Multimodal Classifiers:
Given as positive integers and consider two
sets of data: a training set ,

and a test set ,
where and denote the feature vector and the

class inference, respectively. Given a set of decision functions
, where each of its ele-

ments, approximates a true function (assuming
it exists) which classifies the data given by .
In biometric problems, the classification is labeled either as
imposters or as genuine users. Given some based on ,
our problem here is to find the best possible approximation
of using this set of . Those generated from
will be used to test the classification performance. We shall
consider only the overdetermined system.

2) Multicollinearity: Assume that each false positive poses
the same amount of risk and every false negative presents iden-
tical liability, and the system is under random attack. It remains
an issue when combining a set of learned classifiers with corre-
lation. The higher the degree of correlation, the larger amount
of agreement or linear dependence among the classifiers will be.
This correlation also reflects the amount of redundancy within
the set of classifiers. Here, the problem of correlation which can
produce unreliable estimates is referred to as multicollinearity
problem [25].
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B. Linear Classifiers for Data Fusion

1) Simple and Weighted Averaging: When the individual
classifiers produce continuous outputs, a simple way is to
average out all the outputs when there is no bias against any
of these individual classifiers and when these classifiers are
mutually independent. This is termed the basic ensemble
method (BEM) (see, e.g., [25]) which can be written as

(1)

Equation (1) can also be written in terms of the misfit function
for each [25] as follows:

(2)

where

(3)

In practice, the mutual independency and unbiasness may not
hold. A weighted averaging [called the generalized ensemble
method (GEM)] can then be applied as follows if a certain clas-
sifier is known to be more accurate than another classifier:

(4)

where , (denoted as ) can be determined from

(5)

Notice that in the above formulation

(6)

2) OWM: The GEM described above is a special case of
OWM [23] minimizing the sum of squared error subject to the
constraint given by (6). Consider

(7)

and, assuming no constraints, the weights
for can be found from

(8)

where denotes the Jacobian matrix of as
follows:

...
... (9)

and from training data.
We shall use OWM as a basis of comparison since it repre-

sents a more general form of all the above estimators. Here it is

noted that OWM involves computation of the inverse of a ma-
trix, the problem of multicollinearity may arise if linear depen-
dency among the elements of is present.

III. MULTIVARIATE POLYNOMIAL REGRESSION (MP)

The OWM described above provides an effective way to lin-
early combine multiple classifiers. However, important inter-
acting relationships among the data may be ignored, thereby
giving rise to inaccurate results. To cater for possible nonlinear
effects and interactions, the multivariate polynomial regression
is considered.

Multivariate polynomial regression provides an effective way
to describe complex nonlinear input–output relationships. Also,
it is tractable for optimization, sensitivity analysis, and predic-
tion of confidence intervals. A typical polynomial regression
model contains the squared and higher order terms of the esti-
mator variable. However, for high-dimensional and high-order
problems, multivariate polynomial regression becomes imprac-
tical due to its prohibitive number of product terms. This is es-
pecially true for the case of using an interaction model. In view
of this problem, we resort to possible reduced models whose
number of parameters do not increase exponentially and yet pre-
serving the necessary classification capability.

In the following, to simplify the expression as well as to avoid
possible confusion, the notation of individual classifiers or es-
timators to be combined will be replaced
by as polynomial inputs (i.e., ).

A. Multinomial (MN): A Special Case of Multivariate
Polynomials

A special case of multivariate polynomials is called multino-
mial which can be expressed as

(10)

where the summation is taken over all nonnegative integers
for which where is

the order of approximation. Suppose there are a total of
terms in this multinomial model. A possible application using
this multinomial model for classifier combination is to estimate
the weighting parameter vector from

(11)

where the summation is taken over all nonnegative integers
for which . Another

possibility is to lump all inputs within each power term as
follows:

(12)

B. Approximation Capability: An Empirical Case Study

The approximation capability of polynomials is well known
from the Weierstrass approximation theorem [26] which states
that every continuous function defined on an interval can be
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Fig. 1. Sinc function approximation using ninth-order models: (a) MN9-I,
(b) MN9-II, (c) RM9, and (d) MP9.

approximated as closely as desired by a polynomial function.
However, as mentioned, the number of terms increases tremen-
dously with the number of inputs and the order of the polyno-
mials to be approximated.

The multinomial model MN-I offers a greatly reduced
number of terms but suffers from approximation deficiency be-
cause only high-order terms are used. The lumped multinomial
model MN-II, though having a significantly reduced number of
terms which is only dependent on the order of approximation,
also suffers from approximation deficiency as the inputs only
have a “lumped” effect on the approximation. This can be seen
from the approximation of the sinc function [top of Fig. 1]
using a ninth-order model in each case (MN9-I and MN9-II)
in Fig. 1(a) and (b).

IV. A REDUCED MULTIVARIATE POLYNOMIALS MODEL

To significantly reduce the huge number of terms in multi-
variate polynomials, we first consider the following model:

(13)

It is noted that this gives rise to a nonlinear estimation model
where the weight parameters
may not be estimated in a straightforward manner. Although
an iterative search can be formulated to obtain some solutions,
there is no guarantee that these solutions are global. To circum-
vent this problem, a linearized model is considered.

Assume two points and on the multinomial function
which is differentiable. By the mean value theorem, the multi-
nomial function ,

about the point can be written as

(14)

where for . Let
. With an appropriate choice of terms based on

(14), omitting the coefficients within and , and in-
cluding the summation of weighted input terms, the following
multivariate model can be written:

(15)

where the number of terms is given by .
To include more individual high-order terms for (15), the fol-

lowing (RM) can be written:

(16)

The number of terms in this model can be expressed as
. It is noted that (16) has number

of terms more than that of (15). The plots for the number of
terms over different model orders for each input dimension

of RM is shown in Fig. 2. A linear relationship be-
tween the number of terms and the model order or model
dimension is observed for the proposed reduced model. For
comparison purposes, the same figure includes the number of
terms plotted over the model order for a full multivariate poly-
nomial model with input dimension two .

The above reduced model can be used in a least-squares error
objective function and a solution form similar to (8) can be ob-
tained. For simplicity and without loss of generality, consider
the following second-order reduced bivariate polynomial model
taking from output of biometric-A and from output of
biometric-B:

(17)

The matrix can then be obtained as (18), shown at the
bottom of the following page, and is
the known desired output vector from training data. In (18),
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Fig. 2. Number of terms plotted over model order for different input
dimensions.

the first and second subscripts of the matrix elements ,
indicate the number of biometric sys-

tems and the the number of instances respectively. The model
coefficients can be obtained using (8) and they can
be used to predict future decision outcomes given instances of
outputs from biometric-A and biometric-B ( and ).

Fig. 1(c) shows the approximated function using a ninth-
order model from (16) (RM9). The approximation capability in
this case is visibly seen to be comparable to that of the full ninth-
order multivariate polynomials (MP9) as shown in Fig. 1(d).

V. OPTIMIZING THE WEIGHT-DECAY REGULARIZATION

A. Handling the Multicollinearity Problem

As mentioned, minimization of the sum of squared errors
using (8) may result in a multicollinearity problem when a heavy
linear dependency of data is present. A simple approach to pro-
vide numerical stability is to perform a weight decay regular-
ization as follows:

(19)

where denotes the -norm and is a regularization con-
stant.

Minimizing the new objective function (19) results in

(20)

where as defined in (9), is the training
output, and is a identity matrix. It is noted that this
addition of a bias term into the least-squares regression model
is also termed as ridge regression [24].

The addition of the bias term affects the total mean squared
error of the original estimator. For a large value of selected, a
large value of the bias will be incurred to the total mean squared
error for training [24]. Depending on individual applications,
the effect of on the validation error varies from case to case.
Hence the selection of becomes an important issue for good
generalization.

B. Optimizing the Regularization Parameter

A conventional approach to determine the biasing constant
is to obtain a simultaneous plot of the estimated parameters over
different values of , usually between 0 and 1, and look for the
smallest value of where these estimated parameter traces are
deemed to first becoming stable [24]. In this paper, we seek to
select by optimizing the validation error. Instead of using the
more complex gradient-based search [27], we adopt a simple
single directional search using a validation formulation which
can globally locate the optimal within the interval .

Given the training data set , we further partition it into
two portions namely: the subtraining set and the validation
set . The subtraining set will be used to compute the weight
parameter and the validation set will be used to determine the
regularization parameter .

Consider the estimate given by
using the subtraining data set. With some algebraic

manipulation, the sum of squared errors for the subtraining
data can be written as

(21)

For the case of validation data , the new estimate becomes
. The sum of squared errors

for the validation output is thus

(22)

By performing a single-directional search on for over
the interval , an optimal value of can be found. Here, we
note that optimizing the formulation in (22) with respect to
implicitly optimizes as well because .

C. Optimizing Cross Validations

It is noted that the above optimally regularized model may
be sensitive to different data partitions in cross validations. To
achieve a more stable result than that using just a single cross-

...
...

...
...

...
...

...
...

... (18)
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validation point, we can empirically select the best operating
point based on the distribution of the various optimal settings.

As mentioned, we partition the data into three parts: sub-
training data , validation data and test data . Here
we note that . The sub-training and the val-
idation data are used to obtain the training and regu-
larization parameters. The remaining data , which are not
used in both training and validation, will then be used to test the
performance of the classifier.

The set can be partitioned into and in
various ways, typically with

where denotes the number
of elements within the set .

In this application we use and per-
form a corresponding ten-fold cross-validation using the data
sets , . For each set of cross validation
labeled as , the optimal regularization parameter is deter-
mined with the corresponding weight vector . Using these 10
sets of optimized parameters, we obtain 10 sets of training out-
puts ( , ) and respective optimized regu-
larization parameter , . To obtain a good repre-
sentation of data distribution, the experiments can be performed

times using different random partitions of and .
A distribution of can be plotted and the most populated value
of optimized can be selected for the final test.

Remark 1: The above procedure provides a structural way to
obtain a very likely good choice of the regularization parameter
. However, for large data sets, the computational requirement

could be high. For simplicity reason in such applications, we
note that an empirical choice of could produce
reasonably good results from our experience.

VI. A CLASSIFICATION EXAMPLE: IRIS DATA

In this example, the reduced multivariate polynomial model
(16) is tested using the well-used benchmark IRIS data from the
UCI Machine Learning Repository [28] to illustrate its classifi-
cation capability before applying it to the data fusion problem.
Here we treat the extracted feature patterns in this example as
the outputs of some estimators for fusion. Features extraction
is an important part in a classification system since it involves
a certain decision process to select relevant features to be used.
This experiment is an important complement of our data fusion
experiments in Section VII since the IRIS data used here are a
prevalent common benchmark.

The data set contains 150 samples belonging to three sub-
species of dimension 4. Each of these three subspecies or classes
occupies 50 samples. One class is well separated from the other
two classes. The available 150 samples were randomly parti-
tioned into a training set and a test set, each containing 75 sam-
ples. A total of trials were performed for the randomly
partitioned training and test sets. The four input features were
entered as in the reduced model and matrix was
obtained using the reduced model which has expansion terms ar-
ranged similar to (18). The regularized solution form as in (20)
was used to compute the polynomial coefficients. The RM with
order 6 (RM6) was chosen for the validation experiment. Here

Fig. 3. Iris data: distribution of regularization parameter b.

we seek to optimize the regularization parameter by the valida-
tion method presented in Section V-B. The search for was con-
strained within the interval since beyond this range
the bias could be either too large or too small to have desired ef-
fect. It is noted that a large value will result in a large bias from
the optimal solution to the original formulation and a small
value will have insignificant regularization effect. Fig. 3 shows
the distribution of optimal values of 10-fold validated for the
40 trials for RM6. Discarding those undesirable peaks around
the search boundaries, here we see that the optimal values of
are concentrated around 2 10 , and for consistency we shall
use this value for the following study.

For the next set of experiments, we shall observe the clas-
sification accuracy with respect to model orders. The average
classification errors were recorded for the reduced model for
different model orders (RM2–RM6). Table I shows the average
training and test errors over 40 trials for respective model or-
ders RM2 through RM6 with respective statistics ( : standard
deviation). These results outperform the best reported test re-
sult (% , , ,

) from the reformulated radial basis neural networks
as seen in [29]. Moreover, in [29], only five trials were per-
formed for each averaged error value and training of neural net-
works is a nontrivial process. For a better picture on the perfor-
mance, a 10-fold cross-validation test is also included in Table I
using similar regularization setting.

Table II compares RM6 with several commonly used clas-
sifiers: Naive–Bayes (NBayes), SVM, and Neural Network
(Neural). The Naive–Bayes method [30] assumed Gaussian
distribution and independency of the input data. A 10th-order
polynomial kernel was adopted for SVM learning [31] since
it was found to outperform other kernels (linear and RBF) in
this example. The neural network used a (4 4 1) structure
and was trained using the method proposed by [10] to achieve
possible global optimality. As seen from the 40-trials results,
RM6 outperforms all other classifiers for both training and
test data. The 10-fold validation results show that the Neural
Network method with appropriate regularization and tuning
[10] can produce better results than all the compared methods.
The SVM for some instances appear to be overly trained in
the 10-fold process. In terms of computing effort, the Neural
Network, SVM, and Naive–Bayes, respectively, took about
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TABLE I
IRIS DATA: AVERAGE ERRORS FOR DIFFERENT MODEL ORDERS

TABLE II
IRIS DATA: AVERAGE ERRORS FOR DIFFERENT METHODS

Fig. 4. Fingerprint image samples.

3250, 3.3, and 2.5 times the RM6’s computing time to obtain
the required parameters under similar computing conditions.

VII. COMBINING FINGERPRINT AND SPEAKER CLASSIFIERS

In this section, we perform experiments on the multivariate
polynomial fusion using physical data from two biometrics:
fingerprint and voice data. We shall compare the performances
of RM with OWM and a few commonly used classifiers, in
the form of receiver operating characteristic (ROC) curves.
As only two biometrics are to be combined, we shall limit the
order of the RM model up to three in this experiment to avoid
over-modeling.

A. Fingerprint Verification

In general, an automatic fingerprint identification or verifi-
cation (see, e.g., [32]–[35]) system consists of three main pro-
cessing stages namely, image acquisition, feature extraction,
and matching. In image acquisition, query and template data-
base images are acquired through various input devices. Devel-
opment over the years has seen through means that mechani-
cally scan the ink based fingerprints into the computer system,
to means which directly capture the fingerprints using sophisti-
cated solid state sensors. With fingerprint images which could
be distorted or contaminated with noise, the automated system

seeks to extract characteristic features which are discriminating
for different fingers and yet invariant with respect to image ori-
entation for same fingers. The final stage of fingerprint identifi-
cation is to search and verify matching image pairs.

Our representation for the fingerprint consists of a global
structure and a local structure. The global structure consists
of positional and directional information of ridge endings and
ridge bifurcations. The local structure consists of relative infor-
mation of each detected minutia with other neighboring minu-
tiae. Fingerprint verification is then performed by comparing the
minutia information between two templates [36]. Fig. 4 shows
some samples of the fingerprint images with detected minutiae
and area of interest segmentation. The interested readers are
referred to [36] and [37] for details of minutiae detection and
matching.

B. Speaker Verification

Speaker verification seeks to determine whether an unknown
voice matches the known voice of a speaker with known identity.
It is a subset of the more general problem of speaker recogni-
tion which includes the task of speaker identification (see e.g.,
[38]). Operation of the above systems can either be in fixed-text
mode or in free-text mode. In fixed-text mode, a predetermined
text is required to be recited for reliable comparison whereas
in free-text mode, speech utterances of unrestricted text can be
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Fig. 5. Voice samples.

accepted. The fixed-text system provides a more precise and re-
liable comparison between two utterances of the same text than
that of the free-text system since it works under a better con-
trolled environment. The fixed-text system are thus primarily
used in access control applications and the free-text systems are
more for surveillance and other applications [38].

In this application, the fixed-text mode and the template
matching method is adopted for speaker verification. Com-
parison of two utterances is performed by aligning the two
templates at corresponding points in time. To cater for dif-
ference in duration of the two utterances, the dynamic time
warping (DTW) method is adopted when minimizing a distance
metric between two feature sets extracted from the speech data.
Fig. 5 shows some samples of voice data uttering the word
“zero.” The interested reader is referred to [39] for more details
about the system (see also [38] and [40] for similar matching
designs).

C. Combining Fingerprint and Speaker Verification Systems

In this experiment, both the databases for fingerprint verifi-
cation and speaker verification consist of 16 different identities;
each comes with six different fingers or six different words
with each fingerprint or word containing ten samples. A total of
960 samples were thus used for each fingerprint and voice ver-
ification system. The fingerprint images were collected using
Veridicom’s Touch sensor and the voice data were taken from
TIDIGIT database. An arbitrary one-to-one correspondences
were taken between the two biometric databases. It is noted
here that six different fingers taken from the same person are
uncorrelated in their minutia distribution and hence we can
reasonably assume that the fingerprint database contains 96
different users (16 6). As for the speech database, the same
person uttering six different words may have some correlation
among the words as compared to those from six different
persons. Apparently, this may result in lowering the matching
performance of the speaker verification system. Since our
focus is on matching performance improvement using two or
more “not-so-high-performance” biometrics, we nevertheless
assume a total of 96 different users (16 6) for both databases
in the following experiments.

Both the fingerprint and speech databases are partitioned
into two equal sets for training and testing, i.e., set-1 with
480 (16 6 5) samples for training and, set-2 with 480
(16 6 5) samples for testing. These training and test
sets each contains a total of 960 matching
scores generated among the genuine-users and 45 000

matching scores
generated across the imposters for both biometrics. The
reason for using only 45 000 out of the total possible 114 000

imposter scores is to have a smaller
difference between the sizes of the imposter and the genuine
user data sets. The fingerprint match score and the speaker
match score from the training set are entered as polynomial
variables and respectively to form the matrix which
contains the reduced polynomial expansion terms. The poly-
nomial coefficients are solved using the regularized objective
which has a solution form similar to (20). These polynomial
coefficients are then used to predict the combined out-come for
test data based on the reduced model function (16).

Depending on individual implementation, the matching
output ranges for different modalities may differ significantly.
For such cases, numerical sensitivity may be affected and hence
a score normalization should be performed between the outputs
of different modalities. For reasonably small differences
between the scores like in our case (fingerprint-match scores in

, speaker-match scores ), the weighting pa-
rameters can be adapted automatically without serious floating
point truncation and hence no normalization is needed. Figs. 6
and 7 show the original matching performances for the training
and test sets, respectively, for individual fingerprint verification
and speaker verification, using the above mentioned database,
before multimodal fusion. In what follows, we shall observe
the effects of regularization and different model orders on the
fusion performance.

D. Effects of Regularization

A search for an optimal regularization parameter was per-
formed for the three models OWM, RM2,and RM3 using the
procedure outlined in Section V-B with arbitrary partition of
training data. The empirical search for all three models resulted
in having . A plot of the ROC curve does not reflect
visible difference between the regularized models and the non-
regularized models. This shows that multicollinearity may not
be a serious problem in this application.

E. Effects of Model Orders

Fig. 8 shows the training and test results for multimodal data
fusion using OWM, RM2, and RM3. As in Section VI, these
results are compared to several commonly used classifiers:
Naive–Bayes [30], SVM [31], and Neural Network [10]. The
SVM used the RBF kernel as it was found to have good con-
vergence as compared to the polynomial kernel. For the Neural
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Fig. 6. Matching curves for fingerprint verification training (dashed lines) and
test (dotted lines) sets.

Fig. 7. Matching curves for speaker verification training (dashed lines) and
test (dotted lines) sets.

Fig. 8. ROC curves for fingerprint (dotted), voice (dotted), OWM (dotted),
Naive–Bayes (dashed–dotted), neural network (dashed), SVM (dashed–dotted),
RM2 (continuous), and RM3 (continuous).

Network, a (2 2 1) structure was selected as it was found to
be sufficient for the approximation. The Naive–Bayes assumed
a Gaussian distribution of data and independency between the
outputs of the two biometrics. The ROC curves for the original
fingerprint and speaker verifications are also included in the
same plots for comparison. It can be seen from these plots that
OWM improves significantly over the entire operating range of

Fig. 9. Tenfold ROC curves for RM3.

Fig. 10. Average tenfold ROC curves for fingerprint (dotted), voice
(dotted), OWM (dotted), Naive–Bayes (dashed-dotted), SVM (dashed–dotted),
RM2 (continuous) and RM3 (continuous).

individual fingerprint and speaker verifications. As the model
order increases using RM2 and RM3, the improvement is even
more significant. For RM3, the authentic acceptance rates are
all found to be over 95%. The SVM shows excellent training
results, but the test results show that it has been over-fitted. The
Neural Network gives the best test result with RM3 followed
by closely. In terms of computing effort, the Neural Network,
SVM, and Naive–Bayes, respectively, took about 239, 3600,
and 0.27 times the computing time of RM3 to obtain the
required parameters under similar computing conditions.

In addition to the above results using equal partitioning of
the entire data set into a training set and a test set, a tenfold
cross-validation test process is performed to provide a better
picture of the fusion accuracy. Fig. 9 shows the ROC curves
for training and test sets using RM3. For clarity purpose, the
average ROC curves of the tenfold results from the compared
methods are shown in Fig. 10 except for that using the Neural
Network method because numerical ill-conditioning was found
during its training. It is clear from this figure that RM3 and SVM
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outperform all other compared methods for both training and
test data.

VIII. CONCLUSION

In this paper, we proposed a reduced multivariate polynomial
model where the number of parameters increases linearly with
model order and number of inputs. Even though the approxi-
mation capability of this model is found to be compromised
from an empirical example, we found that it can be well ap-
plied for multimodal classifiers fusion. The main advantage of
this model over more complex neural-network-like models is
its straightforward model parameter computation. The model is
first applied to a well-known pattern classification problem to
illustrate its classification capability. This is followed by a bio-
metrics fusion problem combining fingerprint and voice data.
The combined results of the proposed model show superiority
of performance over the optimal weighting method and a few
commonly used classifiers in terms of the ROCs. The proposed
model is found to give a performance comparable to that of a
neural network with a much faster computing speed.
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