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Abstract. We extend the target map, together with the weighted barriers and

the notions of weighted analytic centers, from linear programming to general
convex conic programming. This extension is obtained from a novel geomet-

rical perspective of the weighted barriers, that views a weighted barrier as a
weighted sum of barriers for a strictly decreasing sequence of faces. Using the

Euclidean Jordan-algebraic structure of symmetric cones, we give an algebraic

characterization of a strictly decreasing sequence of its faces, and specialize
this target map to produce a computationally-tractable target-following algo-

rithm for symmetric cone programming. The analysis is made possible with

the use of triangular automorphisms of the cone, a new tool in the study of
symmetric cone programming. As an application of this algorithm, we demon-

strate that starting from any given any pair of primal-dual strictly feasible

solutions, the primal-dual central path of a symmetric cone program can be
efficiently approximated.
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1. Introduction

In this paper, we consider primal-dual interior point algorithms for linear op-
timization problems over symmetric cones (a.k.a. symmetric cone programming):

(1.1a) sup


m∑
j=1

bjyj :
m∑
j=1

yjaj + x = c, x ∈ cl(Ω)

 ,

where Ω is a given (open) symmetric cone in a finite-dimensional real vector space
with inner product 〈·, ·〉, a1, . . . ,am, c are given vectors, and b1, . . . , bm are given
real numbers. Its dual problem is the symmetric cone program

(1.1b) inf{〈c,x〉 : 〈aj , s〉 = bj , 1 ≤ j ≤ m, s ∈ cl(Ω)}.

Without any loss of generality, we assume that the vectors a1, . . . ,am are linearly
independent. With this assumption, (y1, . . . , ym) is uniquely determined by each
x satisfying the equality constraints, and we thus view (y1, . . . , ym) as a function
of x. Henceforth, we shall use only the x-component when referring to a feasible
solution. For the purpose of studying interior point algorithms, we also assume
that the primal-dual symmetric cone programs have strictly feasible solutions; i.e.,
there exists x, s ∈ Ω satisfying the equality constraints in their respective problems.

Primal-dual interior-point algorithms—first designed for linear programming
(see, e.g., [27]), and subsequently extended to semidefinite programming (see, e.g.,
[26, Part II]), symmetric cone programming (see, e.g., [19]) and, recently, homoge-
neous cone programming [6]—are the most widely used interior-point algorithms in
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practice. At the same time, they are able to achieve the best iteration complexity
bound known to date.

The development of primal-dual algorithms for symmetric cone programming
began from two very different perspectives. Yu. Nesterov and M. Todd [19] de-
scribed their algorithm in the context of self-concordant barriers (see the seminal
work of Yu. Nesterov and A. Nemirovski [18]) by specializing general logarithmi-
cally homogeneous self-concordant barriers to self-scaled barriers. L. Faybusovich
[8], on the other hand, obtained his algorithm by extending a primal-dual algorithm
for semidefinite programming via the theory of Euclidean Jordan algebras. This
Jordan-algebraic approach had been so successful that it is now the most commonly
used tool in designing interior-point algorithms for symmetric cone programming
[1, 2, 4, 21].

In the special case of linear programming, various primal-dual path-following al-
gorithms were simultaneously analyzed under the target-following framework by B.
Jansen, C. Roos, T. Terlaky and J.-Ph. Vial [12]. The target-following framework
was first introduced by S. Mizuno [15] for linear complementarity problems. It was
subsequently used by Jansen et al. as a unifying framework for various primal-dual
path-following algorithms for linear programming and algorithms that find analytic
centers of polyhedral sets. The essential ingredient of this framework is the target
map (x, s) 7→ (x1s1, . . . ,xnsn), defined for each pair of positive n-vectors (x, s).
An important feature of the target map is its bijectivity between the primal-dual
strictly feasible region and the cone of positive n-vectors Rn++ [12, 14], whence
identifying the primal-dual strictly feasible region with the relatively simple cone
Rn++ known as the target space (or v-space). Interior-point algorithms based on
the target map are known as target-following algorithms, which are conceptually
elegant when viewed as following a sequence of targets in the target space.

Various attempts were made to generalize the concept of target maps to semidef-
inite programming [16, 17, 22], symmetric cone programming [11, 23] and general
convex conic programming [24]. It is noted here that these extensions of the target
map do not result in target-following algorithms as they are generally not injective
on the whole primal-dual strictly feasible region; see Section 1.4.

In this paper, we present an extension of the target-following framework to sym-
metric cone programming. This extension is obtained from a novel geometrical
perspective of the weighted barriers, that views a weighted barrier as a weighted
sum of barriers for a strictly decreasing sequence of faces. Using the Euclidean
Jordan-algebraic structure of symmetric cones, we give an algebraic characteriza-
tion of a strictly decreasing sequence of its faces, and specialize this target map
to produce a computationally-tractable target-following algorithm for symmetric
cone programming. The analysis is made possible with the use of triangular auto-
morphisms of the cone, a new tool in the study of symmetric cone programming.
As an application of this algorithm, we demonstrate that starting from any given
any pair of primal-dual strictly feasible solutions, the primal-dual central path of a
symmetric cone program can be efficiently approximated.

1.1. Linear programming revisited. Let us begin by revisiting the special case
of linear programming, where Ω = Rr++ = (0,∞)r. In this case, the minimizer of
the weighted barrier problem—which is the problem of minimizing the function

x ∈ Ω 7→ −
r∑
i=1

ωi log xi +
m∑
j=1

bjyj

over the primal strictly feasible region—and the unique set of Lagrange multipliers
satisfying the Lagrange optimality conditions form the pair of primal-dual weighted
analytic centers associated with the weights ω1, . . . , ωr. Under the target map, a
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pair of primal-dual strictly feasible solutions (x, s) is mapped to (ω1, . . . , ωr) if and
only if it is the pair of primal-dual weighted analytic centers associated with the
weights ω1, . . . , ωr. The weighted sum of logarithmic barriers

x ∈ Ω 7→ −
r∑
i=1

ωi log xi

is called a weighted logarithmic barrier for Rr++ associated with (ω1, . . . , ωr) (or
simply a weighted barrier for Rr++).

We now describe a generalization of the weighted barriers, and the notion of
weighted analytic centers, to symmetric cone programming, and generally to convex
conic programming—where Ω is an open convex cone.

First we select a sequence of faces of Rr+ satisfying Rr+ = F1 B · · ·B Fr B Fr+1 =

{0}, where FB F̃ means that F̃ is a proper face of F. This choice of faces determines
a permutation π on the index set {1, . . . , r} such that Fi = {x ∈ Rr+ : xπ(1) = · · · =
xπ(i−1) = 0} for i = 2, . . . , r, r + 1. In analogy to flag manifolds, we use the term
flag when referring to such sequence of faces.

Definition 1 (Flag of faces). A flag of faces (or simply flag) of a convex cone K
is a strictly decreasing sequence of faces

cl(K) = F1 B · · ·B Fp B Fp+1 = {0}.

A flag is said to be complete if it is not a subsequence of another flag of the same
cone.

Next, we consider the weighted sum of logarithmic barriers:

(1.2) f(ω,f) : x 7→
r∑
i=1

(ωi − ωi−1)fFi(x),

where ω = (ω0, ω1, . . . , ωr) is a nondecreasing sequence 0 = ω0 < ω1 ≤ · · · ≤ ωr
of real numbers, f = (F1, . . . ,Fr,Fr+1) is a complete flag of Rr+, and fFi denotes

the (modified) Legendre-Fenchel conjugate1 of the logarithmic barrier of the face
Fi; i.e., fFi is the barrier x 7→ − log xπ(i) − · · · − log xπ(r) for the open dual cone

int(Fi)
]

= {x ∈ Rr : xπ(i), . . . ,xπ(r) > 0} of the interior int(Fi) of the face Fi.
When the complete flag f is paired with the nondecreasing sequence ω, we call this
pair a weighted complete flag.

Definition 2 (Weighted complete flag). A weighted complete flag of a convex cone
K is a pair (ω, f), with ω = (ω0, ω1, . . . , ωr) a nondecreasing sequence 0 = ω0 <
ω1 ≤ · · · ≤ ωr of real numbers, and f = (F1, . . . ,Fr,Fr+1) a complete flag of K. The
sequence ω is called a weight sequence, and the numbers ω1, . . . , ωr are called its
weights.

Using partial summation, we can write this weighted sum logarithmic barriers
as

f(ω,f)(x) =
r∑
i=1

ωi(fFi(x)− fFi+1
(x)) = −

r∑
i=1

ωi log xπ(i) = −
r∑
i=1

ωπ−1(i) log xi.

This is precisely a weighted logarithmic barrier for Rr++ associated with the weights
(ωπ−1(1), . . . , ωπ−1(r)). Conversely, every weighted logarithmic barrier for Rr++ can

1The (modified) Legendre-Fenchel conjugate of a function f : S→ R on a (nonempty) convex

set S in a Euclidean space with inner product 〈·, ·〉 is the function f] : s 7→ sup{− 〈s,x〉 − f(x) :

x ∈ S} with domain {s : f](s) < +∞}. When f is closed (e.g., continuous f on open domain S),

we have f]
]

= f .
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be written as a weighted sum of the form (1.2) once the reordering π of the indices
that puts the weights in nondecreasing order is determined.

If we replace each logarithmic barrier fFi in this weighted sum by the image
eFi of the vector of all ones 1 under the duality map −∇fFi(·), we recover the
image of the primal-dual weighted analytic centers (x, s) under the target map: the
image eFi is the 0-1 vector with nonzero entries precisely at positions π(i), . . . , π(r),
whence eFi − eFi+1

is the π(i)’th unit vector, and subsequently

(ωπ−1(1), . . . , ωπ−1(r)) =
r∑
i=1

ωi(eFi − eFi+1) =
r∑
i=1

(ωi − ωi−1)eFi .

In summary, for a weighted complete flag (ω, f) of Rr+,

(1) the nonnegative sum of barriers (1.2) is a weighted logarithmic barrier for
Rr++, which we call the weighted barrier associated with (ω, f);

(2) the pair of primal-dual solutions (x, s) to the weighted barrier problem de-
termined by this weighted logarithmic barrier is a pair of weighted analytic
centers, which we call the pair of weighted centers associated with (ω, f);
and

(3) the weighted sum −
∑r
i=1(ωi − ωi−1)∇fFi(1) is the image of the weighted

analytic centers (x, s) under the target map, which we call the target vector
associated with (ω, f).

When the weights are not pair-wise distinct, a weighted barrier for Rr++ is asso-
ciated with more than one weighted complete flags since the permutation π is not
uniquely determined. Thus we group the weighted complete flags into equivalence
classes according on the weighted barriers with which they associate.

Definition 3 (Equivalence of weighted complete flags). Two weighted complete

flags (ω, f) and (ω̃, f̃) of an open convex cone K are said to be equivalent if they
have the same weights ω1, . . . , ωr, and

ωi > ωi−1 =⇒ Fi = F̃i

for i = 1, . . . , r.

It is straightforward to verify that two weighted complete flags of Rr+ are equiv-
alent if and only if they associate with the same target vector. Hence we have an
alternative definition for the target map (x, s) 7→ (x1s1, . . . ,xrsr):

(x, s) 7→ −
r∑
i=1

(ωi − ωi−1)∇fFi(1),

where (ω, f) is a weighted complete flag of Rr+ such that (x, s) is the pair of weighted
centers associated with (ω, f).

1.2. Extension to convex conic programming. We now extend this idea to
linear optimization over a general closed convex cone cl(K). In order to associate a
weighted complete flag (ω, f) of the open dual cone K] with a weighted barrier, we
would need to fix, for each and every face F of cl(K]), an a priori logarithmically ho-

mogeneous self-concordant barrier f ]F. Since the Legendre-Fenchel conjugate fcl(K])
is strictly convex, the weighted barrier problem it determines has a unique solution.
With these barriers, we then define the weighted barrier, pair of weighted centers,
and target vector associated with (ω, f), respectively, as

(1) the nonnegative sum of barriers in (1.2),
(2) the pair of primal-dual solutions (x, s) to the weighted barrier problem

determined by the weighted barrier (1.2), and
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(3) the weighted sum −
∑r
i=1(ωi−ωi−1)∇fFi(e), where e ∈ K is the fixed point

of the duality map −∇fcl(K])(·).

Definition 4 (Target map). The target map for a linear optimization problem over
the closure cl(K) of an open convex cone is the map defined over its primal-dual
strictly feasible region by

(x, s) 7→
r∑
i=1

−(ωi − ωi−1)∇fFi(e),

where (ω, f) is a weighted complete flag of K] such that (x, s) is the pair of weighted
centers associated with (ω, f), and e ∈ K is the fixed point of the duality map
−∇fcl(K])(·).

One of our main results generalizes the bijectivity of the target map for linear
programming over the set of primal-dual strictly feasible solutions.

Theorem 1 (Bijectivity of target map). The target map is a bijection between the
primal-dual strictly feasible region and the open dual cone K].

Proof. We first demonstrate that the association of each pair of primal-dual strictly
feasible solutions (x, s) to a weighted barrier f(ω,f) is a bijection. It suffices to show
that each pair of primal-dual strictly feasible solutions (x, s) solves the weighted
barrier problem determined by a unique weighted barrier f(ω,f).

To this end, we note that the pair of primal-dual strictly feasible solutions (x, s)
solves the weighted barrier problem determined by f(ω,f) if and only if

s = −
r∑
i=1

(ωi − ωi−1)∇fFi(x).

Since s ∈ K] and −∇fF1
(x) = −∇fcl(K])(x) ∈ K] ⊂ cl(K]), we can find some

positive δ1 such that the difference s − δ1(−∇fF1
(x)) is on the boundary of K].

Let F2 C cl(K]) be the minimal face containing the difference s − δ1(−∇fF1
(x)).

If the minimal face F2 is not the trivial cone {0}, we repeat this process with s
replaced by the difference s−δ1(−∇fF1(x)) ∈ int(F2), x replaced by the projection

ProjF2−F2
x ∈ int(F2)

]
, and K replaced by the cone int(F2).

After a finite number (at most the dimension of K) of iterations of this process,
we have a flag and a corresponding strictly increasing sequence of weights {δ1 +
· · · + δi}pi=1 satisfying s = −

∑p
i=1 δi∇fFi(x). The weighted complete flag (ω, f),

obtained by extending this flag and sequence of weights to a weighted complete
flag, then defines a weighted barrier f(ω,f) associated with (x, s).

In the above argument, we have in fact demonstrated a bijection between ele-
ments w ∈ K] and weighted logarithmic barriers via

w = −
r∑
i=1

(ωi − ωi−1)fFi(e),

by taking (x, s) = (e,w). Composing these two bijections proves the theorem. �

1.3. Specialization to symmetric cone programming. In the special case of
symmetric cone programming, where Ω is a symmetric cone, we consider the Eu-
clidean Jordan algebra J of rank r associated with Ω, and use the standard log-
determinant barriers

x 7→ − log det(x)
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for all faces of cl(Ω); see Section A.1. This results in the following weighted barrier
and target map associated with the weighted complete flag (ω, f):

f(ω,f) : x 7→ −
r∑
i=1

(ωi − ωi−1) log det ProjFi−Fi(x),

and

(x, s) 7→
r∑
i=1

(ωi − ωi−1)eFi ,

where eFi is the identity element in the Euclidean Jordan subalgebra JFi of J
associated with the symmetric cone int(Fi).

The association between weighted complete flags (ω, f) and targeted pairs of
primal-dual strictly feasible solutions (x, s) is given by

s =
r∑
i=1

(ωi − ωi−1)(ProjFi−Fi(x))−1,

where the inverse is taken as an element of the Euclidean Jordan subalgebra JFi . In
the unweighted case where ω = 1, we get the familiar expression s = x−1, which we
readily express in terms of the Jordan product as the perturbed complementarity
condition

x ◦ s = e

with e the identity element of the Euclidean Jordan algebra J. In the general
weighted case, however, we would introduce a partition of s into (ω1−ω0)s1 + · · ·+
(ωr − ωr−1)sr with si = (ProjFi−Fi(x))−1; i.e.,

ProjFi−Fi(x) ◦ si = eFi .

This is done so that we can enjoy the benefit of applying well studied numerical
solution methods for the perturbed complementarity condition. In particular, we
choose to use the Nesterov-Todd method [19] when computing the search direction,
and measure progress via the function

(x, {si}) 7→
1
√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)‖PProjFi−Fi
(x)1/2si − eFi‖2,

where Px denotes the quadratic representation of x; see Section A. A weighted sum
is used here as the computed search directions are orthogonal under the induced
weighted inner product. The multiplicative factor of 1√

ω1
scales the induced unit

ball centered at the targeted primal-dual solutions so that it just sits within the
primal-dual feasible region.

The Nesterov-Todd method applies scalings to the primal-dual variables to get

Ppi ProjFi−Fi(x) ◦ Pp−1
i

si = eFi ,

where pi ∈ int(Fi) is commonly known as a scaling point : it is chosen so that
after scaling, Ppi ProjFi−Fi(x) = Pp−1

i
si. This method is chosen for its simplicity

in the analysis of algorithm, as shall be evident in Section 3.1. One drawback of
partitioning s is that we now have a sequence of r dual variables (s1, . . . , sr) to
solve for; i.e., there is an increased in the size of the Newton system. This can be
circumvented by using triangular transformations Ai (see Definition 7) instead of
quadratic representations, together with an appropriate choice of complete flag f;
see Section 3.1 for details.

We thus apply Newton’s method to solve

Ati ProjFi−Fi(x) ◦ A−1
i si = eFi ,
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where Ai is a triangular automorphism of int(Fi) satisfying Ati ProjFi−Fi(x) =

A−1
i si, and measure progress via the proximity measure

dF (x, s;ω) =

√√√√ 1

ω1

r∑
i=1

(λi(Px1/2s)− ωi)2

ωi
,

which is obtained naturally from the measure for (x, {si}). Here, λi(·) denotes the
i’th smallest eigenvalue; see Section A.1. In short, we prove the following quadratic
convergence result.

Proposition 1. If the target
∑r
i=1(ωi−ωi−1)eFi is selected in such a way that the

current primal-dual iterates (x, s) satisfy

s =
r∑
i=1

δi ProjFi−Fi(x)−1

for some δ1, . . . , δr > 0, and dF (x, s;ω) <
√

5−1
2 < 1, then taking a full step along

the search directions (∆x,∆s) determined by the Nesterov-Todd method using a
suitable triangular automorphism keeps the iterates within the primal-dual strictly
feasible region, and satisfies

dF (x + ∆x, s + ∆s;ω) ≤ dF (x, s;ω)2

1− dF (x, s;ω)
.

The above inequality allows us to design a globally convergence target-following
algorithm (see Algorithm 2), with which we show that points on the primal-dual
central path can be efficiently approximated when given any primal-dual strictly
feasible solutions within a prescribed wide-neighborhood of the central path; i.e., in

the set {(x, s) ∈ Ω2 : λ1(Px1/2s) ≥ γ 〈x,s〉r } for some γ ∈ (0, 1). This is summarized
in the following theorem.

Theorem 2. Suppose β ∈ (0, 1) is fixed. Given any pair of primal-dual strictly
feasible solutions (x̂, ŝ) for the primal-dual symmetric cone programming problems
(1.1), and any positive real number µ̂, there is a sequence of at most

O

(√
r

(
log

〈x̂, ŝ〉
rλ1(Px̂1/2 ŝ)

+

∣∣∣∣log
〈x̂, ŝ〉
rµ̂

∣∣∣∣))
weights such that Algorithm 2 finds a pair of primal-dual strictly feasible solutions
(x, s) satisfying ‖Px1/2s− µ̂e‖ ≤ βµ̂.

1.4. Comparison with existing notions target maps. As earlier mentioned,
there were other attempts at extending the concept of target maps to semidefinite
programming [16, 17, 22], symmetric cone programming [11, 23] and general convex
conic programming [24].

In the works [16, 17], the authors consider various notions of target map, and
demonstrate that each of these target maps is injective on some neighborhood of the
primal-dual central path. However, it is not known if any of these target maps are
injective on the whole strictly feasible region. Thus, unlike our target map and the
target-following algorithms derived from it, any target-following algorithm based
on the target maps in [16, 17] requires all targets to stay within some neighborhood
of the central path.

In the work [22], the authors consider the mapping of primal-dual strictly feasible
solutions to the diagonal matrix of eigenvalues of their product as the target map.
This target map is only injective along the primal-dual central path, hence the
target-following algorithm based on it can only follow the central path.
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The target maps considered in [11, 23] and [24] are all generalizations of the target
map induced by the Nesterov-Todd method [17] to symmetric cone programming
and general convex conic programming. Hence, we expect that any target-following
algorithm based on these will again require all targets to stay within some neighbor-
hood of the central path. While our algorithm is also based on the Nesterov-Todd
approach, we do not use self-adjoint automorphisms Pp for the primal-dual scal-
ings, but instead employ triangular scalings; this new tool enables our algorithm to
work beyond neighborhoods of the central path.

1.5. Organization of paper. This paper is organized as follows. In Section 2, we
use the Euclidean Jordan-algebraic characterization of symmetric cones to define
the notion of weighted analytic centers for symmetric cone programming. This
notion allows us to define the target map, with which we describe and analyze a
target-following algorithm in Section 3. Finally in Section 4, we apply the target-
following algorithm to the problem of finding the primal-dual central path of a
symmetric cone program.

2. Target map for symmetric cone programming

Throughout this paper, Ω denotes a symmetric cone, and (J, ◦) denotes a Eu-
clidean Jordan algebra of rank r with identity element e such that the associated
symmetric cone Ω(J) coincides with Ω; i.e., the interior of the cone of squares of J
is the symmetric cone Ω. Here, and throughout, we equip J with the inner product
〈·, ·〉 : (x,y) 7→ tr(x ◦ y). We refer the reader to the appendix for more details on
Euclidean Jordan algebras, including various notations used in this paper.

We shall denote the automorphism group of Ω by G(Ω) and its connected com-
ponent containing the identity by G. We note that since Ω is self-adjoint, so is its
automorphism group G(Ω); i.e. for each automorphism A ∈ G(Ω), its adjoint At is
also an automorphism of Ω.

2.1. Weighted barriers and target map. In order to have a Jordan-algebraic
description of the target map, we would first need a description of flags of faces of
cl(Ω).

2.1.1. Weighted flags and Jordan frames. We begin with an algebraic characteri-
zation of faces of Ω given by L. Faybusovich [9, Theorem 2]: each face F C cl(Ω)
is the cone of squares cl(Ω(Jc2+···+ck)) of the subalgebra Jc2+···+ck in the Peirce
decomposition J = Jc2+···+ck ⊕ Jc2+···+ck,c1

⊕ Jc1
with respect to the idempotent

c2 + · · ·+ ck, where λ1c1 + λ2c2 + · · ·+ λkck is the type I spectral decomposition
of an arbitrary x ∈ relint(F) with 0 = λ1 < λ2 < · · · < λk.

We now extend this algebraic characterization to one for flag of faces of Ω.

Theorem 3. Given a flag f = (F1, . . . ,Fp,Fp+1) of Ω, there exists a unique complete
system of orthogonal idempotents C = (c1, . . . , cp) such that

Fi = cl(Ω(Jci+···+cp)) for i = 1, . . . , p.

Proof. We shall prove by induction on the rank r of the Euclidean Jordan algebra
J. When r = 1, the theorem trivially holds with c1 = e.

Suppose that the theorem holds for every Euclidean Jordan algebra of rank no
more than some r ≥ 2. Consider a Euclidean Jordan algebra J of rank r+1. If p = 1,
then the theorem trivially holds with c1 = e. Otherwise, by the preceding facial
characterization, there is an idempotent c̃ 6= e such that F2 is the cone of squares of
Jc̃. This idempotent is the identity element in the subalgebra Jc̃, and is thus unique.
The Euclidean Jordan algebra Jc̃ has rank at most r. By the inductive hypothesis,
there is a unique system of orthogonal idempotents (c2, . . . , cp) with c2+· · ·+cp = c̃
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such that Fi is the cone of squares of the subalgebra Jci+···+cp for i = 2, . . . , p. With
c1 = e− c̃, F1 = cl(Ω) is the cone of squares of Jc1+···+cp = Je = J. �

The above description of flags leads to the following definition of weighted Jor-
dan frame and its equivalent classes: there is a natural correspondence between
(equivalent) weighted Jordan frames and (equivalent) weighted complete flags of Ω.

Definition 5 (Weighted Jordan frame). A weighted Jordan frame of a Euclidean
Jordan algebra J is a pair (ω,C), with ω = (ω0, ω1, . . . , ωr) is a nondecreasing
sequence 0 = ω0 < ω1 ≤ · · · ≤ ωr of real numbers, and C a Jordan frame of J. The
sequence ω is called a weight sequence, and the real numbers ω1, . . . , ωr are called
its weights.

Definition 6 (Equivalence of weighted Jordan frame). Two weighted Jordan frames

(ω,C) and (ω̃, C̃) of a Euclidean Jordan algebra J are said to be equivalent if they
have the same weights (ω0, ω1, . . . , ωr), and

ωi > ωi−1 =⇒ ci + · · ·+ cr = c̃i + · · ·+ c̃r

for i = 1, . . . , r. In other words, two weighted Jordan frames are equivalent if the
weighted complete flags they determined are equivalent.

2.1.2. Triangular automorphisms. In our target-following algorithm, we will employ
special automorphisms of Ω that respect the structure of flags of faces. These are
called triangular automorphisms.

Definition 7 (Triangular transformation). Given a Jordan frame C = (c1, . . . , cr),
a linear transformation A ∈ L[J, J] is said to be C-triangular if, for each i ∈
{1, . . . , r}, the subalgebra Jci+···+cr is an invariant subspace of A, and the restric-
tion of A to each subspace in the Peirce decomposition of J with respect to C is
some multiple of the identity transformation.

In matrix theory, the Gauss decomposition of a square matrix A is its decompo-
sition into the product LU of a lower triangular matrix with an upper triangular
matrix. This decomposition is obtained as a consequence of the Gaussian elimi-
nation process. For a symmetric positive definite matrix, we often further require
that the two triangular matrices have positive diagonal entries, and are transposes
of each other. This symmetric Gauss decomposition A = LLT is commonly known
as the Cholesky decomposition. The Cholesky decomposition produces the linear
transformation X 7→ LXLT that is representable by a triangular matrix under a
suitable choice of basis. This triangular transformation is in fact an automorphism
of the cone of positive definite matrices, and we recover the original matrix X by
applying this triangular automorphism to the identity matrix.

We shall briefly see that this C-triangular automorphisms of the identity compo-
nent of G(Ω) generalizes the triangular automorphisms to the setting of Euclidean
Jordan algebra. Moreover, these triangular automorphisms can be used in place of
quadratic representation for the primal-dual scalings in the Nesterov-Todd method.

Proposition 2 (Symmetric Gauss decomposition, cf. Theorem VI.3.6 of [7]). For
each Jordan frame C of J,

(1) each x ∈ Ω can be uniquely expressed as x = Ae = Ãte, where A, Ã ∈ G
are C-triangular;

(2) each A ∈ G can be uniquely decomposed into A = BQ = Q̃B̃, where B, B̃ ∈ G

are C-triangular and Q, Q̃ ∈ G are orthogonal;

Proof. All statements, except the last expression in each item, are proved in The-
orem VI.3.6 of [7]. To prove these last expressions, we reverse the ordering of
primitive idempotents in C before applying Theorem VI.3.6 of [7]. �
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Example 1. For the Jordan algebra of r × r real symmetric matrices, a Jordan
frame C is the r-tuple (q1q

T
1 , . . . ,qrq

T
r ) with the vectors q1, . . . ,qr taken from

the columns of an orthogonal matrix Q, and a C-triangular automorphism A ∈ G
takes the form X 7→ QLQTXQLTQT for some lower triangular matrix L with
positive diagonal entries, and an orthogonal automorphism Q ∈ G takes the form
X 7→ PXPT for some orthogonal matrix P. Thus the first item in the above
corollary gives the Cholesky and inverse Cholesky decompositions, and the second
item is the QR-decomposition.

Theorem 4 (Triangular Nesterov-Todd scaling). For each pair (x, s) ∈ Ω2 and
each Jordan frame C of J, there exists a unique C-triangular automorphism A ∈ G
satisfying Atx = A−1s.

Proof. By the preceding proposition, there exists a unique C-triangular automor-

phism Ã ∈ G satisfying Ãte = x, and a unique C-triangular automorphism B̃ ∈ G

satisfying B̃e = (Ãs)1/2. The theorem follows from

Atx = A−1s ⇐⇒ (ÃA)te = (ÃA)−1(Ãs) = (ÃA)−1P(Ãs)1/2e

⇐⇒ (ÃA)(ÃA)te = PB̃ee
(Lemma A.2)

= B̃PeB̃te = B̃B̃te
(Lemma A.4)⇐⇒ (ÃAe)2 = (B̃e)2 ⇐⇒ ÃAe = B̃e

(Proposition 2)⇐⇒ ÃA = B̃. �

Finally, we show that we can always find a Jordan frame C = (c1, . . . , cr) for
which the unique C-triangular automorphism in the above proposition scales a given
primal-dual pair in Ω2 to a “diagonal” element; i.e., an element d with dci,cj = 0

for all i < j in its Peirce decomposition d =
∑r
i=1 dci +

∑
i<j dci,cj . This will be

subsequently used to give an algebraic proof of bijectivity of the target map.

Theorem 5. For each pair (x, s) ∈ Ω2, there exists a Jordan frame C = (c1, . . . , cr)
of J and a unique C-triangular automorphism A ∈ G satisfying

Atx = A−1s =

r∑
i=1

√
λi(Px1/2s)ci.

Proof. Take any spectral decomposition Px1/2s =
∑r
i=1 λi(Px1/2s)c̃i. By Propo-

sition 2, there is a C̃-triangular automorphism B ∈ G and an orthogonal auto-
morphism Q ∈ G such that Px1/2 = BQ. We take A to be the automorphism
P−1

x1/2P(P
x1/2s)1/4Q = QtB−1P(P

x1/2s)1/4Q ∈ G, and C = (c1, . . . , cr) to be the r-

tuple (Qtc̃1, . . . ,Qtc̃r); so that A−1s = QtP−1
(P

x1/2s)1/4
Px1/2s = Qt(Px1/2s)1/2 and

Atx = QtP(P
x1/2s)1/4P−1

x1/2x = QtP(P
x1/2s)1/4e = Qt(Px1/2s)1/2, with

Qt(Px1/2s)1/2 = Qt
r∑
i=1

√
λi(Px1/2s)c̃i =

r∑
i=1

√
λi(Px1/2s)ci. �

It remains to check that C is a Jordan frame and A is a C-triangular transforma-
tion. The former holds since orthogonal automorphisms in G are automorphisms
of J that stabilizes the identity element e; see Theorem A.7. The latter follows
from A = QtB−1P(P

x1/2s)1/4Q and the fact that both B−1 and P(P
x1/2s)1/4 are

C̃-triangular.

2.1.3. Weighted analytic centers. In defining weighted barriers for Ω, we use the
log-determinant barriers for faces F of cl(Ω): s ∈ int(F) 7→ − log detF(s), where
detF(s) denotes the determinant of s as an element of the Jordan subalgebra JF
that is the linear span of the face F (so that int(F) = Ω(JF)). Its Legendre-Fenchel
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conjugate is then the composition of the orthogonal projection onto this subalgebra,
and the log-determinant barrier of the associated symmetric cone.

Remark 1. While the choice of barriers is irrelevant to the bijectivity of the target
map, this choice is taken here for the convenience of designing and analyzing the
target-following algorithm based on it. In fact, it gives an algebraic means of finding
a weighted Jordan frame that associates with a given pair of weighted centers; see
proof of Theorem 6.

The one-to-one correspondence between weighted complete flags and weighted
Jordan frames results in the following definition of weighted barriers.

Definition 8 (Weighted log-determinant barrier for symmetric cone). The weighted
log-determinant barrier for Ω associated with the weighted Jordan frame (ω,C) of
the Euclidean Jordan algebra J (or simply weighted barrier) is the function

f(ω,C) : x ∈ Ω 7→ −
r∑
i=1

(ωi − ωi−1) log detci:r (xci:r ),

where ci:r denotes the idempotent ci + · · · + cr, and detci:r (x) denotes the deter-
minant of x as an element of the Jordan subalgebra Jci:r .

Up to equivalence of weighted Jordan frame, there is a one-to-one correspondence
between the weighted barriers for Ω and the weighted Jordan frames of J.

The log-determinant barrier x 7→ − log det(x) for the symmetric cone Ω is strictly
convex, and all barriers x 7→ − log detci:r (xci:r ) are convex. Therefore the weighted
barrier f(ω,C) is strictly convex, and hence the weighted barrier problem

inf

f(ω,C)(x) +

p∑
j=1

bjyj :
m∑
j=1

yjaj + x = c, x ∈ Ω


has a unique solution. We call this the primal weighted analytic center associated
with the weighted Jordan frame (ω,C) for the symmetric cone program.

We now consider the Lagrange optimality conditions for this weighted barrier
problem. The gradient of the log-determinant barrier at the element x is the nega-
tion of its inverse x−1. Therefore the gradient of the weighted barrier at x is
−
∑r
i=1(ωi − ωi−1)x−1

ci:r , and the Lagrange optimality conditions are

(WCE(ω,C))

m∑
j=1

yjaj + x = c, x ∈ Ω,

〈aj , s〉 = bj , 1 ≤ j ≤ m,

s =
r∑
i=1

(ωi − ωi−1)x−1
ci:r .

We shall call these conditions the weighted center equations given by the weighted
Jordan frame (ω,C), and the unique s satisfying the above conditions the dual
weighted analytic center associated with the weighted Jordan frame (ω,C).

By following the proof of Thereom 1, we can show that every pair of primal-dual
strictly feasible solutions to the symmetric cone programs (1.1) is a pair of weighted
analytic centers.

Theorem 6 (Completeness of weighted log-determinant barriers). Given any pair
of primal-dual strictly feasible solutions (x, s) to the symmetric cone programs (1.1),
there exist a weighted Jordan frame (ω,C) such that (x, s) is the unique solution
to the weighed central equations (WCE(ω,C)). Moreover, up to equivalence, the
weighted Jordan frame (ω,C) is uniquely determined by the pair (x, s).
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Proof. While this follows from the constructive proof of Theorem 1 as a special case,
we can instead use the proof Theorem 5 to find the weighted Jordan frame (ω,C).
Indeed in the proof of Theorem 5, we construct a Jordan frame C = (c1, . . . , cr) such
that there is unique a C-triangular automorphism A ∈ G satisfying Atx = A−1s =∑r
i=1

√
λi(Px1/2s)ci.

2 From Lemma 1, we deduce (xci:r )
−1 = (A−ti (Atx)ci:r )

−1,
where Ai denotes the restriction of A to the subalgebra Jci:r . From Lemma A.2,
we see that this expression is equivalent to Ai((Atx)ci:r )

−1. Therefore, for any
weight sequence ω, we have

r∑
i=1

(ωi − ωi−1)(xci:r )
−1 =

r∑
i=1

(ωi − ωi−1)Ai((Atx)ci:r )
−1

(Lemma 1) = A
r∑
i=1

(ωi − ωi−1)((Atx)ci:r )
−1

= A
r∑
i=1

(ωi − ωi−1)
r∑
j=i

1√
λj(Px1/2s)

cj .

In particular, for the weight sequence ω = (0, λ1(Px1/2s), . . . , λr(Px1/2s)), the above

expression simplifies to A
∑r
i=1

√
λi(Px1/2s)ci = s. �

2.1.4. Target map. For each pair of primal-dual strictly feasible solutions (x, s) of
the symmetric programs (1.1), Theorem 6 states that, up to equivalence, there
exists a unique weighted Jordan frame (ω,C) satisfying s =

∑r
i=1(ωi − ωi−1)x−1

ci:r ,
where ci:r denotes the idempotent ci + · · ·+ cr. With this weighted Jordan frame
(ω,C), we define the target map as

T : (x, s) 7→
r∑
i=1

(ωi − ωi−1)ci:r =
r∑
i=1

ωici.

We note here that the idempotent ci:r = eci:r = ∇(log detci:r )(eci:r ), where the
identity element e is the fixed point of the duality map y 7→ −∇(− log det(y)) =
y−1.

The following theorem is a special case of Theorem 1, and has a constructive alge-
braic proof, obtained by replacing the geometric argument in the proof of Theorem
1 with the algebraic version in the proof of Theorem 6.

Theorem 7 (Bijectivity of target map for symmetric cone programming). The
target map for the symmetric cone programs (1.1) is a bijection between the primal-
dual strictly feasible region and the symmetric cone Ω.

3. Target-following algorithms for symmetric cone programming

Using the target map T defined in the previous section, we propose the following
target-following framework.

Algorithm 1. (Target-following framework for symmetric cone programming)
Given a pair of primal-dual strictly feasible solutions (xin, sin) and a target wout ∈
Ω.

(1) Set (x+, s+) = (xin, sin), and w+ = T (xin, sin).
(2) Repeat the following steps until w+ is close to wout,

(a) Select the next target w++ leading towards wout.
(b) Compute an approximation (x++, s++) of the pre-image T −1(w++).
(c) Update (x+, s+)← (x++, s++) and w+ ← w++.

(3) Output (xout, sout) = (x+, s+).

2This involves a QR-decomposition in the case of semidefinite programming.
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The two main steps in this framework are the selection of the next target w++

and the computation of the next pair of iterates (x++, s++). In the next section,
we consider the problem of computing the next pair of iterates.

3.1. Approximating weighted analytic centers. We consider the problem of
approximating the weighted analytic centers determined by the weighted center
equations (WCE(ω,C)), given a weighted Jordan frame (ω,C) that defines the next

target w++ and a pair of current iterates (x+, s+). For simplicity of notations, we
shall denote by ci:r the idempotent ci + · · · + cr, by Ji and Ωi, respectively, the
Jordan subalgebra Jci:r and its associated symmetric cone Ω(Jci:r ), and by Gi the
identity component of G(Ji).

3.1.1. Nesterov-Todd scaling. We begin by writing the last equation in the weighted
center equations (WCE(ω,C)) as

s−
r∑
i=1

(ωi − ωi−1)si = 0(3.1a)

xci:r − xi = 0, i = 1, . . . , r(3.1b)

xi ◦ si = ci:r, i = 1, . . . , r.(3.1c)

For the moment, we cast aside the first two equations and consider the application
of a primal-dual Nesterov-Todd-type scaling in (3.1c):

({xi}, {si}) 7→ ({Atixi}, {A−1
i si})

where Ai is some automorphism in Gi such that Atixi = A−1
i si for each i. The

bilinear equations (3.1c) are invariant under this transformation since xi ◦ si = ci:r
if and only if Atixi ◦ A

−1
i si = ci:r for any Ai ∈ Gi; see Lemma A.5. The advantage

of using the Nesterov-Todd-type scaling is that we can simplify the linearization of
Atixi ◦ A

−1
i si = ci:r by scaling with L−1

Atixi
= L−1

A−1
i si

to get

Ati∆xi +A−1
i ∆si = (Atixi)−1 −Atixi.

As we turn out attention to the first two equations in (3.1), we quickly realize
that the automorphismsAi used in the primal-dual scalings of the bilinear equations
(3.1c) should be chosen so that for some automorphism A ∈ G,

(3.2) (Atx)ci:r = Atixci:r ∀x ∈ J ∀i ∈ {1, . . . , r},
and

(3.3) A−1
r∑
i=1

(ωi − ωi−1)si =
r∑
i=1

(ωi − ωi−1)A−1
i si ∀si ∈ Ji.

The next lemma shows that these conditions do hold if we take A ∈ G to be
C-triangular, and take Ai to be its restriction to the subalgebra Ji.

Lemma 1. If Ai is the restriction of a nonsingular C-triangular transformation
A, then both (3.2) and (3.3) hold.

Proof. By definition of Ai, we have Asi = Aisi for all si ∈ J. Therefore for all
si ∈ Ji with i ∈ {1, . . . , r},

A
r∑
i=1

(ωi − ωi−1)A−1
i si =

r∑
i=1

(ωi − ωi−1)AA−1
i si =

r∑
i=1

(ωi − ωi−1)si.

Since Ji is invariant under A and the subspaces in a Peirce decomposition are
pairwise orthogonal, we have for all si ∈ Ji〈

Atixci , si
〉

= 〈xci ,Aisi〉 = 〈x,Asi〉 =
〈
Atx, si

〉
=
〈
(Atx)ci , si

〉
. �
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In summary, we will transform the primal-dual variables by (x, s) ∈ J2 7→
(Atx,A−1s) and (xi, si) ∈ J2

i 7→ (Atixi,A−1si), where A ∈ G is C-triangular and
Ai ∈ Gi is the restriction of A to Ji. We further require that Atixi = A−1

i si for
each i ∈ {1, . . . , r} at the current primal-dual iterates (x+, s+), where xi = (x+)ci

and si ∈ Ji is such that s+ =
∑r
i=1(ωi − ωi−1)si.

From xi = (x+)ci , Atixi = A−1
i si and s+ =

∑r
i=1(ωi − ωi−1)si, we arrive at

s+ =
r∑
i=1

(ωi − ωi−1)AiAti(x+)ci =
r∑
i=1

(ωi − ωi−1)A(Atx+)ci = AMAtx+,

where M : x 7→
∑r
i=1(ωi − ωi−1)xci . Since M is not an automorphism of Ω, we

cannot expect AMAtx+ ∈ Ω in general, thence the above equation may not be
satisfied with any choice of A ∈ G. On the other hand, if (Atx+)ci,cj = 0 for all
i < j, then we can replace M with the automorphism D = P∑r

i=1

√
ωici ∈ G. This

happens whenever the next target w++ is selected in such a way that the current
primal-dual iterates (x+, s+) satisfy

(3.4) s+ =
r∑
i=1

(ω̃i − ω̃i−1)(x+)−1
ci:r

for some weight sequence ω̃; i.e., we select f to be some complete flag f̃ such that
(x+, s+) is the pair of weighted analytic centers associated with the weighted com-

plete flag (ω̃, f̃). We note that this complete flag f̃ can be obtained from the con-
struction in the proof of Theorem 6.

Remark 2. This assumption means that we only need to (and, in fact, only allowed
to) choose the weight sequence ω when selecting the next target. Thus the analysis
in this paper only allow the algorithm to target at the collection of targets with
specific weight sequence, but non-specific complete flag; i.e., targets that share the
same set of eigenvalues. This is not an issue if the final target is a multiple of the
identity element e; i.e., if the algorithm aims to locate points on the central path.
For all other purposes, we would need to resort to another approach described in
[5], which unfortunately has a more involved analysis.

Under the above assumption, the following lemma shows that with the choice
D = P∑r

i=1

√
ωici ∈ G, we are able to find C-triangular automorphism A ∈ G

satisfying s+ = ADAtx+.

Lemma 2. There exists a unique C-triangular automorphism A ∈ G satisfying
Atx+ = D−1A−1s+, where D ∈ G is the automorphism P∑r

i=1

√
ωici . Moreover, if

the next target w++ is selected in such a way that the current primal-dual iterates
(x+, s+) satisfy (3.4) for some weight sequence ω̃, then Atx+ = D−1A−1s+ =∑r
i=1

√
ω̃i/ωici

Proof. By Theorem 4, there is a unique C-triangular automorphism Ã ∈ G satis-

fying Ãtx+ = Ã−1s+. We can then take A to be the C-triangular automorphism

ÃD−1/2 ∈ G, and check that Atx+ = D−1/2Ãtx+ = D−1/2Ã−1s+ = D−1A−1s+.

Uniqueness of A follows from that of Ã. Moreover, if (3.4) holds, we see from

the proof of Theorem 6 that Ã can be chosen such that Ãtx+ = Ã−1s+ =∑r
i=1

√
ω̃ci; subsequently, D−1A−1s+ = D−1/2Ã−1s+ = D−1/2

∑r
i=1

√
ω̃ici =∑r

i=1

√
ω̃i/ωici. �

Let A ∈ G be the C-triangular automorphism in the lemma, and denote its
restriction to Ji by Ai. We then choose si = AiAtixi ∈ Ji, and check that s+ =
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i=1(ωi − ωi−1)si: using lemma 1, we deduce xi = (A−td)ci:r = A−ti dci:r , where

d denotes the element
∑r
i=1

√
ω̃i/ωici, whence si = Aidci:r ; we then have

r∑
i=1

(ωi − ωi−1)si =
r∑
i=1

(ωi − ωi−1)Aidci:r =
r∑
i=1

(ωi − ωi−1)Adci:r = ADd = s+.

With the primal-dual scaling (x, s, {xi}, {si}) 7→ (Atx,A−1s, {Atixi}, {A
−1
i si}), the

linearization of the rewritten last equation (3.1) of the weighted center equations at
the current iterate (x+, s+, {xi = (x+)ci:r}, {si = AiAtixi}), after scaling by L−1

dci:r
,

becomes

∆s −
r∑
i=1

(ωi − ωi−1)∆si = 0,(3.5a)

(∆x)ci −∆xi = 0, i = 1, . . . , r,(3.5b)

Ati∆xi +A−1∆si = d−1
ci:r − dci:r =

r∑
j=i

ωj − ω̃j√
ω̃jωj

cj , i = 1, . . . , r.(3.5c)

The weighted sum of these equations, with weights (ωi − ωi−1), is

r∑
i=1

(ωi − ωi−1)(At∆x1
)ci:r +A−1

r∑
i=1

(ωi − ωi−1)∆si =
r∑
j=i

√
ωj
ω̃j

(ωj − ω̃j)cj .

Thus the search directions (∆x,∆s) are obtained by solving

(3.6)

m∑
j=1

∆yjaj + ∆x = 0,

r∑
i=1

〈aj ,∆s〉 = 0, 1 ≤ j ≤ m,

r∑
i=1

(ωi − ωi−1)(At∆x)ci:r +A−1∆s =
r∑
j=i

√
ωj
ω̃j

(ωj − ω̃j)cj .

Since the linear operator x ∈ J 7→
∑r
i=1(ωi − ωi−1)xci:r is positive definite, the

search directions are uniquely determined.

3.1.2. Proximity measure. Proximity of the iterates to the weighted analytic centers
is measured in terms of ({xi}, {si}) via the backward error

(3.7) dF ({yi}, {wi}; (ω,C))
def
=

1
√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)‖P
y
1/2
i

wi − ci:r‖2

defined on Ω(J1 × · · · × Jr) × (J1 × · · · × Jr). This error is induced by the inner
product 〈·, ·〉ω : ({ui}, {vi}) 7→ 1

ω1

∑r
i=1(ωi−ωi−1) 〈ui,vi〉 on the Cartesian product

J1 × · · · × Jr of Euclidean Jordan algebras, which is chosen because the search
directions ({∆xi}, {∆si}) satisfy 〈{∆xi}, {∆si}〉ω = 0. The factor 1/

√
ω1 is the

greatest factor so that

dF ({yci:r}, {wi}; (ω,C)) < 1 =⇒
r∑
i=1

(ωi − ωi−1)wi ∈ Ω,

which is a consequence of the following lemma.
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Lemma 3. For w =
∑r
i=1(ωi − ωi−1)wi,

dF ({yci:r}, {wi}; (ω,C)) ≥

√√√√ 1

ω1

r∑
i=1

(λi(Py1/2w)− ωi)2

ωi
.

Proof. By Lemma A.3, P
y
1/2
i

wi and Ayiwi shares the same spectrum for any au-

tomorphism Ayi ∈ G(Ωi) satisfying Atyici:r = yi. In particular, we may use a C-

triangular transformation Ay satisfying Atye = y (see Proposition 2) and take Ayi

to be the restriction of Ay to Ji; this results in ‖P
y
1/2
ci:r

wi−ci:r‖ = ‖Ayiwi−ci:r‖ =

‖Aywi−ci:r‖, whence ω1dF ({yi}, {wi}; (ω,C))2 =
∑r
i=1(ωi−ωi−1)‖Aywi−ci:r‖2.

In terms of the Pierce decomposition with respect to C,

ω1dF ({yi}, {wi}; (ω,C))2

=
r∑
i=1

(ωi − ωi−1)
r∑
j=i

((Aywi)cj − 1)2 +
r∑
i=1

2(ωi − ωi−1)
∑
i≤j<k

‖(Aywi)cj ,ck‖2

=
r∑
j=1

j∑
i=1

(ωi − ωi−1)((Aywi)cj − 1)2 + 2
∑
j<k

j∑
i=1

(ωi − ωi−1)‖(Aywi)cj ,ck‖2.

Using Cauchy’s inequality and the triangle inequality, we get

ω1dF ({yi}, {wi}; (ω,C))2 ≥
r∑
j=1

1

ωj

(
j∑
i=1

(ωi − ωi−1)(Aywi)cj − ωj

)2

+ 2
∑
j<k

1

ωj

∥∥∥∥∥
j∑
i=1

(ωi − ωi−1)(Aywi)cj ,ck

∥∥∥∥∥
2

=
r∑
j=1

1

ωj

(
(Ayw)cj − ωj

)2
+ 2

∑
j<k

1

ωj

∥∥(Ayw)cj ,ck

∥∥2
,

where w =
∑r
i=1(ωi−ωi−1)wi. The lemma then follows from the next theorem. �

Theorem 8 (cf. Lemma 3 of [3]; cf. Hoffman-Wielandt Inequality). For any
0 < ω1 ≤ · · · ≤ ωn, any x ∈ J and any Jordan frame C,

r∑
i=1

1

ωi
(xci − ωi)

2
+ 2

∑
i<j

1

ωi

∥∥xci,cj

∥∥2 ≥
r∑
i=1

1

ω i
‖λi(x)− ωi‖2 .

Proof. By expanding both sides of the desired inequality, it is clear that it suffices

to bound the sum
∑r
i=1

1
ωi

x2
ci + 2

∑
i<j

1
ωi

∥∥xci,cj

∥∥2
from below by

∑r
i=1

1
ω i
λi(x)2.

Let x =
∑
λi(x)c̃i be a spectral decomposition. From x2 =

∑
λi(x)2c̃i, we get(x2)c1

...
(x2)cr

 =

(c̃1)c1
· · · (c̃r)c1

...
. . .

...
(c̃1)cr · · · (c̃r)cr


λ1(x)2

...
λn(x)2

 ,
where the matrix on the right side of the equation is doubly-stochastic. By the
Hardy-Littlewood-Pólya Theorem [10], we have

∑r
i=k(x2)ci ≤

∑r
i=k λi(x)2 for any
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k ∈ {1, . . . , r}. Consequently

r∑
i=1

1

ωi
x2

ci + 2
∑
i<j

1

ωi

∥∥xci,cj

∥∥2

=
1

ω1

r∑
i,j=1

∥∥xci,cj

∥∥2 −
r∑

k=2

(
1

ωk−1
− 1

ωk

) r∑
i,j=k

∥∥xci,cj

∥∥2

≥ 1

ω1

r∑
i=1

(x2)ci −
r∑

k=2

(
1

ωk−1
− 1

ωk

) r∑
i=k

(x2)ci

≥ 1

ω1

r∑
i=1

λi(x)2 −
r∑

k=2

(
1

ωk−1
− 1

ωk

) r∑
i=k

λi(x)2

=
r∑
i=1

1

ω i
λi(x)2

proves the lemma. �

We note that for xi = (x+)ci:r and si = AiAtixi,

dF ({xi}, {si}; (ω,C)) =
1
√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)
r∑
j=i

(
ω̃j − ωj
ωj

)2

=

√√√√ 1

ω1

r∑
i=1

(ω̃i − ωi)2

ωi
.

This suggest the following proximity measure for (x, s):

(3.8) dF (x, s;ω)
def
=

√√√√ 1

ω1

r∑
i=1

(λi(Px1/2s)− ωi)2

ωi
.

From this definition, it is straightforward to deduce that

λi(Px1/2s)

ωi
∈ [1− dF (x, s;ω), 1 + dF (x, s;ω)].

Lemma 4. For all α ∈ [0, 1],

dF ({xi + α∆xi}, {si + α∆si}; (ω,C)) ≤ (1− α)γ +
α2

ω1

r∑
i=1

(ωi − ω̃i)2

ω̃i

≤ (1− α)γ + α2 γ2

1− γ
,

where γ denotes dF ({xi}, {si}; (ω,C)).

Proof. Denote by x̃i, s̃i, ∆x̃i and ∆s̃i the scaled elements Atixi, A
−1
i si, Ati∆xi and

A−1
i ∆si respectively.
We first show that dF is invariant under the primal-dual scaling ({yi}, {wi}) 7→

({Atiyi}, {A
−t
i wi}). From Lemma A.2, we have PAtiyi = AtiPyiAi. We can then

follow the method of F. Alizadeh and S.H. Schmieta [1, Proposition 21] to show that
P

y
1/2
i

wi and P(Atiyi)1/2A
−1
i wi share the same set of eigenvalues by demonstrating

that their quadratic representations are similar to each other. This shows that each
summand in dF , and hence dF , is invariant under the primal-dual scaling.
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From the first two sets of equations (3.5a) and (3.5b) of the linearization, we see
that the search directions ({∆xi}, {∆si}) are orthogonal under the inner product
〈·, ·〉ω. Thus

‖{∆xi}‖2ω + ‖{∆si}‖2ω = ‖{∆xi + ∆si}‖2ω

=
r∑
i=1

(ωi − ωi−1)
r∑
j=i

(
ωj − ω̃j√
ω̃jωj

)2

=
r∑
i=1

ωi

(
ωi − ω̃i√
ω̃iωi

)2

=
r∑
i=1

(ωi − ω̃i)2

ω̃i

where we have used the scaled third set of equations (3.5c) in the second equal-

ity. Therefore ‖{∆xi}‖ω, ‖{∆si}‖ω ≤
√∑r

i=1
(ωi−ω̃i)2

ω̃i
. For each i ∈ {1, . . . , r},

we have ‖∆xi‖ = ‖(∆x)ci:r‖ ≤ ‖∆x‖ = ‖∆x1‖, and hence ‖∆xi‖ ≤ ‖∆x1‖ ≤
1√
ω1
‖{∆xi}‖ω ≤ 1√

ω1

√∑r
i=1

(ωi−ω̃i)2
ω̃i

.

From the third set of equations (3.5c) of the linearization, we have

(x̃i + α∆x̃i) ◦ (s̃i + α∆s̃i)− ci:r

= x̃i ◦ s̃i + α(∆x̃i ◦ s̃i + x̃i ◦∆s̃i) + α2∆x̃i ◦∆s̃i − ci:r

= (1− α)(x̃i ◦ s̃i − ci:r) + α(x̃i ◦ s̃i + ∆x̃i ◦ s̃i + x̃i ◦∆s̃i − ci:r) + α2∆x̃i ◦∆s̃i

= (1− α)(x̃i ◦ s̃i − ci:r) + α2∆x̃i ◦∆s̃i .

Therefore, by Lemma 30 of [1],

‖P(x̃i+α∆x̃i
)1/2(s̃i + α∆s̃i)− ci:r‖ ≤ ‖(x̃i + α∆x̃i) ◦ (s̃i + α∆s̃i)− ci:r‖

≤ (1− α)‖x̃i ◦ s̃i − ci:r‖+ α2‖∆x̃i‖‖∆s̃i‖
= (1− α)‖P

x̃
1/2
i

s̃i − ci:r‖+ α2‖∆x̃i‖‖∆s̃i‖

= (1− α)‖P
x
1/2
i

si − ci:r‖+ α2‖∆x̃i‖‖∆s̃i‖,

where the first equality follows from the fact that x̃i = s̃i. Consequently,

dF ({xi + α∆xi}, {si + α∆si}; (ω,C))

= dF ({x̃i + α∆x̃i}, {s̃i + α∆s̃i}; (ω,C))

=
1
√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)‖P(x̃i+α∆x̃i
)1/2(s̃i + α∆s̃i)− ci:r‖2

≤ 1− α
√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)‖P
x
1/2
i

si − ci:r‖2 +
α2

√
ω1

√√√√ r∑
i=1

(ωi − ωi−1)‖∆x̃i‖2‖∆s̃i‖2

≤ (1− α)dF ({xi}, {si}; (ω,C)) +
α2

ω1

r∑
i=1

(ωi − ω̃i)2

ω̃i

proves the lemma. �

With this lemma, we prove the following quadratic convergence result.

Proposition 3. If next target w++ =
∑r
i=1 ωici is selected in such a way that the

current primal-dual iterates (x+, s+) satisfy

s+ =
r∑
i=1

δ̂i(x
+)−1

ci:r
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for some δ̂1, . . . , δ̂r > 0, and dF (x+, s+;ω) <
√

5−1
2 < 1, then taking a full step along

the directions (∆x,∆s), determined by the linear system (3.6) with A ∈ G a C-
triangular automorphism satisfying P∑r

i=1

√
ωiciAtx+ = A−1s+, keeps the iterates

within the primal-dual strictly feasible region, and

dF (x+ + ∆x, s
+ + ∆s;ω) ≤ dF ({xi + ∆xi}, {si + ∆si}; (ω,C))

≤ dF (x+, s+;ω)2

1− dF (x+, s+;ω)
< 1,

where xi = (x+)ci:r , si = AiAtixi, ∆xi = (∆x)ci:r , ∆si = x−1
i − si − AiAti∆xi ,

and Ai is the restriction of A to Jci:r .

Proof. Recall that ∆xi = (∆x)ci:r and ∆s =
∑r
i=1(ωi−ωi−1)∆si , whence dF (x +

∆x, s + ∆s;ω) ≤ dF ({xi + ∆xi}, {si + ∆si}; (ω,C)) by Lemma 3. Thus it suffices
to show that xi + α∆xi , si + α∆si ∈ Ωi for α ∈ [0, 1], and that

dF ({xi + ∆xi}, {si + ∆si}; (ω,C)) ≤ dF (x, s;ω)2

1− dF (x, s;ω)
.

By Lemma 3, if xi+α∆xi ∈ cl(Ωi)\Ωi for any α ∈ [0, 1], then dF ({xi+α∆xi}, {si+
α∆si}; (ω,C)) ≥ 1. Assuming γ := dF (x, s;ω) < 1, the previous lemma states that

dF ({xi + α∆xi}, {si + α∆si}; (ω,C)) ≤ (1− α)γ + α2 γ2

1− γ
< 1,

for all α ∈ [0, 1], whence xi + α∆xi ∈ Ωi for all α ∈ [0, 1] by the continuity of
α 7→ xi + α∆xi . We then apply Lemma 3 once again, together with the above
inequality, to conclude that si + α∆si ∈ Ωi for all α ∈ [0, 1]. �

3.2. Choice of targets. The analysis in the preceding section requires the as-
sumption that the next target w++ is selected in such a way that the current
primal-dual iterates (x+, s+) satisfy

s+ =

r∑
i=1

δ̂i(x
+)−1

ci:r

for some δ̂1, . . . , δ̂r > 0. This, in general, decides the choice of the complete flag
f. Thus, we now only need to decide the values of the weights ω; see Remark 2.
In light of the proximity measure dF (·, ·;ω), we shall use the following proximity
measure on the set of weights:

(3.9) dF (ω̃;ω)
def
=

√√√√ 1

ω1

r∑
i=1

(ω̃i − ωi)2

ωi
,

With this choice of targets and proximity measure, the target-following framework
is now specialized to the following:

Algorithm 2. (Target-following algorithm for symmetric cone programming)
Given a pair of primal-dual strictly feasible solutions (xin, sin) and target weights
ωout.

(1) Pick some δ ∈ (0, 1) and a sequence of weights {ωk}Nk=0 such that

s+ =
r∑
i=1

(ω
(0)
i − ω

(0)
i−1)(x+)−1

ci+···+cr

for some Jordan frame (c1, . . . , cr), dF (ωk;ωk−1) ≤ δ for k = 1, . . . , N ,
and ωN = ωout.

(2) Set (x+, s+) = (xin, sin).
(3) For k = 1, . . . , N ,
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(a) Solve the linear system (3.6) with (c1, . . . , cr) a Jordan frame from
Theorem 6 for (x+, s+), with (ω1, . . . , ωr) the weights in ωk, and with
A ∈ G the automorphism from Lemma 2.

(b) Update (x+, s+)← (x+ + ∆x, s
+ + ∆s).

(4) Output (xout, sout) = (x+, s+).

3.3. Analysis of algorithm. Consider one iteration of Algorithm 2. Recall from
Proposition 3 that we can take a full step when dF (x+, s+) < (

√
5−1)/2. This can

be enforced during the update of weights via the following lemma.

Lemma 5. If dF (x, s;ω) ≤ β and dF (ω̃;ω) ≤ α for some α, β ∈ (0, 1), then

dF (x, s; ω̃) ≤ β + α

1− α
.

Proof. We have

dF (x, s; ω̃) ≤

√√√√ 1

ω̃1

r∑
i=1

(λi(Px1/2s)− ωi)2

ω̃i
+

√√√√ 1

ω̃1

r∑
i=1

(ωi − ω̃i)2

ω̃i

≤ (dF (x, s;ω) + dF (ω̃;ω)) max
i

ωi
ω̃i
.

If dF (ω̃;ω) ≤ α, then

α2 ≥ 1

ω1

r∑
i=1

(ω̃i − ωi)2

ωi
≥

r∑
i=1

(
ω̃i
ωi
− 1

)2

,

whence mini
ω̃i
ωi
≥ 1− α. �

We now give the main theorem of this section, which states that for all α > 0 suf-
ficiently small, say α ≤ 1

6 , then Algorithm 2 terminates with a good approximation

of T −1(
∑r
i=1 ω

out
i ci) for some Jordan frame C = (c1, . . . , cr).

Theorem 9. In Algorithm 2, if α ∈ (0, 1) is such that there exists some β ∈
(0,
√

5−1
2 ) satisfying

(3.10)
(β + α)2

(1− β)(1− α)
≤ β,

then (x+, s+) is well-defined and strictly feasible in each iteration, and the algorithm
terminates with dF (xout, sout;ωout) ≤ βmin, where βmin is the least β satisfying the
inequality.

Proof. We shall prove the theorem by induction that the iterates (x+, s+) are
strictly feasible and dF (x+, s+;ωk) ≤ βmin at the beginning of each iteration. This
is certainly true for the first iteration. By Lemma 5, we have dF (x+, s+;ωk+1) ≤
(βmin + α)/(1− α). If the hypothesis (3.10) holds, then we may apply Proposition
3 to deduce that the iterates (x+ + ∆x, s

+ + ∆s) are strictly feasible with

dF (x+ + ∆x, s
+ + ∆s) ≤

((βmin + α)/(1− α))2

1− (βmin + α)/(1− α)
=

(βmin + α)2

(1− βmin)(1− α)
≤ βmin.

This completes the induction. �

4. Finding analytic centers

In this section, we consider an algorithm that finds the analytic center T −1(µ̂e)
for any given µ̂ > 0. This algorithm can be used to find analytic centers of compact
sets described by linear matrix inequalities and convex quadratic constraints. It
can also be combined with a path-following algorithm to solve the symmetric cone
program (1.1).
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Given a pair of primal-dual strictly feasible solutions (x̂, ŝ), we shall construct a
finite sequence of targets {ωk}Nk=0 such that

s+ =
r∑
i=1

(ω
(0)
i − ω

(0)
i−1)(x+)−1

ci+···+cr

for some Jordan frame (c1, . . . , cr),

(4.1) dF (ωk;ωk−1) =

√√√√ 1

ωk−1
1

r∑
i=1

(ωki − ω
k−1
i )2

ωk−1
i

≤ α for 1 ≤ k ≤ N,

and ωN = µ̂1, with α satisfying the hypothesis of Theorem 9, thus allowing us to
apply Algorithm 2 to approximate T −1(µ̂e).

Any sequence {ωk}Nk=0 satisfying (4.1) is called a α-sequence, and N is called its
length; see [15]. In [3], the author gave an upper bound on the length of a shortest
α-sequence from any weight sequence ω0 to the ray {µ1 : µ > 0}. For the sake of
completeness, we repeat the argument here.

Consider the local metric defined by the inner product

〈·, ·〉ω : (u,v) ∈ Rr × Rr 7→ 1

ωn

r∑
i=1

uivi
ωi

at each weight sequence ω. We denote by ‖·‖ω the norm induced by the above inner
product. In terms of this local metric, an α-sequence {ωk}Nk=0 is one that satisfies∥∥ωk − ωk−1

∥∥
ωk−1 ≤ α for 1 ≤ k ≤ N.

The length of a piecewise smooth curve ξ : [0, 1] → W, where W ⊂ Rr++ denotes
the set of weight sequences, is defined to be∫ 1

0

∥∥∥∥dξ(t)dt

∥∥∥∥
ξ(t)

dt =

∫ 1

0

√√√√ 1

ξn

n∑
i=1

ξ̇2
i

ξi
dt,

and denoted by l(ξ). The next lemma gives an upper bound on a shortest α-
sequence between any two weight sequences in terms of the length of a piecewise
smooth curve joining them. Its proof can be obtained by adapting the proof of a
similar result in [20], and is thus omitted here.

Lemma 6 (c.f. Lemma 3.3 of [20]). For every piecewise smooth curve ξ : [0, 1]→W
and every α ∈ (0, 1), there exists an α-sequence {ωk}Nk=0 with ω0 = ξ(0), ω1 = ξ(1)
and length

N ≤
⌈

l(ξ)

α− 1
2α

2

⌉
.

Next we show the existence of a piecewise smooth curve from a given weight
sequence ω to the ray {µ1 : µ > 0} with length O(log( 1

rω1

∑r
i=1 ωi)).

Lemma 7. For each weight sequence ω, there exists a piecewise smooth curve
ξ : [0, 1] 7→W with ξ(0) = ω, ξ(1) = µ1, and length

l(ξ) ≤
√
r log

(
4µ

ω1

)
,

where µ denotes the average weight 1
r

∑r
i=1 ωi.

Proof. The lemma is trivially true when ω = µ1. Otherwise, ω1 = · · · = ωp <
ωp+1 ≤ · · · ≤ ωr for some p ∈ {1, . . . , r − 1}.

Consider the straight line segment ξ̃ : [0, t̄] 7→W starting from ω, along which the
weights of least value increases at the same rate, with the other weights decreasing
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at rates proportional to their values, while maintain the average weight throughout,
and ending when the weights of least value coincide with the next higher value; i.e.,

ξ̃ is defined by
(4.2)

ξ̃(t)1 = · · · = ξ̃(t)p = ω1 + t
rµ− pω1

p
and ξ̃(t)i = ωi − tωi for i = p+ 1, . . . , r,

where t̄ ∈ (0, 1) is such that ξ̃(t̄)1 = · · · = ξ̃(t̄)p = ξ̃(t̄)p+1; as required ξ̃(t)1 + · · ·+
ξ̃(t)r = rµ is independent of t. Its length is

∫ t̄

0

 1

ω1 + t rµ−pω1

p

 p∑
i=1

( rµ−pω1

p )2

ω1 + t rµ−pω1

p

+
r∑

i=p+1

ω2
i

ωi − tωi

1/2

dt

=

∫ t̄

0

 p
rµ−pω1

pω1

rµ−pω1
+ t

 rµ− pω1
pω1

rµ−pω1
+ t

+
r∑

i=p+1

ωi
1− t

1/2

dt

=
√
p

∫ t̄

0

(
1

pω1

rµ−pω1
+ t

(
1

pω1

rµ−pω1
+ t

+
1

1− t

))1/2

dt

=
√
p

∫ t̄

0

√
rµ

rµ−pω1

( pω1

rµ−pω1
+ t)
√

1− t
dt

=
√
p log

√
rµ

rµ−pω1
+ 1√

rµ
rµ−pω1

− 1
−√p log

√
rµ

rµ−pω1
+
√

1− t̄√
rµ

rµ−pω1
−
√

1− t̄
.

From the definition of ξ̃(t)1, we can simplify√
rµ

rµ−pω1
+
√

1− t̄√
rµ

rµ−pω1
−
√

1− t̄
=

1 +
√

(1− t̄) rµ−pω1

rµ

1−
√

(1− t̄) rµ−pω1

rµ

=
1 +

√
rµ−pξ(t̄)1

rµ

1−
√

rµ−pξ(t̄)1
rµ

= R(pξ̃(t̄)1rµ ),

and √
rµ

rµ−pω1
+ 1√

rµ
rµ−pω1

− 1
=

1 +
√

rµ−pω1

rµ

1−
√

rµ−pω1

rµ

= R(pω1

rµ ) = R(pξ̃(0)1
rµ ),

where R : (0, 1]→ [1,∞) is the decreasing function u 7→ (1 +
√

1− u)/(1−
√

1− u)
satisfying R(u) ≤ (1 + 1)/(1− (1− 1

2u)) = 4/u. This gives

l(ξ̃) =
√
p logR(pξ̃(0)1

rµ )−√p logR(pξ̃(t̄)1rµ ).

As long as ξ̃(t̄) 6= µ1, we repeat this process to construct another straight line

segment starting from ξ̃(t̄). Eventually, we get a piecewise linear curve ξ joining ω
to µ1 with q ≤ r straight line segments, and total length

l(ξ) =

q∑
i=1

(√
pi logR(

piω
i
1

rµ )−√pi logR(
piω

i+1
1

rµ )
)
,

where ωi is the weight sequence at the start of the i’th straight segment, ωq+1

denotes the weights µ1, and pi is the number of weights of least value in ωi. We
claim that for any a > 1, the function u ∈ (0, 1/a] 7→ logR(u) − logR(au) is
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increasing3. Thus, since both {ωi1}
q
i=1 increasing by construction, we have the

upper bound

l(ξ) <

q∑
i=1

√
pi

(
logR(

rωi1
rµ )− logR(

rωi+1
1

rµ )
)

≤
√
r

q∑
i=1

(
logR(

ωi1
µ )− logR(

ωi+1
1

µ )
)

=
√
r(logR(ω1

µ )− logR(1)) ≤
√
r log 4µ

ω1
.

�

From the above two lemmas, we deduce the following upper bound on the length
of a shortest α-sequence from a given weight sequence ω to the ray {µ1 : µ > 0}.
Theorem 10. For every weight sequence ω0 and every α ∈ (0, 1), there exists an
α-sequence {ωk}Nk=0 with ωN = µ1, where µ =

∑r
i=1 ω

0
i /r, and length

N ≤
⌈ √

r

α− 1
2α

2
log

(
4µ

ω0
1

)⌉
.

Corollary 1. Suppose β ∈ (0,
√

5−1
2 ) is fixed. Let α ∈ (0, 1) be a number satisfying

the inequality (3.10) in Theorem 9. Given any pair of primal-dual strictly feasible
solutions (x̂, ŝ) for the primal-dual symmetric cone programming problems (1.1),
there is a sequence of at most

N ≤
⌈ √

r

α− 1
2α

2
log

(
4 〈x̂, ŝ〉

rλ1(Px̂1/2 ŝ)

)⌉
.

weights such that Algorithm 2 finds a pair of primal-dual strictly feasible solutions
(x, s) satisfying ‖Px1/2s− µe‖ = µdF (x, s;µ1) ≤ βµ, where µ = 1

r 〈x̂, ŝ〉.
Combining the corollary with an α-sequence on the central path, we have the

following theorem.

Theorem 11. Suppose β ∈ (0, 1) is fixed. Given any pair of primal-dual strictly
feasible solutions (x̂, ŝ) for the primal-dual symmetric cone programming problems
(1.1), and any positive real number µ̂, there is a sequence of at most

O

(√
r

(
log

〈x̂, ŝ〉
rλ1(Px̂1/2 ŝ)

+

∣∣∣∣log
〈x̂, ŝ〉
rµ̂

∣∣∣∣))
weights such that Algorithm 2 finds a pair of primal-dual strictly feasible solutions
(x, s) satisfying ‖Px1/2s− µ̂e‖ = µ̂dF (x, s; µ̂1) ≤ βµ̂.

As an immediate corollary, we have the following worst-case iteration bound on
solving symmetric cone problems using Algorithm 2.

Corollary 2. Given any pair of primal-dual strictly feasible solutions (x̂, ŝ) and
any ε > 0, there is a sequence of at most

O

(√
r

(
log

〈x̂, ŝ〉
rλr(Px̂1/2 ŝ)

+
∣∣log ε−1

∣∣))
targets such that Algorithm 2 find a pair of primal-dual strictly feasible solutions
(x, s) satisfying 〈x, s〉 ≤ ε 〈x̂, ŝ〉.
Proof. If (x, s) ∈ Ω2 satisfies ‖Px1/2s− µe‖ ≤ βµ for some β ∈ (0, 1) and some
µ > 0, then 〈x, s〉 − rµ = 〈e,Px1/2s− µe〉 ≤

√
rβµ. Apply the preceding theorem

with µ̂ = ε 〈x̂, ŝ〉 /(β
√
r + r). �

3We have
R(u)
R(au)

= a
(

1+
√

1−u
1+
√
1−au

)2
, and it is straightforward to check that u 7→ 1+

√
1−u

1+
√
1−au is

increasing when a > 1.
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5. Conclusion

We extend the target map (x, s) 7→ (x1s1, . . . ,xnsn), together with the weighted
barriers x 7→ −

∑n
i=1 ωi log xi and the notions of weighted analytic centers, from lin-

ear programming to general convex conic programming. This extension is obtained
from a geometrical perspective of the weighted barriers, via the facial structure of
the nonnegative orthant, that views a weighted barrier as a weighted sum of barriers
for a strictly decreasing sequence of faces. When we replace decreasing sequences of
faces of the nonnegative orthant with decreasing sequences of faces of an arbitrary
closed convex cone, we arrive at weighted barriers for the convex cone; provided
that we have made a priori choices of barriers for all faces of the convex cone. This
potentially opens the door to efficient target-following algorithms for general convex
conic programming, once we know how to design and analyze efficient primal-dual
algorithms for general convex conic programming.
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Appendix A. Euclidean Jordan algebras

In this section, we give a very brief introduction to Euclidean Jordan algebras,
stating various known results and proving some new ones that are necessary for
the development of this paper. For a comprehensive discussion on symmetric cones
and Jordan algebras, we refer the reader to the excellent exposition by J. Faraut
and A. Korányi [7].

A Jordan algebra (J, ◦,+) is a commutative algebra whose multiplication oper-
ator ◦ satisfies the Jordan identity x ◦ (x2 ◦y) = x2 ◦ (x ◦y) for all x,y ∈ J, where
x2 denotes x ◦ x. The multiplication operator ◦ is often called the Jordan product
of the Jordan algebra. We use Lx to denote the Lyapunov operator y ∈ J 7→ x ◦ y.

A Jordan algebra (J, ◦) is said to be formally real if

(x2 + y2 = 0 =⇒ x = y = 0) ∀x,y ∈ J.

A formally real Jordan algebra has a identity element e: an element that satisfies
e ◦ x = x; see [13]. It is also noted in [13] that a formally real Jordan algebra
is power associative4: if we recursively define, for each element x ∈ J, the k’th
power by x0 = e and xk = xk−1 ◦ x for k = 1, 2, . . . , then xk+l = xk ◦ xl for
all nonnegative integers k and l (i.e., the collection of all powers of an element x
forms a semigroup). This important fact results in the existence of the minimal
polynomial for each element x ∈ J: the monic polynomial in R[X] that generates
the principle ideal {p ∈ R[X] : p(x) = 0}. The maximum degree of all minimal
polynomials is called the rank of the Jordan algebra. An element x ∈ J is said to
be regular if the degree of its minimal polynomial coincides with the rank of J.

Henceforth, r shall denote the rank of J.
The minimal polynomials also give us two important functions. For a regular

element x, its trace is the coefficient of the second highest power in its minimal
polynomial, and its determinant is the constant term in its minimal polynomial.
As the set of regular elements is dense in J, and both functions are continuously
extendable to J as polynomials, we can define the trace and determinant of all
elements of J; see [7, Proposition II.2.1].

4This is actually true in general for all Jordan algebras; see [7, Proposition II.1.2].
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Example A.1. The space of r × r real symmetric matrices Sr equipped with the
symmetrized product 1

2 (AB + BA) is a formally real Jordan algebra with identity
I. The notions of minimal polynomial, trace and determinant are as we commonly
defined.

It is known (see, e.g., [7, Proposition VIII.4.2]) that a Jordan algebra with iden-
tity is formally real if and only if it is a Euclidean Jordan algebra; i.e., there is a
symmetric positive definite bilinear functional B : J2 7→ R that is associative; i.e.,
B(x◦y, z) = B(y,x◦z) for all x,y, z ∈ J. Equivalently, a Euclidean Jordan algebra
is a Jordan algebra with identity such that the bilinear function (x,y) 7→ tr(x◦y) is
positive definite; see [7, Proposition III.1.5]. Thus a Euclidean Jordan algebra can
be given a Euclidean structure with the inner product 〈·, ·〉 : (x,y) ∈ J2 7→ tr(x◦y)
in such a way that Lx is self-adjoint.

It is known that if (J, ◦) is a Euclidean Jordan algebra, then the interior of its
cone of squares {x◦x : x ∈ J} is a symmetric cone in the Euclidean space (J, 〈·, ·〉).
We denote this interior by Ω(J). Moreover, this symmetric cone coincides with the
set of elements with positive definite Lyapunov operators; see [7, Theorem III.2.1].
A key ingredient in showing the homogeneity of the cone of squares is the quadratic
representation of J: Px : x ∈ J 7→ 2L2

x − Lx. The collection of quadratic repre-
sentations at all x ∈ Ω(J) gives a transitive subset of automorphisms of Ω(J). In
particular, to each x ∈ Ω(J) is associated a unique y ∈ Ω(J) such that Pye = x.

We denote such y by x1/2, and called it the square root of x.
Conversely, given any symmetric cone Ω, there is an Euclidean Jordan-algebraic

structure such that the symmetric cone coincides with the interior of the cone of
squares. Moreover the closure cl(Ω) of the symmetric cone coincides with the cone
of squares; see [7, Theorem III.3.1].

Alternatively, the symmetric cone Ω(J) can be defined as the connected com-
ponent of the set of invertible elements containing the identity element; see [7,
Theorem III.2.1]. An element x is said to be invertible if there exists a linear com-
bination of powers of x whose Jordan product with x is the identity element. This
linear combination of powers is called the inverse of x, and denoted by x−1. It is
unique since the subalgebra generated by x and the identity element e is associative.
An element x is invertible if and only if its quadratic representation is nonsingular,
and in this case, P−1

x = Px−1 ; see [7, Theorem II.3.1].

Example A.2. For the Jordan algebra of r × r real symmetric matrices, the cone
of squares is the cone of all positive semidefinite matrices. The quadratic represen-
tation of a matrix X is Y 7→ XYX. The notions of square root and inverse are as
we commonly defined.

A.1. Spectral decompositions. A key ingredient in the study of formally real
Jordan algebra by P. Jordan et al. [13] is the set of idempotents. An idempotent of
J is a nonzero element c ∈ J satisfying c ◦ c = c. Amongst the idempotents are the
primitive ones: idempotents that cannot be written as the sum of two idempotents.
Two idempotents c and d are said to be orthogonal if c ◦ d = 0. Orthogonal
idempotents are indeed orthogonal with respect to the inner product 〈·, ·〉 since

〈c,d〉 = 〈c ◦ e,d〉 = 〈e, c ◦ d〉 .
From its definition, it is straightforward to check that the sum of two orthogonal
idempotents is an idempotent, and that an element c is an idempotent if and only if
the element e−c is an idempotent. A complete system of orthogonal idempotents is
a set of idempotents that are pair-wise orthogonal and sum to the identity element
e. A Jordan frame is a complete system of orthogonal primitive idempotents. The
number of elements in any Jordan frame always coincide with the rank of J; see
paragraph immediately after Theorem III.1.2 of [7].
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Example A.3. For the Jordan algebra of r× r real symmetric matrices, an idem-
potent is a product PPT where the matrix P has orthogonal columns of unit length.
It is primitive if and only if it is of rank one. A complete system of orthogonal
idempotents is a p-tuple (P1P

T
1 , . . . ,PpP

T
p ) with the columns of P1, . . . ,Pp taken

from the columns of an orthogonal matrix. A Jordan frame C is then a complete
system of r orthogonal idempotents with each Pi a column-matrix.

For each x ∈ J, there exists numbers λ1 ≤ · · · ≤ λr and a Jordan frame
{c1, . . . , cr} such that x = λ1c1 + · · · + λrcr. This is known as a spectral de-
composition of type II of x; see Theorem III.1.2 of [7]. Moreover, the set of values
of λi’s (with their multiplicities) remain unchanged over all such Jordan frames.

When the primitive idempotents corresponding to the same eigenvalues are com-
bined, we have the spectral decomposition of type I : x = µ1c̃1 + · · · + µkc̃k, where
µ1 < · · · < µk are the distinct eigenvalues of x, and c̃i is the sum of the primitive
idempotents corresponding to the eigenvalue µi; see also Theorems III.1.1 [7]. This
spectral decomposition is unique.

The values λi in a type II spectral decomposition are called the eigenvalues
of x, and are denoted by λi(x), with λ1(x) ≤ · · · ≤ λr(x). In terms of the
spectral decompositions, the inverse of an invertible element x is the element
x−1 = λ1(x)−1c1 + · · · + λr(x)−1cr, and the square root of an element x in the
symmetric cone Ω(J) is the element x1/2 = λ1(x)1/2c1 + · · ·+ λr(x)1/2cr.

For an element x with the type I spectral decomposition x = µ1c1 + · · ·+ µkck,
the orthogonality of the idempotents implies that a polynomial p ∈ R[X] is in
the principle ideal generated by the minimal polynomial if and only if p(µ1) =
· · · = p(µk) = 0. Thus the minimal polynomial of an element x is t 7→ (t −
µ1) · · · (t − µk). Consequently, an element is regular if and only if it has distinct
eigenvalues. Moreover, the trace of x is the sum λ1(x) + · · · + λr(x), and its
determinant is the product λ1(x)× · · · × λr(x). The norm of an element x is then√
λ1(x)2 + · · ·+ λr(x)2. In particular, the square of the norm of an idempotent is

the number of pairwise orthogonal primitive idempotents summing up to it.
The logarithm of the determinant plays an important role in interior-point meth-

ods for symmetric cone programming: its negation serves as a barrier (called the
log-determinant barrier) for the symmetric cone Ω. We note that the gradient of
this log-determinant barrier at x ∈ Ω is −x−1, and its Hessian is P−1

x = Px−1 ; see
[7, Proposition II.3.3 and Proposition III.4.2]5.

A.2. Peirce decomposition. For any idempotent c, its Lyapunov operator Lc

can only have eigenvalues 0, 1/2 or 1; see [7, p. 62]. We denote by J(c, 0), J(c, 1/2)
and J(c, 1) the (possibly empty) eigenspaces associated with the eigenvalues 0, 1/2
and 1, respectively. Since Le is the identity map, the eigenspaces of the orthogonal
idempotents c and e− c satisfy J(c, 0) = J(e− c, 1), J(c, 1/2) = J(e− c, 1/2) and
J(c, 1) = J(e − c, 0). Recall that Lc is self-adjoint. Thus we have the orthogonal
decomposition

J = J(c, 1) + J(c, 1/2) + J(c, 0)

= J(c, 1) + J(c, 1/2) ∩ J(e− c, 1/2) + J(e− c, 1).

This is known as the Peirce decomposition of J with respect to c.

5Part (ii) of [7, Proposition III.4.2], while stated only for simple Euclidean Jordan algebras,
is in fact true for general Euclidean Jordan algebras. This follows from the fact that when a

Euclidean Jordan algebra is written as the direct sum J1⊕· · ·⊕Jκ of simple Euclidean Jordan al-

gebras, the determinant det(x1, . . . ,x(κ)) decomposes into the product det1(x1) · · · det(κ)(x(κ)) of

determinants on each component, and the quadratic representation P(x1,...,x
(κ)) is block diagonal

with the quadratic representations Px1 , . . . ,Px(κ) as the diagonal blocks.
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For simplicity of notation, we shall use Jc to denote the (nonempty) eigenspace
J(c, 1), and for each pair of orthogonal idempotents (c, c′), we shall use Jc,c′ to
denote the (nonempty) common eigenspace J(c, 1/2)∩J(c′, 1/2). The above Peirce
decomposition J = Jc + Jc,e−c + Je−c with respect to c can be generalized to one
with respect to a collection of pairwise orthogonal idempotents that sums up to the
identity element.

Theorem 12 (Peirce decomposition, cf. Theorem IV.2.1 of [7]). For each complete
system of orthogonal idempotents C = {c1, . . . , cp}, the space J decomposes into the
orthogonal direct sum

J =

p⊕
i=1

Jci ⊕
⊕
i<j

Jci,cj

in such a way that

(1) Jci is a Jordan subalgebra of J with identity element ci;
(2) the orthogonal projector onto Jci is Pci , and that onto Jci,cj is 4LciLcj ;

and
(3) for each 1 ≤ i, j, k, l ≤ p with {i, j} ∩ {k, l} = ∅,

Jci,cj ◦ Jci,cj ⊆ Jci + Jcj , Jci ◦ Jci,ck ⊆ Jci,ck ,

Jci,cj ◦ Jcj ,ck ⊆ Jci,ck , Jci,cj ◦ Jck,cl = {0}.

Proof. This theorem follows from Theorems 8 and 9 of [13], and their proofs. �

For each x ∈ J, its decomposition into x =
∑p
i=1 xci +

∑
i<j xci,cj with xci =

2Pci(x) and xci,cj = 4Lci(Lcj (x)) is called its Peirce decomposition with respect
to the complete system of idempotents {c1, . . . , cp}.

Example A.4. For the Jordan algebra of r×r real symmetric matrices, the Peirce
decomposition of a matrix X with respect to a complete system of orthogonal idem-
potents (P1P

T
1 , . . . ,PpP

T
p ) is X =

∑p
i=1 PiP

T
i XPiP

T
i +

∑
i<j PiP

T
i XPjP

T
j +

PjP
T
j XPiP

T
i .

The Peirce decomposition allows us to express the eigenvalues and eigenspaces
of the Lyapunov operator Lx in terms of the spectral decomposition of x: if x =
µ1c1 + · · · + µkck is the type I spectral decomposition of x, then the subspace
Jci,cj , if nonempty, is an eigenspace of Lx associated with the eigenvalue 1

2 (µi+µj).
Subsequently, the eigenvalues and eigenspaces of the quadratic representation Px

can be similarly obtained: the subspace Jci,cj , if nonempty, is an eigenspace of
Px associated with the eigenvalue µiµj . These observations leads to the following
lemma.

Lemma A.1 (cf. Lemma 12 of [1]). If Lx (resp., Px) and Ly (resp., Py) are
similar to each other, then x and y have the same set of eigenvalues.

Proof. In the Peirce decomposition with respect to a complete system of orthogo-
nal idempotents (c1, . . . , cp), the subspace Jci is generated by any set of orthogonal

idempotents summing up to ci, and has dimension ‖ci‖2. Thus if two Lyapunov
operators (or quadratic representations) are similar to each other, then the corre-
sponding elements share the same eigenvalues, and each eigenvalue occurs the same
number of times in each type II spectral decomposition. �

A.3. Some new results.

Lemma A.2. For each automorphism A in the identity component G of the auto-
morphism group G(Ω) of Ω and all x ∈ Ω,

− log det(Ax) = − log det(x) + cA, (Atx)−1 = A−1x−1 and PAtx = AtPxA.
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Proof. When A is a quadratic representation, the first equation follows from [7,
Proposition III.4.2]. In general, we decompose A into the product PpQ of the
quadratic representation of some p ∈ Ω and some orthogonal automorphism Q
in the identity component of G(Ω) (see [7, Theorem III.5.1]), and note that the
determinant is invariant under automorphisms of J (see [7, Theorem II.4.2]), whence
invariant under Q (see Theorem A.7). Differentiating the first equation twice gives
−At(Ax)−1 = −x−1 and AtP−1

AxA = P−1
x . Since Ω is self-dual implies that G(Ω)t =

G(Ω), the other two equations follows. �

Lemma A.3. For each x ∈ Ω and each A ∈ G satisfying Ax = e, the elements
z ∈ J and APx1/2z always have the same set of eigenvalues.

Proof. We shall show that the quadratic representations of z and APx1/2z are
similar to each other, whence by Lemma A.1, both elements have the same set of
eigenvalues. By the choice of A, APx1/2e = Ax = e. Therefore Q := APx1/2 ∈ G
is orthogonal by Theorem A.7. By Lemma A.2, PAP

x1/2z = QPzQT is similar to
Pz. �

Lemma A.4. For each A ∈ G, AAte = (Ae)2.

Proof. By Lemma A.2, AAte = APeAte = PAee = (Ae)2. �

Lemma A.5. For any A ∈ G, and any x, s ∈ Ω2, x ◦ s = e if and only if Atx ◦
A−1s = e.

Proof. Since every automorphism A decomposes into A = PpQt for some orthog-
onal automorphism Q in the identity component of G(Ω) and some p ∈ Ω (see [7,
Theorem III.5.1]), we can write Atx ◦ A−1s = QPpx ◦ QPp−1s.

From the fact that the orthogonal subgroup of G(Ω) coincides with both the
automorphism group G(J) and the stabilizer subgroup G(Ω)ci:r of the unit ci:r in
G(Ω) (see Theorem A.7), we have Atx◦A−1s = QPpx◦QPp−1s = Q(Ppx◦Pp−1s),
and subsequently, Atx ◦ A−1s = ci:r if and only if Ppx ◦ Pp−1s = e. The lemma
then follows from Lemma 28 of [1] (cf. Theorem 3.1 (i) of [19]). �

Example A.5. For the Jordan algebra of r × r real symmetric matrices, an au-
tomorphism of the cone of positive definite matrices takes the form X 7→ PXPT

for some invertible matrix P. It is in the identity component G if and only if
det(P) > 0. The first lemma specializes to the well-known facts − log det(PXPT ) =
− log det(X)−log det(P)2, (PTXP)−1 = P−1X−1P−T , and (PTXP)Y(PTXP) =
PT (X(PYPT )X)P. The second lemma follows easily from XS + SX = 2I ⇐⇒
XS = I.

A.4. Automorphisms of Euclidean Jordan algebras. In Section II.1 of [25],
it was stated without proof that if (J, ◦) is a Euclidean Jordan algebra and Ω is
its associated symmetric cone, then the stabilizer subgroup G(Ω)e of the unit e in
G(Ω) coincide with the group of automorphisms G(J) of J. Here we give a proof of
this fact.

Theorem A.6. Given a Euclidean Jordan algebra (J, ◦) with unit e and associated
symmetric cone Ω, the stabilizer subgroup G(Ω)e of the unit e in G(Ω) coincide with
the group of automorphisms G(J) of J.

Proof. Consider the inner product 〈·, ·〉 : (x,y) 7→ traceLx◦y, where Lx denotes
the linear map y 7→ x ◦ y. Let O(J) denote the orthogonal group of the Euclidean
space (J, 〈·, ·〉); i.e., O(J) = {A ∈ GL(J) : 〈Ax,Ay〉 = 〈x,y〉 ∀x,y ∈ J}.

Let ϕ be the characteristic function of Ω; i.e.,

ϕ : x ∈ Ω 7→
∫

Ω]
e−〈x,y〉dy,
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where dy denotes the Euclidean measure on (J, 〈·, ·〉). Let x] denote the negative
gradient of the logarithmic derivative of ϕ at x. We deduce from Propositions
II.3.4 and III.2.2 of [7] that expLx ∈ G(Ω). Thus by Proposition I.3.1 of [7], we
have logϕ(expLx ◦ e) = logϕ(e) − log det expLx = logϕ(e) − traceLx. Differ-
entiating this at 0 gives traceLh = −D logϕ(e)[h]. Since traceLh = 〈h, e〉 and
−D logϕ(e)[h] =

〈
e],h

〉
, it follows that e is a fixed point of the map x ∈ Ω 7→ x].

Proposition I.4.3 of [7] then states that G(Ω) ∩ O(J) = G(Ω)e.
We now show that G(J) coincides with G(Ω) ∩ O(J) = G(Ω)e. It is straightfor-

ward to check that every automorphism of J is an automorphism of Ω (which is
the interior of the cone of squares) that stabilizes the unit e. For the other direc-
tion, it suffices to show that every linear map A ∈ G(Ω) ∩ O(J) = G(Ω)e preserves
orthogonality of idempotents and maps every primitive idempotent to some prim-
itive idempotent, for if x =

∑
λici is the spectral decomposition, then we have

A(x2) = A
(∑

λ2
i ci
)

=
∑
λ2
iA(ci) = (

∑
λiA(ci))

2
= (Ax)2, whence A ∈ G(J) by

polarization. Suppose A ∈ G(Ω)∩O(J) = G(Ω)e. Two idempotents are c and d are
orthogonal if and only if 〈c,d〉 = 0. One direction of this statement follows from the
definition of 〈·, ·〉. For the other direction, suppose that c and d are two idempotents
satisfying 〈c,d〉 = 0. Since the inner product 〈·, ·〉 is associative (see Proposition
II.4.3 of [7]), Lc is self-adjoint. Proposition III.1.3 of [7] then implies that Lc is
positive semidefinite. Thus it has a self-adjoint, positive semidefinite square root

L1/2
c . Hence 0 = 〈c,d〉 =

〈
c,d2

〉
= 〈c ◦ d,d〉 = 〈Lcd,d〉 =

〈
L1/2

c d,L1/2
c d

〉
shows

that L1/2
c d = 0, whence c ◦ d = L1/2

c L1/2
c d = 0; i.e., c and d are orthogonal.

Since A is orthogonal, it follows that orthogonal idempotents remain orthogonal
under A. Proposition IV.3.2 of [7] states c is a primitive idempotent if and only if
{λc : λ ≥ 0} is an extreme ray of Ω. Since A ∈ G(Ω), it maps each extreme ray
to some extreme ray of Ω. Thus it maps each primitive idempotent c to a positive
multiple λd of some primitive idempotent d. In fact, λ must be unit since

0 < 〈d,d〉 =
〈
d2, e

〉
= 〈d, e〉 = 〈d,Ae〉 = λ−1 〈Ac,Ae〉

= λ−1 〈c, e〉 = λ−1
〈
c2, e

〉
= λ−1 〈c, c〉 = λ−1 〈Ac,Ac〉 = λ 〈d,d〉

Hence A maps each primitive idempotent to some primitive idempotent. �

The proof of the theorem shows that both G(Ω)e and G(J) coincide with certain
orthogonal subgroup of G(Ω). The next theorem gives a similar result.

Theorem A.7. Given a Euclidean Jordan algebra (J, ◦) with unit e and associated
symmetric cone Ω, the groups G(Ω)e and G(J) are both equivalent to the orthogonal
subgroup of G(Ω) under the inner product 〈·, ·〉 : (x,y) 7→ tr(x ◦ y).

Proof. Let O(Ω) denote the orthogonal subgroup of G(Ω) under 〈·, ·〉. By Propo-
sition II.4.2 of [7], if A ∈ G(J), then tr(Ax ◦ Ay) = trA(x ◦ y) = tr(x ◦ y) for all
x,y ∈ J, whence A is orthogonal. Therefore G(J) = G(Ω)e ⊆ O(Ω). According to
Proposition I.1.8 of [7] and the paragraph following it, G(Ω)e is a maximal compact
subgroup of G(Ω). Hence O(Ω) ⊆ G(Ω)e. �

Example A.6. For the Jordan algebra of r × r real symmetric matrices, an auto-
morphism of the Jordan algebra takes the form X 7→ QXQT for some orthogonal
matrix Q, which clearly stabilizes the identity I. It is also orthogonal under the
trace inner product: tr(QXQT )(QYQT ) = tr XY.
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