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Abstract. Euclidean Jordan-algebra is a commonly used tool in designing interior-
point algorithms for symmetric cone programs. T -algebra, on the other hand, has
rarely been used in symmetric cone programming. In this paper, we use both alge-
braic characterizations of symmetric cones to extend the target-following framework of
linear programming to symmetric cone programming. Within this framework, we design
an efficient algorithm that finds the analytic centers of convex sets described by linear
matrix and convex quadratic constraints.
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1. Introduction

This paper concerns the study of primal-dual interior point algorithms for linear opti-
mization problems over symmetric cones (a.k.a. symmetric cone programming). Primal-
dual interior-point algorithms—first designed for linear programming (see, e.g., [27]), and
subsequently extended to semidefinite programming (see, e.g., [26, Part II]), symmetric
cone programming (see, e.g., [20]) and, recently, homogeneous cone programming [5]—are
the most widely used interior-point algorithms in practice. At the same time, they are
able to achieve the best iteration complexity bound known to date.

The development of primal-dual algorithms for symmetric cone programming began
from two very different perspectives. Yu. Nesterov and M. Todd [20] described their algo-
rithm in the context of self-concordant barriers (see the seminal work of Yu. Nesterov and
A. Nemirovski [19]) by specializing general logarithmically homogeneous self-concordant
barriers to self-scaled barriers. L. Faybusovich [9], on the other hand, obtained his algo-
rithm by extending a primal-dual algorithm for semidefinite programming via the theory
of Euclidean Jordan algebras. This Jordan-algebraic approach had been so successful
that it is now the most common tool in designing interior-point algorithms for symmetric
cone programming [1, 2, 7, 21].

In this paper, we present, for the first time, an extension of the target-following frame-
work of linear programming to symmetric cone programming. The target-following frame-
work was first introduced by S. Mizuno [16] for linear complementarity problems, and
B. Jansen, C. Roos, T. Terlaky and J.-P. Vial [13] for linear programming as a unifying
framework for various primal-dual path-following algorithms and algorithms that find an-
alytic centers of polytopes. The essential ingredient of this framework is the target map
(x, s) 7→ (x1s1, . . . ,xnsn), defined for each pair of positive n-vectors (x, s). An important
feature of the target map is its bijectiveness between the primal-dual strictly feasible re-
gion and the cone of positive n-vectors Rn

++ [13, 15], whence identifying the primal-dual
strictly feasible region with the relatively simple cone Rn

++ known as the target space (or
v-space). Interior-point algorithms based on the target map are known as target-following
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algorithms, which are conceptually simple when viewed as following a sequence of targets
in the target space. This target map was recently extended to semidefinite program-
ming by the author [6], where the target map was proved to be a bijection between the
primal-dual strictly feasible region and the cone of positive definite matrices. See also
[17, 18, 22] for other extensions the target map to semidefinite programming, and [12]
for an extension to symmetric cone programming. It is noted here that these extensions
of the target map do not result in target-following algorithms as they are generally not
injective on the whole primal-dual strictly feasible regions.

Our target map is described with the algebraic descriptions of symmetric cone via Eu-
clidean Jordan algebras and T -algebras. T -algebras are certain non-associative algebras
discovered by È. Vinberg [24] in his attempt to classify homogeneous cones. A homoge-
neous cone K is an open convex cone whose group of automorphisms acts transitively
on it. Symmetric cones are precisely those homogeneous cones that are self-dual under
suitable choices of inner products. The complete classification of symmetric cones can
thus be obtained by classifying self-dual T -algebras [25].

This paper is organized as follows. We begin the next section with the Jordan-algebraic
and T -algebraic characterizations of symmetric cones, and the relation between these
characterizations. In Section 3, we use both algebraic characterizations to define the
notion of weighted analytic centers for symmetric cone programming. This notion allows
us to define the target map in Section 4, with which we describe and analyze a target-
following algorithm. Finally, in Section 5, we apply the target-following algorithm to the
problem of finding analytic centers of sets described by linear matrix inequalities and
convex quadratic inequalities.

2. Algebraic characterizations of symmetric cones

2.1. Jordan algebraic characterization. Let (E, 〈·, ·〉) be a Euclidean space with inner
product 〈·, ·〉.

A homogeneous cone is an open, convex cone K ∈ E whose linear automorphism group

Aut(K)
def
= {A ∈ GL(E) : A(K) = K}

acts transitively on it; i.e., ∀x,y ∈ K, ∃A ∈ Aut(K), A(x) = y. An open, convex cone
K ∈ E is said to be self-dual if its open dual cone

K] def
= {s ∈ E : 〈x, s〉 > 0 ∀0 6= x ∈ cl(K)}

coincide with K. A symmetric cone K ∈ E is a self-dual homogeneous cone.
Henceforth, K shall be a symmetric cone.
Every symmetric cone can be associated with a commutative algebra over R known as

a Jordan algebra. In short, if (J, ◦) is a Euclidean Jordan algebra, then the interior of its
cone of squares {x ◦ x : x ∈ J} is a symmetric cone, and every symmetric cone arises in
this manner. For a comprehensive discussion on the relation between symmetric cones
and Jordan algebras, we refer the reader to Chapters I–III of [8].

It is known that symmetric cones can be completely characterized as direct sums of
five classes of simple symmetric cones (see, e.g., [8, Chapter V]):

(1) the second-order cones

Qn
def
=

{
x ∈ Rn+1 : xn+1 >

√
x2

1 + · · ·+ x2
n

}
;
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(2) the cones of real, symmetric, positive definite matrices

Sn
def
=
{
x ∈ Rn×n : xT = x and vTxv > 0 ∀v ∈ Rn

}
;

(3) the cones of complex, Hermitian, positive definite matrices

Cn
def
=
{
x ∈ Cn×n : x∗ = x and v∗xv > 0 ∀v ∈ Cn

}
;

(4) the cones of Hermitian, positive definite matrices of quaternions

Hn
def
=
{
x ∈ Hn×n : x∗ = x and v∗xv > 0 ∀v ∈ Hn

}
;

(5) the cone of 3× 3 Hermitian, positive definite matrices of octonions

O3
def
=
{
x ∈ O3×3 : x∗ = x and v∗xv > 0 ∀v ∈ O3

}
.

This characterization can be deduced from the characterization of formally real Jordan al-
gebras, which was first given by P. Jordan, J. von Neumann and E. Wigner [14]. Formally
real Jordan algebras are precisely Euclidean Jordan algebras; see, e.g., [8].

2.2. T -algebraic characterization. From here on, we shall treat symmetric cones as
a subclass of homogeneous cones, and use a different algebraic characterization arising
from the study of homogeneous cones.

A matrix algebra A is a bi-graded algebra
⊕r

i,j=1 Aij over R satisfying AijAkl ⊆ δjkAil,
where δjk is the Kronecker delta symbol. The positive integer r is called the rank of the
matrix algebra. For each a ∈ A, we denote by aij its projection on Aij. An involution (·)∗
of a matrix algebra A is a linear automorphism on A that is involutory (i.e., (a∗)∗ = a),
anti-homomorphic (i.e., (ab)∗ = b∗a∗), and further satisfies A∗ij ⊆ Aji. A T -algebra of
rank r is a matrix algebra A of rank r with involution (·)∗ satisfying the following seven
axioms.

I. For each i ∈ {1, . . . , r}, the subalgebra Aii is isomorphic to the reals.
For the remaining axioms, we shall use ρi to denote the isomorphism from Aii

to R, and use ei to denote the unit of Aii. Thus aii = ρi(a)ei.
II. For each a ∈ A and each i, j ∈ {1, . . . , r},

ajiei = aji and eiaij = aij.

III. For each a,b ∈ A and each i, j ∈ {1, . . . , r},
ρi(aijbji) = ρj(bjiaij).

IV. For each a,b, c ∈ A and each i, j, k ∈ {1, . . . , r},
aij(bjkcki) = (aijbjk)cki.

V. For each a ∈ A and each i, j ∈ {1, . . . , r},
ρi(a

∗
ijaij) ≥ 0

with equality when and only when aij = 0.
VI. For each a,b, c ∈ A and each i, j, k, l ∈ {1, . . . , r} with i ≤ j ≤ k ≤ l,

aij(bjkckl) = (aijbjk)ckl.

VII. For each a,b ∈ A and each i, j, k, l ∈ {1, . . . , r} with i ≤ j ≤ k and l ≤ k,

aij(bjkb
∗
lk) = (aijbjk)b

∗
lk.
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A change in the grading of a T -algebra A is the replacement of each subspace Aij by
Aπ(i),π(j) where π is a permutation of {1, . . . , r}. An inessential change in the grading
of a T -algebra A is one that preserves the subspace of upper triangular (or equivalently,
lower triangular) elements. In other words, the permutation π in an inessential change
satisfies

(i < j) ∧ (π(i) > π(j)) =⇒ Aij = {0}.
A T -algebra A of rank r is said to be isomorphic to another T -algebra of the same rank
if, after an inessential change of grading of A, there is an isomorphism of the bi-graded
algebras with involution. The cone associated with a T -algebra A of rank r is

{tt∗ : t ∈ A, tij = 0 ∀1 ≤ j < i ≤ r, ρi(t) > 0 ∀1 ≤ i ≤ r}.
It is denoted by K(A). When we write tt∗ ∈ K(A), we always mean that t satisfies the

conditions in the definition of K(A). It was shown by È. Vinberg [24, Proposition III.2]
that such t is uniquely determined by the product tt∗; see also Propositions 2 and 3. For
each x = tt∗ ∈ K(A), we shall denote this unique t by ux.

Homogeneous cones are completely characterized by T -algebras in the following theo-
rem.

Theorem 1 (Characterization of homogeneous cones, È. Vinberg 1963). A cone is homo-
geneous if and only if it is linearly isomorphic to the cone associated with some T -algebra.
Moreover the T -algebra is uniquely determined, up to isomorphism, by the homogeneous
cone.

Proof. See Proposition 1 and Theorem 4 of [24]. �

2.2.1. Notations of T -algebras. For a T -algebra A of rank r with involution (·)∗, we shall
use the following notations.

(1) ei shall denote the unit of the subalgebra Aii and ρi shall denote the linear function
on A satisfying aii = ρi(a)ei.

(2) e shall denote the element in A satisfying eii = ei and eij = 0 for i 6= j. Axiom II
is equivalent to e being the unit of the T -algebra A.

(3) s(·) shall denote the linear function

a ∈ A 7→
r∑
i=1

ρi(a).

(4) 〈·, ·〉 shall denote the bilinear function

(a,b) ∈ A× A 7→ s(a∗b).

When restricted to Aii, (·)∗ is an involutory, anti-homomorphic, linear automor-
phism. Hence it must be the identity map. The linear function s(·) is thus
invariant under involution. Subsequently 〈·, ·〉 is symmetric. Axiom V is equiva-
lent to s(aa∗) ≥ 0 for all a ∈ A with equality when and only when a = 0. This is
further equivalent to 〈·, ·〉 being positive definite. Thus 〈·, ·〉 is an inner product

of A. We shall denote by ‖·‖ the induced Euclidean norm a 7→
√
〈a, a〉.

(5) T shall denote the subalgebra

{a ∈ A : aij = 0 (1 ≤ j < i ≤ r)}
of upper triangular elements. The associated homogeneous cone K(A) can then
be described as {tt∗ : t ∈ T, ρi(t) > 0 ∀i}.
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(6) H shall denote the subspace

{a ∈ A : aij = a∗ji (1 ≤ j < i ≤ r)}
of “hermitian” elements. We can then view the associated homogeneous cone
K(A) is as an open cone in the Euclidean space (H, 〈·, ·〉).

(7) D shall denote the subalgebra

{a ∈ A : aij = 0 (i 6= j)}
of diagonal elements (which is also T ∩ H). We use the notation D++ to denote
the subset of D consisting of those elements with ρi(a) > 0, and use the notation
D↓,++ to denote the subset of D++ consisting of those elements with ρi(a) ≥ ρj(a)
for all i ≤ j.

(8) (·)H shall denote the linear map

a ∈ A 7→ a + a∗;

i.e., twice the orthogonal projection onto H under 〈·, ·〉.
(9) 〈〈·〉〉 shall denote the linear map from A to T∗ that takes each a to the unique

lower triangular element l such that lH shares the same lower triangular part as
a.

(10) [A]` shall denote the sub-algebra
⊕`

i,j=1 Aij, and [a]` shall denote the projection

of a on [A]`. Similarly, [H]` shall denote the subspace H ∩ [A]` of “hermitian”
elements in [A]`.

2.2.2. Properties of T -algebras.

Lemma 1. For every a,b, c ∈ A, 〈ab, c〉 = 〈b, a∗c〉 and 〈ba, c〉 = 〈b, ca∗〉.

Proof. Axiom IV is equivalent to s(a(bc)) = s((ab)c) for all a,b, c ∈ A. This is further
equivalent to 〈ab, c〉 = 〈b, a∗c〉 for all a,b, c ∈ A. Together with Axiom III, we deduce
〈ba, c〉 = 〈a∗b∗, c∗〉 = 〈b∗, ac∗〉 = 〈b, ca∗〉. �

Theorem 2. The norm ‖·‖ is sub-multiplicative; i.e., ∀a,b ∈ A, ‖ab‖ ≤ ‖a‖ ‖b‖.

Proof. See proof of Theorem 2 of [5]. �

Let T∗ (resp., T+ and T++) denote the set of elements of T with nonzero (resp.,
nonnegative and positive) diagonal components.

Proposition 1. The sets T?, T++, T∗? and T∗++ are multiplicative groups.

Proof. See proof of Proposition 1 of [5]. �

We shall denote by t−1 the multiplicative inverse of each element t ∈ T?. Similarly for
elements l ∈ T∗?.

Involution is anti-homomorphic, hence the inverse of the involution of an element t ∈ T?

is the involution of its inverse, which we shall denote by t−∗. Similarly for elements l ∈ T∗?.

2.2.3. T -algebraic characterization of symmetric cones. In the special self-dual case of
simple symmetric cones, we have the following corresponding T -algebras.

• For each n ≥ 1, the matrix algebra A = A11⊕A12⊕A21⊕A22 = R⊕Rn⊕Rn⊕R
defined by

(ab)ii = aTijbji for (i, j) ∈ {(1, 2), (2, 1)}
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is a T -algebra. It is straightforward to check that the associated cone K(A) is
linearly isomorphic to the second-order cone Qn+1, and that the subspace H,
when equipped with the Jordan product1

� : (a,b) 7→ ab + ba

2
,

is a Euclidean Jordan algebra of rank 2 whose associated symmetric cone is K(A).
• Let W be a Euclidean Hurwitz algebra (i.e., R, C, H or O). We shall use <(x)

and x̄ to denote, respectively, the real part and the conjugate of x ∈W.
Let Aij = W for each i, j ∈ {1, . . . , r} with i 6= j, Aii = R for i ∈ {1, . . . , r},

and define the matrix algebra A =
⊕r

i,j=1 Aij by

(ab)ij =

{∑r
k=1<(aikbkj) if i = j,∑r
k=1 aikbkj if i 6= j,

so that it satisfies Axioms I and II in the definition of a T -algebra. It is straight-
forward to check that the unary operator (·)∗ : A→ A defined by

(a∗)ij = āji

is an involution. Moreover, Proposition V.1.2 of [8] shows that Axioms III–V are
also satisfied.

For r = 3, Axiom VI holds since at least one of aij, bjk and ckl is a real number.
Finally, Axiom VII holds since Euclidean Hurwitz algebras are alternative (i.e.,
x(xy) = (xx)y and (yx)x = y(xx), or equivalently, the sub-algebra generated by
any two elements is associative), and both x and x̄ are in the sub-algebra generated
by x − <(x) for each x ∈ W. Hence A is a T -algebra. It is straightforward to
check that the associated cone K(A) is the cone of 3 × 3 Hermitian, positive
definite matrices of W; i.e. K(A) = S3, C3, H3 and O3 when W = R, C, H
and O respectively. The algebras R, C and H are associative. Together with
Corollary V.2.6 of [8], it follows that the subspace H, when equipped with the
Jordan product �, is a Euclidean Jordan algebra of rank 3 whose associated
symmetric cone is S3, C3, H3 and O3 respectively.

For r > 3, suppose that W is associative. Then A is clearly a T -algebra. As
before, it is straightforward to check that the associated cone K(A) is the cone of
r× r Hermitian, positive definite matrices of W; i.e. K(A) = Sr, Cr and Hr when
W = R, C and H respectively. Once again, since W is associative, the subspace
H, when equipped with the Jordan product �, is a Euclidean Jordan algebra of
rank r whose associated symmetric cone is Sr, Cr and Hr respectively.

Write K as the direct sum of simple symmetric cones. Henceforth, A shall be the
direct sum of the T -algebras corresponding to these simple symmetric cones as described
above, and (J, ◦) shall be the direct sum of the corresponding Euclidean Jordan algebra
described above. It is easy to check that A is a T -algebra and J is a Euclidean Jordan
algebra. Let r be the rank of A.

Each element x of the Euclidean Jordan algebra (J, ◦) has a spectral decomposition

x =
r∑
i=1

λici,

1This gives precisely the algebra of connectedness; see, e.g., [24].
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where λ1 ≥ · · · ≥ λr are uniquely determined by x, and {c1, . . . , cr} ⊂ J forms a Jordan
frame; see Theorem III.1.2 of [8]. The coefficients λ1, . . . , λr are called the eigenvalues
of x, and they are denoted by λ1(x), . . . , λr(x). A Jordan frame is a set of primitive
idempotents that are pair-wise orthogonal and sum to the unit e. An idempotent is a
nonzero element c ∈ J satisfying c ◦ c = c, and it is said to be primitive if it cannot
be written as the sum of two idempotents. Two idempotents c and d are said to be
orthogonal if c ◦ d = 0. In terms of A, idempotents are characterized by c2 = c.

The number of elements of any Jordan frame is an invariant called the rank of the
Jordan algebra; see, e.g., paragraph after Theorem III.1.2 of [8]. By relating this to the
Carathéodory number of K, it is immediate that both A and J have the same rank; see
[10] and [23]. Alternatively, one can see this by noting that {e1, . . . , er} is a Jordan frame.

In a Euclidean Jordan algebra, we define a linear function tr(·) by tr(x) =
∑r

i=1 λi(x).
This function is called the trace.

We now show that the function tr(·) coincides with the restriction of the function s(·)
on the subspace H.

Using the sub-multiplicativity of ‖·‖, we deduce that if c is an idempotent, then ‖c‖ =

‖c2‖ ≤ ‖c‖2, whence s(c) = s(c2) = ‖c‖2 ≥ 1. In a Jordan frame {c1, . . . , cr}, we then
have r ≤ s(c1 + · · ·+ cr) = s(e) = r, whence s(c1) = · · · = s(cr) = 1. If c is a primitive
idempotent, then its spectral decomposition shows that c is a member of some Jordan
frame, whence s(c) = 1. This shows that for any x ∈ H with spectral decomposition
x =

∑
λici, s(x) =

∑
λis(c) =

∑
λi = tr(x).

2.3. Quadratic representations. In the Jordan algebra (J, ◦), the quadratic represen-
tation of each x ∈ J is defined to be the linear map

Qx : y ∈ J 7→ 2(x ◦ (x ◦ y))− (x ◦ x) ◦ y.

In terms of its T -algebra A, the quadratic representation of each x ∈ H is

y ∈ H 7→ 2

(
1

2

(
x

(
xy + yx

2

)
+

(
xy + yx

2

)
x

))
− (xx)y + y(xx)

2

=
1

2
(x(xy) + x(yx)− (xx)y)H .

We can extend the quadratic representations from H to A by defining, for each a ∈ A,

Qa : b ∈ H 7→ 1

2
(a(ab) + a(ba∗)− (aa)b)H .

The following proposition and its corollary show that the group of linear automorphisms
{Qt : t ∈ T++} forms a simply transitive subgroup of Aut(K).

Proposition 2. For each t ∈ T, the map Qt simplifies to

a 7→ t(〈〈a〉〉t∗) + (t〈〈a〉〉∗)t∗.
If, in addition, a = uu∗ for some u ∈ T, then

Qt(uu∗) = (tu)(tu)∗.

Proof. See proof of Proposition 2 of [5]. �

Corollary 1. The map t 7→Qt is a group homomorphism on T++.

Proof. See proof of Corollary 1 of [5]. �
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2.3.1. Properties of quadratic representations. Quadratic representations will be used in
the description and analysis of the target-following algorithm in Section 4.1. We now list
a few useful properties of quadratic representations.

Proposition 3. For each u ∈ T++, the map

t ∈ T++ 7→Qt(uu∗)

is a diffeomorphism. Moreover its derivative at t ∈ T++ is

w ∈ T 7→ (tu)(wu)∗ + (wu)(tu)∗

and the derivative of its inverse map at Qt(uu∗) ∈ K is

a ∈ H 7→ tu〈〈Q(tu)−1(a)〉〉∗u−1.

Proof. See proof of Proposition 3 of [5]. �

Proposition 4. For each (x1, . . . ,xr) ∈ [A]1 × · · · × [A]r, and any t ∈ T,

(2.1)
r∑
`=1

Q[t]`(x`) = Qt

(
r∑
`=1

x`

)
.

Proof. Since tik(x`)kj = 0 whenever i > ` or k > `, it follows that [t]`x` = tx`, whence

(2.2)
r∑
`=1

[t]`x` = t

(
r∑
`=1

x`

)
.

The proposition then follows from Proposition 2. �

Proposition 5. For each t ∈ T, the operator norm of Qt is at most
√

2 ‖t‖2.

Proof. For every a ∈ H, applying the simplification in Proposition 2, the triangle in-
equality for ‖·‖ and Axiom III gives ‖Qta‖ ≤ 2 ‖t(〈〈a〉〉t∗)‖. Together with the sub-

multiplicativity of ‖·‖, we then get ‖Qta‖ ≤ 2 ‖〈〈a〉〉‖ ‖t‖2. Now

(2.3) ‖〈〈a〉〉‖2 =
∑
j<i

aija
∗
ij +

r∑
i=1

1

4
ρi(a)2 ≤ 1

2

(∑
j 6=i

aija
∗
ij +

r∑
i=1

ρi(a)2

)
=

1

2
‖a‖2

proves the proposition. �

2.4. Dual cones. Using Axiom IV and Lemma 1, it is straightforward to check that the
adjoint map Q∗a of the quadratic representation of an element a ∈ A is the quadratic
representation Qa∗ of its involution. This observation can be used to derive the following
description of the cone K] .

Proposition 6. The dual cone K] is given by {ll∗ : l ∈ T∗++}. The group of automor-
phisms {Qt : t ∈ T∗++} acts transitively on K].

Proof. See Proposition 4 of [5]. �

Proposition 7. The matrix algebra B obtained from A by the change in grading

Bij = Ar+1−i,r+1−j (1 ≤ i, j ≤ r)

is a T -algebra whose associated cone K(B) is exactly the dual cone K].

Proof. See paragraph before Proposition 5 of [5]. �
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This proposition, together with Proposition III.2 of [24], implies that every element
s ∈ K] can be uniquely written as the product ll∗ with l ∈ T∗++. We denote this unique
l by ls.

Since K is self-dual, the above argument applies to K. In other words, every element
x in the symmetric cone K has a Cholesky factorization, as well as an inverse Cholesky
factorization.

3. Weighted analytic centers

We consider the following pair of primal-dual symmetric cone programming problems:

inf{〈c,x〉 : 〈ak,x〉 = bk, 1 ≤ k ≤ m, x ∈ cl(K)}(3.1a)

and

sup

{
m∑
k=1

bkyk :
m∑
k=1

ykak + s = c, s ∈ cl(K])

}
,(3.1b)

where a1, . . . , am, c ∈ A and b1, . . . , bm ∈ R are given. Let Fp (resp., F◦p ) denotes the
primal feasible (resp., strictly feasible) region, and let Fd (resp., F◦d ) denotes the dual
counterpart.

Without any loss of generality, we may assume that the vectors a1, . . . , am are linearly
independent. With this assumption, (y1, . . . , ym) is uniquely determined by each feasible
s. Henceforth, we shall use only the s-component when referring to a feasible solution in
Fd.

A necessary assumption in any primal-dual interior-point algorithm is the existence of
primal-dual strictly feasible solutions (x̂, ŝ); i.e., F◦p ×F◦d ⊃ {(x̂, ŝ)} is nonempty.

In the special case of semidefinite programming, where K = Sn, the author [4] defined
primal-dual weighted analytic centers of (3.1) to be pairs of solutions to the primal-dual
weighted barrier problem

inf
(x,s)∈F◦p×F◦d

−
n∑
i=1

wi log(uQx)2
ii −

n∑
i=1

wi log(lQs)
2
ii + 〈x, s〉

over all orthonormal similarity transformations Q : Sn 7→ Sn and all n-tuples w =
(w1, . . . , wn) ∈ Rn

++. We generalize this to symmetric cone programming by replacing
the orthonormal similarity transformation Q with maps A from the orthogonal subgroup
of Aut(K). Theorem A.2 states that such maps are precisely automorphisms of J; i.e.,
bijective homomorphisms of the algebra J to itself. We shall denote by Aut(J) the group
of automorphisms of J. This gives the primal-dual weighted barrier problem

(BPA,w) inf
(x,s)∈F◦p×F◦d

−
r∑
i=1

wi log ρi(uAx)2 −
r∑
i=1

wi log ρi(lAs)
2 + 〈x, s〉 .

The barrier problem (BPA,w) has optimal solutions as the objective is continuous, and
the set of feasible solutions with values no more than that of (x̂, ŝ) is compact. Indeed,
at least one of the logarithmic terms explode to ∞ when x (resp., s) approaches the
boundary of K (resp., K]), while the linear term explode to∞ faster than all logarithmic
terms in magnitude when either x or s (or both) grows without bound.
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Using Proposition 3, we deduce that the derivative of x ∈ K 7→ ux is a ∈ H 7→
ux〈〈Quxa〉〉∗. Hence the primal weighted barrier x 7→ −

∑
wi log ρi(uAx)2 has deriva-

tive a ∈ H 7→ −
∑
wiρi(Qu−1

Ax
Aa). Its gradient is thus −A∗Qu−∗Ax

d, where d is the

diagonal element with ρi(d) = wi. Similarly, the gradient of the dual weighted barrier
s 7→ −

∑
wi log ρi(lAs)

2 is −A−1Ql−∗As
d. Thus the necessary and sufficient optimality

conditions for (BPA,w) are

(CPA,d)

〈ak,x〉 = bk (k = 1, . . . ,m), x ∈ K,
m∑
k=1

ykak + s = c, s ∈ K] ,

Ql∗As
Ax = d.

The next theorem shows that (BPA,w) has a unique pair of optimal solutions2, whence
so does (CPA,d). We call them the weighted analytic centers determined by (A,d) ∈
Aut(J)×D++.

Theorem 3 (cf. Proposition 2.9 of [3]). The primal and dual weighted barriers

x 7→ −
∑

wi log ρi(uAx)2 and s 7→ −
∑

wi log ρi(lAs)
2,

where A ∈ Aut(J) and (w1, . . . , wn) ∈ Rn
++, are strictly convex.

Proof. We prove the theorem for the primal weighted barrier, and remark that the dual
weighted barrier is proved similarly.

From Proposition 2, the derivative of t ∈ T++ 7→ Qta for each a ∈ H is u ∈ T 7→
(t(〈〈a〉〉u∗) + u(〈〈a〉〉t∗))H = (t(〈〈a〉〉u∗) + (t〈〈a〉〉∗)u∗)H . By differentiating tt−1 = e im-
plicitly, we find that the derivative of t ∈ T++ 7→ t−1 is u ∈ T 7→ −t−1ut−1. Recall that
the derivative of x ∈ K 7→ ux is a ∈ H 7→ ux〈〈Quxa〉〉∗. Thus the second derivative of the
primal weighted barrier is

(a,b) ∈ H2 7→
r∑
i=1

wiρi

(
u−1

Ax(〈〈Aa〉〉[u−1
Ax(uAx〈〈Qu−1

Ax
Ab〉〉∗)u−1

Ax ]∗)

+ (u−1
Ax〈〈Aa〉〉∗)[u−1

Ax(uAx〈〈Qu−1
Ax

Ab〉〉∗)u−1
Ax ]∗

)
H

Using Axioms VI and IV, we can simply the expression in the parentheses to

((u−1
Ax(〈〈Aa〉〉u−∗Ax))〈〈Qu−1

Ax
Ab〉〉+ ((u−1

Ax〈〈Aa〉〉∗)u−∗Ax)〈〈Qu−1
Ax

Ab〉〉)H .

By Proposition 2, this is the same as ((Qu−1
Ax

Aa)〈〈Qu−1
Ax

Ab〉〉)H . Therefore the second

derivative is

(a,b) 7→
〈
d, (Qu−1

Ax
Aa)〈〈Qu−1

Ax
Ab〉〉+ 〈〈Qu−1

Ax
Ab〉〉∗(Qu−1

Ax
Aa)

〉
,

which, by Lemma 1, can be simplified to

(a,b) 7→
〈
Qu−1

Ax
Aa, (d〈〈Qu−1

Ax
Ab〉〉∗)H

〉
.

For each 0 6= a ∈ H, 〈a, (d〈〈a〉〉∗)H〉 =
∑r

i=1wiρi(a)2 + 2
∑

1≤i<j≤r wi ‖aij‖
2 > 0. Hence

the primal weighted barrier is strictly convex. �

2This also follows from the fact that the weighted logarithmic barriers are self-concordant barriers
whenever the weights are at least 1; see Corollary 2.2 of [3].
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Having defined weighted analytic centers for the symmetric cone programs (3.1), we
now show that every pair of primal-dual strictly feasible solutions to (3.1) is a pair of
weighted analytic centers. The following lemma will be useful.

Lemma 2. For every A ∈ Aut(J) and every t ∈ T++, there exist a unique Ã ∈ Aut(J)

and a unique t̃ ∈ T++ such that AQt = Qt̃Ã. Moreover, for each d ∈ D↓,++, A
stabilizes d if and only if Ã does.

Proof. (Existence) Let t̃ = uA(tt∗) ∈ T++, and let Ã = Q−1

t̃
AQt. Since Ãe =

Q−1

t̃
A(tt∗) = Qu−1

A(tt∗)
A(tt∗) = e, we have Ã ∈ Aut(K)e. By continuity, we further

have Ã ∈ Aut(K)e, whence Ã ∈ Aut(J) by Theorem A.1.
(Uniqueness) By Theorem A.1, Aut(J)∩{Qu : u ∈ T++} = Aut(K)e∩{Qu : u ∈ T++}.

By Proposition 2, Que = uu∗ for every u ∈ T++. We then deduce from Proposition 3
that Aut(J) ∩ {Qu : u ∈ T++} = {Qe}, whence uniqueness follows.

(Moreover) Recall that {e1, . . . , er} is a Jordan frame. Under this Jordan frame, We
have the Pierce decomposition J =

⊕
1≤i≤j≤r Jij, where Jii denotes the 1-eigenspace Aii

of ei, and Jij denotes the common 1
2
-eigenspace Aij⊕Aji of ei and ej; see Theorem IV.2.1

of [8]. Let JI denote the sub-algebra
⊕

i,j∈I:i≤j Jij =
⊕

i,j∈I Aij, and let eI denote the

unit
∑

i∈I ei in the sub-algebra JI for each subset I ⊆ {1, . . . , r}. Define the equiva-
lence relation iRj : ρi(d) = ρj(d). Let L1, . . . ,Lp denote its equivalence classes with
L1 < · · · < Lp. The sub-algebra generated by d is then

⊕p
k=1 ReLk . An automorphism

stabilizes d if and only if it stabilizes every element of this sub-algebra. In other words,
an automorphism stabilizes d if and only if it stabilizes every eLk . If an automorphism
A stabilizes every eLk , then it is an endomorphism on the 1-eigenspace JL≤k of every

eL≤k , where L≤k denotes the index set
⋃k
`=1 L`, as Ax ◦ eLk = Ax ◦AeLk = A (x ◦ eLk).

Conversely, any automorphism that is an endomorphism on the sub-algebras JL≤k must
stabilizes its unit eL≤k , whence every eLk = eL≤k − eL≤k−1. Hence an automorphism
stabilizes d if and only if it is an endomorphism on every JL≤k . It is straightforward to
deduce from the definition of quadratic representations that each map in {Qu : u ∈ T}
is an endomorphism on JL≤k . Thus the map Ã = Q−1

t̃
AQt is an endomorphism on JL≤k

if and only if A is. Consequently Ã = Q−1

t̃
AQt stabilizes d if and only if A does. �

Theorem 4. Given any pair of primal-dual strictly feasible solutions (x, s) to (3.1), there
exists an automorphism A ∈ Aut(J) and weights (w1, . . . , wn) ∈ Rn

++ such that (x, s) is
the unique solution to (BPA,w).

Proof. Uniqueness have been established. It remains to find automorphism A ∈ Aut(J)
and weights (w1, . . . , wn) ∈ Rn

++ such that (x, s) ∈ F◦p × F◦d solves (CPA,d) with d ∈ D

such that ρi(d) = wi.
Consider a spectral decomposition Ql∗sx =

∑r
i=1 λi(Ql∗sx)ci. Let d denote the element∑r

i=1 λi(Ql∗sx)ei ∈ D↓,++. According to Theorem IV.2.5 of [8], there exists an (not
necessarily unique) automorphism A ∈ Aut(J) such that Aci = ei. Then AQl∗sx = d.

Lemma 2 shows that there exists a unique automorphism Ã ∈ Aut(J) satisfying AQl∗s =

Qt̃Ã for some t̃ ∈ T++.

Observe that Ãs = Ã
−∗

s = Q∗
t̃
A−∗Q−∗l∗s

s = Qt̃
∗AQl−1

s
s = Qt̃

∗Ae = Qt̃
∗e and

Ãx = Q−1

t̃
AQl∗sx = Q

t̃
−1d, where we have used the fact that A is orthogonal; see

Theorem A.1. Subsequently Ql∗
Ãs

Ãx = Qt̃Qt̃
−1d = d as required. �
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3.1. Approximating weighted analytic centers. Given A ∈ Aut(J) and d ∈ D↓,++,
consider the problem of approximating the weighted analytic centers determined by
(CPA,d). We shall employ Newton’s method to approximate the weighted centers.

Suppose we begin with a pair of solutions (x+, s+) ∈ F◦p ×F◦d . Linearizing (CPA,d) at
(x+, s+) using Proposition 3 gives

〈ak,∆x〉 = 0 (k = 1, . . . ,m),(3.2a)
m∑
k=1

∆ykak + ∆s = 0,(3.2b)

Ql∗As+
A∆x +

(
v〈〈Ql−1

As+

A∆s〉〉
)
H

= d− v,(3.2c)

where v denotes Ql∗As+
Ax+. Solving this linear system for (∆x,∆s) gives the next pair

of iterates (x+ + ∆x, s+ + ∆s).
We shall briefly show that this linearization has a unique pair of solutions (∆x,∆s)

under some assumption on the proximity of Ql∗As+
Ax+ to d.

We shall use ∆x̃ and ∆s̃ to denote Ql∗As+
A∆x and Ql−1

As+

A∆s, respectively. This

simplifies the above linear system to

〈ãk,∆x̃〉 = 0 (k = 1, . . . ,m),(3.3a)
m∑
k=1

∆yk ãk + ∆s̃ = 0,(3.3b)

∆x̃ + (v〈〈∆s̃〉〉)H = d− v,(3.3c)

where ãk denotes Ql−1
As+

Aak.

For each ` ∈ {1, . . . , r}, let π` denote the difference ρ`(d)−ρ`+1(d), with the convention
ρr+1 ≡ 0. Let L denote the set {` : π` > 0} of indices of distinct weights. Now consider
the linear system

n∑
`=1

π` 〈[ãk]`,∆x̃,`〉 = 0 (k = 1, . . . ,m),(3.4a)

m∑
k=1

∆yk ãk + ∆s̃ = 0,(3.4b)

∆x̃,` + ([z]`〈〈[∆s̃]`〉〉)H = [e− z]` (` ∈ L),(3.4c)

where z denotes (d−1〈〈v〉〉)H . By (2.2), the weighted sum of the equations in (3.4c), with
weights {π`}`∈L, is precisely (3.3c) with ∆x̃ =

∑r
`=1 π`∆x̃,`. Hence

(1) if (∆x̃,`, ` ∈ L; ∆s̃) is a solution of the system (3.4), then the pair (∆x̃,∆s̃) with
∆x̃ =

∑r
`=1 π`∆x̃,` is a solution of (3.3);

(2) conversely, if (∆x̃,∆s̃) is a solution of (3.3), then the tuple (∆x̃,`, ` ∈ L; ∆s̃) with
∆x̃,` = [e− z]l − ([z]l〈〈[∆s̃]l〉〉)H is a solution of (3.4).

Thus, the existence and uniqueness of solutions to (3.3) (whence (3.2)) is equivalent to
that of (3.4). The linear system (3.4) is square. Hence it has unique solutions if and
only if its Jacobian is nonsingular. The following proposition shows that this holds when∥∥∥(d−1〈〈Ql∗As+

Ax+〉〉)H − µe
∥∥∥ < µ/

√
2 for some µ > 0.
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Proposition 8 (cf. Proposition 9 of [5]). Suppose {π`}`∈L is a finite sequence of positive
real numbers, where the index set L ⊆ {1, . . . , r} is nonempty. Suppose further z ∈ K
satisfies

(3.5) ‖z− µe‖ ≤ γµ

for some γ ∈ (0, 1/
√

2) and some µ > 0. If ∆x̃,` ∈ [H]`, (` ∈ L) and ∆s̃ ∈ H satisfy

(3.6)
∑
`∈L

π` 〈∆x̃,`, [∆s̃]`〉 ≥ 0

and

(3.7) ∆x̃,` + ([z]`〈〈[∆s̃]`〉〉)H = h` (` ∈ L)

for some h` ∈ [H]`, (` ∈ L), then

(3.8) max

{∑
`∈L

π` ‖∆x̃,`‖2 , µ2
∑
`∈L

π` ‖[∆s̃]`‖2
}
≤
∑

`∈L π` ‖h`‖
2

(1−
√

2γ)2
.

Proof. If (3.6) holds, then each summand in
∑

`∈L π` ‖∆x̃,` + µ[∆s̃]`‖2 is no less than the

corresponding summand in
∑

`∈L π`
(
‖∆x̃,`‖2 + µ2 ‖[∆s̃]`‖2

)
, which in turn upper bounds

the left hand side of (3.8). If the hypothesis (3.7) holds, then

‖∆x̃,` + µ[∆s̃]`‖ ≤ ‖∆x̃,` + ([z]`〈〈[∆s̃]`〉〉)H‖ + ‖(([z]` − µ[e]`)〈〈[∆s̃]`〉〉)H‖
≤ ‖h`‖ + 2 ‖[z− µe]`〈〈[∆s̃]`〉〉‖ ,

where we used the triangle inequality on ‖·‖. Applying the sub-multiplicativity of the

norm ‖·‖ and (2.3) then gives ‖∆x̃,` + µ[∆s̃]`‖ ≤ ‖h`‖+
√

2 ‖[z− µe]`‖ ‖[∆s̃]`‖. For each
` ∈ L, it is clear that ‖[z− µe]`‖ ≤ ‖z− µe‖. Hence using (3.5), we further deduce that

‖∆x̃,` + µ[∆s̃]`‖ ≤ ‖h`‖ +
√

2γµ ‖[∆s̃]`‖, and subsequently
∑

`∈L π` ‖∆x̃,` + µ[∆s̃]`‖2 is
bounded from above by

∑
`∈L

π`

(
‖h`‖ +

√
2γµ ‖[∆s̃]`‖

)2

≤

√∑
`∈L

π` ‖h`‖2 +
√

2γµ

√∑
`∈L

π` ‖[∆s̃]`‖2
2

where we have used the triangle inequality on the 2-norm of RL. Consequently under the
hypotheses of the proposition,

max

{∑
`∈L

π` ‖∆x̃,`‖2 , µ2
∑
`∈L

π` ‖[∆s̃]`‖2
} 1

2

≤
√∑

`∈L

π` ‖h`‖2 +
√

2γµ

√∑
`∈L

π` ‖[∆s̃]`‖2

≤
√∑

`∈L

π` ‖h`‖2 +
√

2γmax

{∑
`∈L

π` ‖∆x̃,`‖2 , µ2
∑
`∈L

π` ‖[∆s̃]`‖2
} 1

2

,

which proves the proposition. �

Corollary 2. If
∥∥(d−1〈〈v〉〉)H − µe

∥∥ < µ/
√

2 for some µ > 0, then the linear system
(3.2) with v = Ql∗As+

Ax+ has a non-singular Jacobian. Consequently it has a unique

pair of solutions (∆x,∆s).
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For the analysis of Newton’s method, we shall use the function

(3.9) d : (x, s) ∈ H×K] 7→

(
r∑

i,j=1

ρi∨j(d)

ρr(d)

∥∥ρi∨j(d)−1(Ql∗As
Ax)ij − eij

∥∥2

) 1
2

,

where i∨ j denotes max{i, j}, to measure the proximity of the pair (x, s) to the solutions
of (CPA,d). Note that

(3.10) d(x+, s+) = ρr(d)−
1
2

(∑
`∈L

π`
∥∥[(d−1〈〈v〉〉)H − e]`

∥∥2

) 1
2

,

where, as before, v = Ql∗As+
Ax+, π` = ρ`(d)− ρ`+1(d) and L = {` : π` > 0}.

Since ρi∨j(d) ≥ ρr(d), the measure d(x+, s+) dominates
∥∥(d−1〈〈v〉〉)H − e

∥∥. Hence
Corollary 2 concludes that (3.2) has unique solutions if d(x+, s+) ≤ γ for some γ ∈
(0, 1/

√
2).

For each α ∈ R, let x̃α and s̃α denote, respectively, the sums v + α∆x̃ and e + α∆s̃.
Then (x̃α, s̃α) ∈ K×K] if and only if (x+ +α∆x, s+ +α∆s) ∈ K×K] . Moreover, in this
case it holds d(x+ + α∆x, s+ + α∆s) = d(x̃α, s̃α). Thus we consider d(x̃α, s̃α) instead.

We shall use the following lemma to give an upper bound on d(x̃α, s̃α). This lemma gen-
eralizes the local Lipschitz constant of Cholesky factorization of real symmetric matrices
near the identity matrix.

Lemma 3. If h ∈ H satisfies ‖h‖ ≤ 1/2, then

‖le+h − e‖ ≤
√

2 ‖h‖ .

Proof. See proof of Lemma 1 of [5]. �

Lemma 4. Suppose d(x+, s+) ≤ γ for some γ ∈ (0, 1/
√

2). Then s̃α ∈ K] and

(3.11) d(x̃α, s̃α) ≤ (1− α)γ + α2γ
2(4 + 2

√
2 + 4

√
2γ)

(1−
√

2γ)2
+ α3 2

√
2γ3

(1−
√

2γ)3

whenever 0 ≤ α ≤ min{1, (1−
√

2γ)/(2γ)}.

Proof. Let {∆x̃,`}`∈L be the vectors that satisfy
∑

`∈L π`∆x̃,` = ∆x̃, and, together with

∆s̃, solve (3.4). According to Proposition 8, if γ < 1/
√

2, then the sums
∑

`∈L π` ‖∆x̃,`‖2

and
∑

`∈L π` ‖[∆s̃]`‖2 are both bounded from above by
∑

`∈L π` ‖[e− z]`‖2 /(1 −
√

2γ)2.
Recall from (3.10) that the sum in this upper bound is precisely ρr(d)d(x+, s+)2, which
is no more than ρr(d)γ2. We have thus established that

(3.12)
∑
`∈L

π` ‖∆x̃,`‖2 ,
∑
`∈L

π` ‖[∆s̃]`‖2 ≤
ρr(d)γ2

(1−
√

2γ)2
.

Moreover, since
∑

`∈L π` ‖[∆s̃]`‖2 ≥ πr ‖[∆s̃]r‖2 = ρr(d) ‖∆s̃‖2, it holds

(3.13) ‖[∆s̃]`‖ ≤ ‖∆s̃‖ ≤
γ

1−
√

2γ
∀` ∈ L.

Subsequently, for every u ∈ T+ \ {0}, by Cauchy-Schwarz inequality, |〈∆s̃,uu∗〉| ≤
‖∆s̃‖ ‖u‖2 ≤ ‖u‖2 γ/(1−

√
2γ), which imply, by definition of K] , that s̃α ∈ K] for every

α ∈ [0, (1−
√

2γ)/(2γ)].
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For each ` ∈ L, let x̃α,` denote the sum [z]` + α∆x̃,`. Then

(3.14)
∑
`∈L

π`x̃α,` = x̃α.

It suffices to demonstrate the same upper bound in (3.11) on(
ρr(d)−1

∑
`∈L

π`
∥∥Q[ls̃α ]∗`

x̃α,` − [e]`
∥∥2

) 1
2

.

Indeed, since

∑
`∈L

π`
∥∥Q[ls̃α ]∗`

x̃α,` − [e]`
∥∥2

=
∑
`∈L

π`
∑̀
i,j=1

∥∥(Q[ls̃α ]∗`
x̃α,`)ij − eij

∥∥2

=
r∑

i,j=1

∑
`∈L
`≥i∨j

π`
∥∥(Q[ls̃α ]∗`

x̃α,`)ij − eij
∥∥2
,

we have, by Cauchy’s inequality, that
∑

`∈L π`
∥∥Q[ls̃α ]∗`

x̃α,` − [e]`
∥∥2

upper bounds

r∑
i,j=1

∑
`∈L
`≥i∨j

π`


−1∑

`∈L
`≥i∨j

π`
∥∥(Q[ls̃α ]∗`

x̃α,`)ij − eij
∥∥


2

,

which, by (2.1), (3.14) and the triangle inequality on ‖·‖, is the same as

r∑
i,j=1

ρi∨j(d)−1
∥∥∥(Q[ls̃α ]∗`

x̃α
)
ij
− ρi∨j(d)eij

∥∥∥2

= ρr(d)d(x̃α, s̃α)2.

For each ` ∈ L, let lα,` denote the lower triangular element [ls̃α − e]` = l[e]`+α[∆s̃]` − [e]`,

which is well-defined when α ∈ [0, (1−
√

2γ)/(2γ)]. Similar to the proof of [5, Lemma 2],
we can use Proposition 2, (3.3c) and the triangle inequality on ‖·‖ to show that∥∥[Q[ls̃α ]∗`

x̃α,` − [e]`
∥∥

≤ (1− α) ‖[z− e]`‖ +
∥∥lα,`l∗α,`∥∥ + 2

∥∥([z− e]`)〈〈lα,`l∗α,`〉〉
∥∥

+ 2α ‖∆x̃,`lα,`‖ +
∥∥l∗α,`lα,`∥∥ +

∥∥∥Ql∗α,`
([z− e]`)

∥∥∥ + α
∥∥∥Ql∗α,`

(∆x̃,`)
∥∥∥ .

Lemma 3 states that ‖lα,`‖ is no more than
√

2α ‖[∆s̃]`‖ whenever 0 ≤ α ≤ (1 −√
2γ)/(2γ). This upper bound, together with the sub-multiplicativity of ‖·‖, the sub-

multiplicativity of ‖·‖, the inequality (2.3) and Proposition 5, implies that for 0 ≤ α ≤
(1−

√
2γ)/(2γ),

∥∥[Q[ls̃α ]∗`
x̃α,` − e]`

∥∥ is bounded from above by

(1− α) ‖[z− e]`‖ + 4α2 ‖[∆s̃]`‖2 + 4
√

2α2 ‖[z− e]`‖ ‖[∆s̃]`‖2

+ 2
√

2α2 ‖∆x̃,`‖ ‖[∆s̃]`‖ + 2
√

2α3 ‖∆x̃,`‖ ‖[∆s̃]`‖2 .
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Using the triangle inequality on the 2-norm of RL, we can then bound the expression(∑
`∈L π`

∥∥[Q[ls̃α ]∗`
x̃α,` − e]`

∥∥2
) 1

2
from above by the sum

(1− α)

(∑
`∈L

π` ‖[z− e]`‖2
) 1

2

+ 4α2

(∑
`∈L

π` ‖[∆s̃]`‖4
) 1

2

+ 4
√

2α2

(∑
`∈L

π` ‖[z− e]`‖2 ‖[∆s̃]`‖4
) 1

2

+ 2
√

2α2

(∑
`∈L

π` ‖∆x̃,`‖2 ‖[∆s̃]`‖2
) 1

2

+ 2
√

2α3

(∑
`∈L

π` ‖∆x̃,`‖2 ‖[∆s̃]`‖4
) 1

2

.

It remains to bound each of these five summands.
By (3.10), the first summand is (1−α)ρr(d)

1
2d(x+, s+). Using the upper bound (3.13),

we can bound the remaining four summands from above by

4α2γ

1−
√

2γ

(∑
`∈L

π` ‖[∆s̃]`‖2
) 1

2

,
4
√

2α2γ2

(1−
√

2γ)2

(∑
`∈L

π` ‖[z− e]`‖2
) 1

2

,

2
√

2α2γ

1−
√

2γ

(∑
`∈L

π` ‖∆x̃,`‖2
) 1

2

and
2
√

2α3γ2

(1−
√

2γ)2

(∑
`∈L

π` ‖∆x̃,`‖2
) 1

2

,

respectively. Finally, the lemma follows from the hypothesis d(x+, s+) ≤ γ and the
inequality (3.12). �

The next theorem states that the region of quadratic convergence for Newton’s method
contains all pairs of solutions (x, s) ∈ F◦p ×F◦d satisfying d(x, s) ≤ γ, when γ is no more

than, say, 1
11

.

Theorem 5. If Newton’s method is applied to solve the nonlinear system (CPA,d) starting

from initial iterates (x, s) ∈ F◦p ×F◦d satisfying d(x, s) ≤ γ for some γ ∈ (0, 1/
√

2) with

(3.15) γκ ≤ 1,

where the function d is the proximity measure defined in (3.9) and κ denotes the sum
(4 + 2

√
2 + 4

√
2γ)/(1−

√
2γ)2 + 2

√
2γ/(1−

√
2γ)3, then an infinite sequence of iterates

{(xk, sk)} is generated, and the iterates satisfy d(xk+1, sk+1) ≤ κd(xk, sk)
2 ≤ γ.

Proof. We shall prove the theorem by induction on k.
Let γk = d(xk, sk). If (3.15) holds with γ ∈ (0, 1/

√
2), then (1 −

√
2γk)/(2γk) > 1 as

γk ≤ γ. Hence we deduce from Corollary 2 that the search directions (∆x,∆s) are well
defined, and from Lemma 4 that sk + α∆s ∈ K] and

d(xk + α∆x, sk + α∆s) ≤ (1− α)γk + α2γ
2
k(4 + 2

√
2 + 4

√
2γk)

(1−
√

2γk)2
+ α3 2

√
2γ3

k

(1−
√

2γk)3

for all α ∈ [0, 1]. In particular, sk+1 ∈ K] and d(xk+1, sk+1) ≤ κγ2
k ≤ γ under the

hypothesis of the theorem. Subsequently, ‖z− e‖ ≤ d(xk+1, sk+1) < 1, where z denotes
(d−1〈〈Ql∗Ask+1

Axk+1〉〉)H , shows that z ∈ K. This means Ql∗Ask+1
Axk+1 =

∑r
`=1(ρ`(d)−

ρ`+1(d))[z]` ∈ K as K is a convex cone, whence (xk+1, sk+1) ∈ K ×K] . �
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4. Target Map

In linear programming (LP), target-following algorithms are based on the fact that the
map (x, s) 7→ xs sending each pair of strictly feasible primal-dual solutions to the positive
vector of their component-wise product is bijective; see [15]. This map is commonly known
as the target map. The target map was extended to semidefinite programming (SDP) by
the author [4] and proved to be a bijection between the set of strictly feasible primal-dual
solutions and the cone of symmetric positive definite matrices. In this section, we further
extend the target map to symmetric cone programming, and show that it is a bijection.

For each pair (x, s) ∈ K×K] , let A(x, s) denote the set of automorphisms A ∈ Aut(J)
satisfying Ql∗As

Ax ∈ D↓,++. Theorem 4 implies that A(x, s) is nonempty. With this set
A(x, s), we define the target map T : F◦p ×F◦d → K by

(4.1) T : (x, s) 7→ A∗QlAs
Ax,

where A ∈ A(x, s) is arbitrary. We shall briefly show that T is well-defined via the
following characterization of A(x, s).

Lemma 5. Suppose (x, s) ∈ K × K] and Â ∈ A(x, s). Denote Ql∗
Âs

Âx by d. Then

A(x, s) = {ÃÂ ∈ Aut(J) : Ãd = d}. Moreover, Ql∗As
Ax = d for all A ∈ A(x, s).

Proof. Let t̂ denote l∗Âs
, and let Ã ∈ Aut(J) be arbitrary. By Lemma 2, there exists

an automorphism A ∈ Aut(J) that satisfies ÃQ
t̂
−1 = Qt−1A−1 for some t ∈ T++.

By Theorem A.2, ÃÂs = ÃQt̂
∗e = Qt∗A−1e = Qt∗e and ÃÂx = ÃQ

t̂
−1Qt̂Âx =

Qt−1A−1d, whence Ql∗
ÃÂs

ÃÂx = QtQt−1A−1d = A−1d. Consequently Ql∗
ÃÂs

ÃÂx ∈
D↓,++ if and only if A stabilizes d. By Lemma 2, this holds if and only if Ã stabilizes
d. �

If A1,A2 ∈ A(x, s), then the previous lemma implies that A2A−1
1 stabilizes d. By

Theorem A.2, A∗1d = A∗2A2A−1
1 d = A∗2d shows that the target map is well-defined.

Theorem 6. For the primal-dual symmetric cone programming problems (3.1), where K
is the symmetric cone associated with the simple Euclidean Jordan algebra J, the target
map T in (4.1) is a bijection between F◦p ×F◦d and K.

Proof. Given w ∈ K, let w =
∑r

i=1 λici be a spectral decomposition with λ1 ≥ · · · ≥ λr >
0. Let d denote the diagonal element in D↓,++ with ρi(d) = λi. Pick any automorphism

A ∈ Aut(J) such that ci = A∗ei. Then T (x, s) = w if and only if there exists Â ∈
A(x, s) and Â

∗
Ql∗

Âs
Âx = A∗d. Since A∗d is the spectral decomposition of w, it follows

that Ql∗
Âs

Âx ∈ D↓,++ and Â
∗
Ql∗

Âs
Âx = A∗d if and only if Ql∗

Âs
Âx = d and Â

−∗
A∗

stabilizes d. By Theorem A.2 and Lemma 5, such automorphism Â exists if and only
if Ql∗As

Ax = d. This holds precisely when, and only when, (x, s) is the unique pair of
solutions to (CPA,d). �

4.1. Target-following algorithm for symmetric cone programming. We shall use
the following local norm on the target space K:

‖·‖w : h ∈ J 7→

(
λr(w)−1

r∑
i,j=1

λi∨j(w)−1 ‖(Ah)ij‖2
) 1

2

,
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where A is any automorphism in Aut(J) such that Aw ∈ D↓,++. According to Theo-
rem IV.2.5 of [8], we can always find an automorphism in Aut(J) satisfying Aw ∈ D↓,++

with ρi(Aw) = λi(w). Since there exist, in general, more than one such automorphism,
we need to show that ‖·‖w is well-defined.

Let d = Aw ∈ D↓,++. Using Lemma 5 with (x, s) = (w, e) we deduce that if A1

and A2 are any two such automorphisms, then A1A−1
2 stabilizes A1w = A2w = d. Let

µ1 > · · · > µp > 0 be the distinct eigenvalues of w. In proving Lemma 2, we argued that
if an automorphism stabilizes d, then it is an endomorphism on the eigenspaces of each
eLk :=

∑
i∈Lk ei, where Lk = {i : λi(w) = µk}. In particular, it is an endomorphism on

the 1-eigenspace
⊕

i,j∈Lk Aij of eLk , and on the common 1
2
-eigenspace

⊕
i∈Lk,j∈L` Aij of

eLk and eL` (k 6= `). With the convention λr+1 ≡ 0, we can write

λr(w) ‖x‖2w =

p∑
k,`=1

∑
i∈Lk,j∈L`

λi∨j(w)−1 ‖(Ax)ij‖2

=

p∑
k,`=1

∑
i∈Lk,j∈L`

µ−1
k∨` ‖(Ax)ij‖2 =

p∑
k,`=1

µ−1
k∨` ‖(Ax)LkL`‖

2 .

Since

‖(A1x)LkL`‖ =
∥∥(A1A−1

2 A2x)LkL`
∥∥ =

∥∥A1A−1
2 (A2x)LkL`

∥∥ = ‖(A2x)LkL`‖ ,
the local norm is well-defined.

We propose the following target-following framework.

Algorithm 1. (Target-following framework for symmetric cone programming)
Given (xin, sin) ∈ F◦p ×F◦d and a target wout ∈ K.

(1) Pick some δ ∈ (0, 1) and a sequence of targets {wk}Nk=0 ⊂ K such that w0 =
T (xin, sin), wN = wout, and ‖wk+1 −wk‖wk

≤ δ for k = 1, . . . , N .
(2) Set (x+, s+) = (xin, sin).
(3) For k = 1, . . . , N ,

(a) Solve (3.2) with any A ∈ Aut(J) satisfying Awk ∈ D↓,++, and d = Awk,
and set (x++, s++) = (x+ + ∆x, s+ + ∆s).

(b) Update (x+, s+)← (x++, s++).
(4) Output (xout, sout) = (x+, s+).

Consider the following scenarios in which the target-following framework can be ap-
plied.

(1) If the objective is to approximate the solutions to the symmetric cone program-
ming problems (3.1), the target wout can be chosen to be a very small positive
multiple of the unit. Of course, if the sequence of targets are multiples of the unit,
then Algorithm 1 reduces to a path-following algorithm.

(2) If the objective is to approximate the analytic center of a compact set described by
linear matrix inequalities and convex quadratic inequalities, then we can describe
this set with the dual problem (3.1b) with null objective, and choose the target
wout = e.

In these scenarios, we can always choose the targets wk to share the same Jordan frame
in their spectral decompositions. The following lemma justifies this choice as it shows
that ‖wk+1 −wk‖wk

is minimized over all wk+1 with prescribed eigenvalues when wk+1

shares the same Jordan frame with wk.
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Lemma 6 (cf. Lemma 3 of [6]). If u1 ≥ · · · ≥ un > 0, then it holds, for every x ∈ J,

r∑
i,j=1

ui∨j
∥∥u−1

i∨jxij − eij
∥∥2 ≥

r∑
i=1

u−1
i ‖λi(x)− ui‖2 .

Proof. By expanding both sides of the desired inequality, it is clear that it suffices to
bound the sum

∑r
i,j=1 u

−1
i∨j ‖xij‖

2 from below by
∑r

i=1 u
−1
i λ2

i . Let x =
∑
λici be a

spectral decomposition. Then x2 =
∑
λ2
i ci, whenceρ1(x

2)
...

ρr(x
2)

 =

ρ1(c1) · · · ρ1(cr)
...

. . .
...

ρr(c1) · · · ρr(cr)

λ2
1
...
λ2
n

 ,
where the matrix on the right side of the equation is doubly-stochastic. By the Hardy-
Littlewood-Pólya Theorem [11], we have

∑k
i=1 ρi(x

2) ≤
∑k

i=1 λ
2
i for all k ∈ {1, . . . , r}.

Consequently

n∑
i,j=1

u−1
i∨j ‖xij‖

2 = u−1
n

r∑
i,j=1

‖xij‖2 −
r−1∑
k=1

(u−1
k+1 − u

−1
k )

k∑
i,j=1

‖xij‖2

≥ u−1
n

r∑
i=1

ρi(x
2)−

r−1∑
k=1

(u−1
k+1 − u

−1
k )

k∑
i=1

ρi(x
2)

≥ u−1
n

r∑
i=1

λ2
i −

r−1∑
k=1

(u−1
k+1 − u

−1
k )

k∑
i=1

λ2
i =

r∑
i=1

u−1
i λ2

i

proves the theorem. �

By applying the transformation (x, s) 7→ (Ax,As) to (3.1) for some suitable A ∈
Aut(J), we may assume, without any loss of generality, that Ql∗sx ∈ D↓,++, or equiva-
lently, T (x, s) ∈ D↓,++. Henceforth, we assume that T (x, s) ∈ D↓,++ and the sequence
of targets {wk}Nk=0 ⊂ D↓,++. This has the advantage that the proximity measure used in
approximating wk using (3.2) can be simplified to

d(x, s) =

(
ρr(d)−1

r∑
i,j=1

ρi∨j(d)−1
∥∥(Ql∗sx)ij − dij

∥∥2

) 1
2

=
∥∥Ql∗sx− d

∥∥
d
.

Moreover, this specializes the framework to the following algorithm.

Algorithm 2. (Target-following algorithm for symmetric cone programming)
Given (xin, sin) ∈ F◦p ×F◦d with Ql∗sin

xin ∈ D↓,++ and a target wout ∈ D↓,++.

(1) Pick some δ ∈ (0, 1) and a sequence of targets {wk}Nk=0 ⊂ D↓,++ such that w0 =
T (xin, sin), wN = wout, and ‖wk+1 −wk‖wk

≤ δ for k = 1, . . . , N .
(2) Set (x+, s+) = (xin, sin).
(3) For k = 1, . . . , N ,

(a) Solve (3.2) with A = I, d = wk, and set (x++, s++) = (x+ + ∆x, s+ + ∆s).
(b) Update (x+, s+)← (x++, s++).

(4) Output (xout, sout) = (x+, s+).
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4.2. Analysis of algorithm. Consider one iteration of Algorithm 2. As before, let π`
denote the difference ρ`(d)− ρ`+1(d), with the convention ρr+1 ≡ 0, and let L denote the
set {` : π` > 0}.

Recall from Corollary 2 and the paragraphs following it that (3.2) has a unique pair of
solutions if d(x+, s+) ≤ γ for some γ ∈ (0, 1/

√
2). This can be enforced via the following

lemma.

Lemma 7. If
∥∥Ql∗sx−wk−1

∥∥
wk−1

≤ β and ‖d−wk−1‖wk−1
≤ δ for some β, δ ∈ (0, 1),

then d(x+, s+) ≤ β+δ
1−δ .

Proof. We have

d(x+, s+) ≤

(
ρr(d)−1

r∑
i,j=1

ρi∨j(d)−1
∥∥∥(Ql∗s+

x+)ij − (wk−1)ij

∥∥∥2
) 1

2

+

(
ρr(d)−1

r∑
i,j=1

ρi∨j(d)−1 ‖(wk−1 − d)ij‖2
) 1

2

≤ d(x+, s+; wk−1) max
i

ρi(wk−1)

ρi(d)
+ ‖d−wk−1‖wk−1

max
i

ρi(wk−1)

ρi(d)
.

If ‖d−wk−1‖wk−1
≤ δ, then

δ2 ≥ ρr(wk−1)
−1

r∑
i=1

ρi(wk−1)
−1(ρi(d)− ρi(wk−1))

2 ≥
r∑
i=1

(
ρi(d)

ρi(wk−1)
− 1

)2

,

whence ρi(d)/ρi(wk−1) ≥ 1− δ. �

We now give the main theorem of this section.

Theorem 7. In Algorithm 2, if δ ∈ (0, 1) is such that there exists some β ∈ (0, 1)
satisfying

(4.2)
γ2(4 + 2

√
2 + 4

√
2γ)

(1−
√

2γ)2
+

2
√

2γ3

(1−
√

2γ)3
≤ β,

where γ = (β+ δ)/(1− δ) < 1/
√

2, then (x++, s++) is well-defined and strictly feasible in

each iteration, and the algorithm terminates with
∥∥∥Ql∗sout

xout −wout

∥∥∥
wout

≤ β.

Proof. Let dk denote the proximity measure defined in (3.9) for (CPA,d) with A = I
and d = wk; i.e., dk(x, s) =

∥∥Ql∗sx−wk

∥∥
wk

. We shall prove the theorem by induction

that the iterates (x+, s+) are strictly feasible and dk−1(x+, s+) ≤ β at the beginning
of each iteration. This is certainly true for the first iteration. By Lemma 7, we have
dk(x+, s+) ≤ γ. If (4.2) holds, then we may apply Theorem 5 to deduce that the iterates
(x++, s++) are strictly feasible with dk(x++, s++) ≤ β. This completes the induction. �

5. Finding Analytic Centers

In this section, we consider an algorithm that finds the analytic center T −1(µ̂e) for
any given µ̂ > 0. This algorithm can be used to find analytic centers of compact sets
described by linear matrix inequalities and convex quadratic constraints; see Section 4.1.
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It can also be combined with a path-following algorithm to solve the symmetric cone
program (3.1).

Given a pair of primal-dual strictly feasible solutions (x̂, ŝ) with Ql∗ŝ
x̂ ∈ D↓,++, we shall

construct a finite sequence of targets {wk}Nk=0 ∈ D↓,++ such that w0 = T (x̂, ŝ) = Ql∗ŝ
x̂,

(5.1) ‖wk −wk−1‖wk−1
≤ δ for 1 ≤ k ≤ N,

and wN = µ̂e, with β and δ satisfying the hypothesis of Theorem 7, thus allowing us to
apply Algorithm 2 to approximate T −1(µ̂e).

Of course, if Ql∗ŝ
x̂ ∈ D↓,++ is a positive multiple of e, then we need simply to follow

the central path to approximate T −1(µ̂e); i.e., pick the targets to be positive multiples
of e. Henceforth, we assume that Ql∗ŝ

x̂ ∈ D↓,++ is not a positive multiple of e.
Since the targets are diagonal matrices wk ∈ D↓,++, we may restrict our attention

to the vector of diagonal entries xk = (ρ1(wk), . . . , ρr(wk)) and work in Rr
↓,++ instead.

Under this restriction, the condition (5.1) becomes√√√√ 1

xk−1
n

n∑
i=1

(
xki − xk−1

i

)2
xk−1
i

≤ δ (1 ≤ k ≤ N).

Such sequence {xk}Nk=0 is called a δ-sequence, and N is called its length; see [16]. In
[6], the author gave an upper bound on the length of a shortest δ-sequence from any
x0 ∈ Rn

↓,++ to the ray {(µ, . . . , µ) ∈ Rn : µ > 0}. This is summarized in the following
theorem.

Theorem 8. For every x0 ∈ Rr
↓,++ and every δ ∈ (0, 1), there exists a δ-sequence {xk}Nk=0

with xN = (µ, . . . , µ), where µ =
∑r

i=1 x0
i /r, and length

N ≤
⌈ √

r

δ − 1
2
δ2

log

(
4µ

x0
r

)⌉
.

Proof. Follows from Lemmas 13, 14 and 15 of [6]. �

Combining Theorem 8 with a δ-sequence on the central path, we have the following
theorem.

Theorem 9. Suppose β ∈ (0, 1) is fixed. Given any pair of primal-dual strictly feasible
solutions (x̂, ŝ) for the primal-dual symmetric cone programming problems (3.1), and any
positive real number µ̂, there is a sequence of at most

O

(√
r

(
log

〈x̂, ŝ〉
rλr(x̂ ◦ ŝ)

+

∣∣∣∣log
〈x̂, ŝ〉
rµ̂

∣∣∣∣))
targets such that Algorithm 2 finds a pair of primal-dual feasible solutions (x, s) satisfying∥∥Ql∗sx− µ̂e

∥∥ ≤ βµ̂.

As an immediate corollary, we have the following worst-case iteration bound on solving
symmetric cone problems using Algorithm 2.

Corollary 3. Given any pair of primal-dual strictly feasible solutions (x̂, ŝ) and any
ε > 0, there is a sequence of at most

O

(√
r

(
log

〈x̂, ŝ〉
rλr(x̂ ◦ ŝ)

+
∣∣log ε−1

∣∣))
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targets such that Algorithm 2 find a pair of primal-dual feasible solutions (x, s) satisfying
〈x, s〉 ≤ ε 〈x̂, ŝ〉.

Proof. If (x, s) ∈ K × K] satisfies
∥∥Ql∗sx− µe

∥∥ ≤ βµ for some β ∈ (0, 1) and some

µ > 0, then 〈x, s〉 − rµ =
〈
e,Ql∗sx− µe

〉
≤
√
rβµ. Apply the preceding theorem with

µ̂ = ε 〈x̂, ŝ〉 /(β
√
r + r). �

6. Conclusion

In this paper, we consider the T -algebraic characterization of symmetric cones by view-
ing them as homogeneous cones, and relate it to the Jordan-algebraic characterization.
The two different but related characterizations are used to define primal-dual weighted
analytic centers and a target map for linear optimization problems over symmetric cones.
This opens the door to target-following algorithms for symmetric cone programming. An
application of target-following algorithm is approximating the analytic centers of sets
described by linear matrix and convex quadratic constraints. Such sets can be modelled
as the feasible region of a symmetric cone program by introducing the zero objective
function. The analytic center of the set is then given by the weighted analytic center
corresponding to unit weights. Thus the analytic center can be efficiently estimated by
following a sequence of targets ending at said weighted analytic center.
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Appendix A. Automorphisms of Euclidean Jordan algebras

In Section II.1 of [25], it was stated without proof that if (J, ·) is a Euclidean Jordan
algebra and K is its associated symmetric cone, then the stabilizer subgroup Aut(K)e of
the unit e in Aut(K) coincide with the group of automorphisms Aut(J) of J. Here we
give a proof of this fact.

Theorem A.1. Given a Euclidean Jordan algebra (J, ·) with unit e and associated sym-
metric cone K, the stabilizer subgroup Aut(K)e of the unit e in Aut(K) coincide with the
group of automorphisms Aut(J) of J.

Proof. Consider the inner product 〈·, ·〉 : (x,y) 7→ trace Lx·y, where Lx denotes the linear
map y 7→ x · y. Let O(J) denote the orthogonal group of the Euclidean space (J, 〈·, ·〉);
i.e., O(J) = {A ∈ GL(J) : 〈Ax,Ay〉 = 〈x,y〉 ∀x,y ∈ J}.

Let ϕ be the characteristic function of K; i.e.,

ϕ : x ∈ K 7→
∫
K]
e−〈x,y〉dy,

where dy denotes the Euclidean measure on (J, 〈·, ·〉). Let x] denote the negative gradient
of the logarithmic derivative of ϕ at x. We deduce from Propositions II.3.4 and III.2.2
of [8] that exp Lx ∈ Aut(K). Thus by Proposition I.3.1 of [8], we have logϕ(exp Lx ·
e) = logϕ(e) − log det exp Lx = logϕ(e) − trace Lx. Differentiating this at 0 gives
trace Lh = −D logϕ(e)[h]. Since trace Lh = 〈h, e〉 and −D logϕ(e)[h] =

〈
e] ,h

〉
, it
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follows that e is a fixed point of the map x ∈ K 7→ x] . Proposition I.4.3 of [8] then states
that Aut(K) ∩O(J) = Aut(K)e.

We now show that Aut(J) coincides with Aut(K) ∩ O(J) = Aut(K)e. It is straight-
forward to check that every automorphism of J is an automorphism of K (which is the
interior of the cone of squares) that stabilizes the unit e. For the other direction, it suffices
to show that every linear map A ∈ Aut(K)∩O(J) = Aut(K)e preserves orthogonality of
idempotents and maps every primitive idempotent to some primitive idempotent, for if
x =

∑
λici is the spectral decomposition, then we have

A(x2) = A
(∑

λ2
i ci

)
=
∑

λ2
iA(ci) =

(∑
λiA(ci)

)2

= (Ax)2,

whence A ∈ Aut(J) by polarization. Suppose A ∈ Aut(K) ∩ O(J) = Aut(K)e. Two
idempotents are c and d are orthogonal if and only if 〈c,d〉 = 0. One direction of this
statement follows from the definition of 〈·, ·〉. For the other direction, suppose that c and
d are two idempotents satisfying 〈c,d〉 = 0. Since the inner product 〈·, ·〉 is associative
(see Proposition II.4.3 of [8]), Lc is self-adjoint. Proposition III.1.3 of [8] then implies
that Lc is positive semidefinite. Thus it has a self-adjoint, positive semidefinite square

root L
1
2
c . Hence

0 = 〈c,d〉 =
〈
c,d2

〉
= 〈c · d,d〉 = 〈Lcd,d〉 =

〈
L

1
2
c d,L

1
2
c d
〉

shows that L
1
2
c d = 0, whence c · d = L

1
2
c L

1
2
c d = 0; i.e., c and d are orthogonal. Since

A is orthogonal, it follows that orthogonal idempotents remain orthogonal under A.
Proposition IV.3.2 of [8] states c is a primitive idempotent if and only if {λc : λ ≥ 0}
is an extreme ray of K. Since A ∈ Aut(K), it maps each extreme ray to some extreme
ray of K. Thus it maps each primitive idempotent c to a positive multiple λd of some
primitive idempotent d. In fact, λ must be unit since

0 < 〈d,d〉 =
〈
d2, e

〉
= 〈d, e〉 = 〈d,Ae〉 = λ−1 〈Ac,Ae〉

= λ−1 〈c, e〉 = λ−1
〈
c2, e

〉
= λ−1 〈c, c〉 = λ−1 〈Ac,Ac〉 = λ 〈d,d〉

Hence A maps each primitive idempotent to some primitive idempotent. �

The proof of the theorem shows that both Aut(K)e and Aut(J) coincide with certain
orthogonal subgroup of Aut(K). The next theorem gives a similar result.

Theorem A.2. Given a Euclidean Jordan algebra (J, ·) with unit e and associated sym-
metric cone K, the groups Aut(K)e and Aut(J) are both equivalent to the orthogonal
subgroup of Aut(K) under the inner product 〈·, ·〉 : (x,y) 7→ tr(x · y).

Proof. Let O(K) denote the orthogonal subgroup of Aut(K) under 〈·, ·〉. By Proposi-
tion II.4.2 of [8], if A ∈ Aut(J), then tr(Ax · Ay) = tr A(x · y) = tr(x · y) for all
x,y ∈ J, whence A is orthogonal. Therefore Aut(J) = Aut(K)e ⊆ O(K). According to
Proposition I.1.8 of [8] and the paragraph following it, Aut(K)e is a maximal compact
subgroup of Aut(K). Hence O(K) ⊆ Aut(K)e. �
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