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Abstract

We point out an interesting connection between Williamson ma-
trices and relative difference sets in nonabelian groups. As a con-
sequence, we are able to show that there are relative (4t,2,4t,2t)-
difference sets in the dicyclic groups Qg; = (a,bla* = b* = 1,0 =
b2, b= tab = a~') for all ¢ of the form ¢ = 2¢-10°-26¢-m with a,b,c > 0,
m =1 (mod 2), whenever 2m — 1 or 4m — 1 is a prime power or there
is a Williamson matrix over Z,,. This gives further support to an
important conjecture of Ito [11] which asserts that there are relative
(4t,2, 4t, 2t)-difference sets in Qg; for every positive integer t. We
also give simpler alternative constructions for relative (4t,2,4t,2t)-
difference sets in Qg; for all ¢ such that 2t — 1 or 4t — 1 is a prime
power. Relative difference sets in QJg; with these parameters had pre-
viously been obtained by Ito [6]. Finally, we verify Ito’s conjecture for
all ¢ < 46.
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1 Introduction

Let G be a group of order m. An m x m matrix A is called G-invariant if
the rows and columns of A = (a, ;) can be indexed with elements g, h of G
such that agxne = agp for all g,k k € G.

A Hadamard matrix of order v is a v X v-matrix H with entries 1 satisfying
HH! = vI, where I, is the identity matrix of size v. It is well known that
v =0 (mod 4) if a Hadamard matrix of order v > 2 exists.

A Hadamard matrix H of order 4m is said to be a Williamson matrix over
an abelian group G of order m if H is of the form

A B C D
B A -D C
H=| o« p 4 _B (1)

-D -C B A

where A, B, C, D are G-invariant m x m matrices with entries +£1. We remark
that this definition slightly differs from the usual one which requires that
XY? =Y X! holds for all 2-subsets {X,Y} of {A, B,C, D}. This property is
stronger than the orthogonality of the rows of H.

For the study of Williamson matrices and relative difference sets we will use
the following group ring notation. We will always identify a subset A of
a group G with the element > gea g of the integral group ring Z|G]. For
B =Y cqbgg € ZG] we write BCY =3 . byg". We may identify any
element S = ) . s,g of the group ring Z[G] with the G-invariant matrix
(mg ) where myp = sgp-1. We note that S(=1) corresponds to the matrix S*.
In terms of the group ring, necessary and sufficient conditions for a matrix
of the form (1) to be a Hadamard matrix are

AACY 4 BBOY 4 Y + DDV = am (2)
and
XYyEH - Xy 4 7z00 1Nz =0 (3)
for (X,Y,T,Z) = (4, B,C,D),(A,D,B,C),(4,C, D, B).

Let G be a (possibly nonabelian) group of order mn, and let N be a normal
subgroup of G of order n. A k-subset R of G is called an (m, n, k, \)-difference
set in G relative to N if every ¢ € G\ N has exactly A representations
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g = riry " with 71,75 € R, and no nonidentity element of N has such a rep-
resentation. The following is a translation of this definition into the group
ring notation.

Lemma 1.1 A k-subset R of a group G of order mn is a relative (m,n, k, \)-
difference set in G relative to a normal subgroup N of order n if and only
if

RREY =k + \(G - N)
in Z[G].

A relative (4t, 2, 4t, 2t)-difference set is a special kind of semiregular relative
difference set, see [2, 12]. Such a relative difference set R contains exactly
one element of each coset of the subgroup N. Since N has order 2, we may
identify N with {—1,1}. Let g1, ..., gax be a system of coset representatives
of N in G. Let h;; be the unique element of Rg; gj_1 N N. Then the definition
of a relative difference sets implies that (h;;) is a Hadamard matrix of order
4t. These Hadamard matrices can also be obtained from 2-cocyles, see [5],
and thus are sometimes called cocyclic. Ito [11] conjectured that relative
(4t, 2, 4t, 2t)-difference sets in the dicyclic groups Qg = (a,bla® = b* =
1,a® = b?,b'ab = a™') exist for all positive integers ¢. Ito’s conjecture
is a very interesting strengthening of the outstanding Hadamard conjecture
which asserts that a Hadamard matrix of order 4¢ exists for every positive
integer 4t. In [5], Ito’s conjecture was shown to be true for ¢ < 11 by a
computer search. We will verify Ito’s conjecture for all ¢ < 46.

2 The connection

Let Qg := (z,y|lz* = y* = 1,2? = 4%,y "2y = 27') be the quaternion group
of order 8. We first show that a Williamson matrix over an abelian group G
of order m is equivalent to a (4m, 2, 4m, 2m)-relative difference set in G X Qg
relative to (1) x (x?).

Theorem 2.1 A Williamson matrixz over an abelian group G of order m
exists if and only if there is a (4m, 2, 4m, 2m)-relative difference set in T :=
G x Qg relative to N := (1) x (x?).



Proof Let R be a subset of T containing exactly one element of each coset
of N. Write U := Gx (2?) and R = E+Fz+ Ky+ Lry with E, F, K, L C U.
Computing RR(-Y and using Lemma 1.1 we see that R is a (4m, 2, 4m, 2m)-
relative difference set in T if and only if

EECY 4 FFCY 4 KKCY 4 LLEY = 4m+42m(U - N)  (4)
ECVF + KOVL + (BFCY + KLUY)2? = 2mU (5)
FLEY + ECVK + (EKCY 4+ FEVL)? = 2mU (6)
FOYK + ECVL + (FLUY + FKCV)2? = 2mU. (7)

Since each of the sets E, F, K, L contains exactly one element of each coset
of N in U, we can write X = X; + Xo2? with X;,Xo C G and X; + X, =G
for X = E,F,K,L. Define A:=F, — FEy, B:=F — F, C = K| — K,
D := L; — L,. Tt is straightforward to verify that equations (4) through (7)
hold if and only if A, B, C, D satisfy (2) and (3) which proves Theorem 2.1.
For instance, assume that A, B,C, D satisfy (2). We will show that this
implies (4). We have to show

X(EECY + FFCD 4 KKOY 4 LLEY) = x(4m + 2m(U — N)) ~ (8)

for all characters x of U. If y if trivial on N =< z? >, then (8) follows
from the fact that E, F, K, L contain exactly one element of each coset of N
in U. If y is nontrivial on N, then x(z?) = —1 implying x(E) = x|g(A),
X(F) = x|a(B), x(K) = x|c(C), and x(L) = x|g(D). Thus (8) follows from
(2) in this case. The proof of all remaining implications is similar. O

Let G be an abelian group of order m. By Q(G) we denote the semidirect
product of G with the quaternion group Qs = (z,ylz? = y* = 1,22 =
y? y oy = 271) which is given by G < Q(G), z7'gr = g and y~lgy = g !
for all ¢ € G. Note that for odd m, the dicyclic group Qg = (a,bla’™ =
bt = 1,0 = b?,b Lab = a ') coincides with Q(Z,,). By the same arguments
as in the proof of Theorem 2.1 we obtain the following.

Theorem 2.2 Let G be an abelian group of order m. A (4m,2,4m,2m)-
difference set in Q(G) relative to (y?) exists if and only if there is a Hadamard
matrixz of the form



A B C D
-B A -D (C
_Ct Dt At _Bt (9)
_Dt _Ct Bt At

where A, B,C, D are G-invariant m X m matrices with entries £1.

Note that a matrix of the form (9) is a Hadamard matrix if and only if
AAY 4+ BBV 4+ 0CEY + DDEY = 4m and ACYVB - ABCY 4 YD —
CDY = 0 in the group ring. These conditions are weaker than (2) and (3)
and thus we get the following result, a special case of which was obtained in
8, Prop. 3].

Corollary 2.3 The existence of a Williamson matriz over an abelian group
G implies the existence of (4m, 2, 4m, 2m)-relative difference sets in G X Qg

and Q(G).

3 Relative difference sets in Qgn

We want to study relative (4m,2,4m,2m)-difference sets in dicyclic groups
Qsm = {(a,bla*™ = b* = 1,a® = b?,btab = a ') in more detail. The
following lemma is from [11]. For the convenience of the reader, we include
a proof.

Lemma 3.1 A (4m,2,4m,2m)-difference set in Qg,, relative to N := (b?)
exists if and only if there are polynomials f, g of degree 2m—1 and coefficients
+1 only such that

@) f (@) + gla)g(a™") = 4m (mod &> + 1). (10)

Proof Let R be a subset of (Qg,, containing exactly one element of each
coset of N and write R = F 4 Gb with F,G C {a). Computing RR"? and
applying Lemma 1.1 shows that R is a (4m, 2, 4m, 2m)-difference set in Qg
relative to N if and only if

FFEY £ GGEY = 4m + 2m((a) — N). (11)



The equivalence of (10) and (11) can be verified by using the characters of
{(a) similar to the proof of Theorem 2.1. O

We recall that a pair of Golay polynomials is a pair of polynomials f, g of
degree 2m — 1 and coeflicients +1 only such that

f@)f(@™") + g(x)g(a™") = 4m (12)
in Zlz,x ). Golay polynomials of degree 2m — 1 are known for all m such
that 2m = 27-10°- 26" with 7, s,t > 0, see [4], and it is conjectured that there
are no Golay polynomials for any other m. Of course, Lemma 3.1 shows that
the existence of a pair of Golay polynomials of degree 2m — 1 implies the
existence of a (4m, 2,4m, 2m)-relative difference set in Qg,,, but we can say
more. The following construction is based on the observation that an idea of
Turyn [15, Lemma 5| still works in a slightly more general situation.

Theorem 3.2 If there is a pair k,l of Golay polynomials of degree 2m — 1,
and if there is a (4m/,2,4m', 2m')-relative difference set in Qgny relative to
(b?), then there is also an (8mm',2,8mm’, 4mm/')-difference set in Qiemm
relative to (b?).

Proof Let u,w be the polynomials corresponding to the relative difference
set in g,y via Lemma 3.1. Define

f): = 5 @™k + @)+ a4 kE) ~ i)}
o@): = 5 {wl@™ k@) +1@)] + A k() + ()]

It is easy to check that f and ¢ are polynomials of degree 4mm' — 1 with
coefficients —1, 1 only. We compute

f@)f@™h) +g(z)g=™) = %[k(l‘)k(fl) + @)1z -
[u(z*™)u(e™™) + w(z*™)w(@™")]
2mlu(z™)u(z™*") + w(z*™ )w(z™*")]
= 8mm' (mod z™™ +1)
since k(:v)’k(x_l) +1(x)l(xz7!) = 4m and u(z)u(z™?) + w(z)w(z™t) = 4m’
(mod z?™ +1). By Lemma 3.1, f and g describe the desired relative difference
set. O



Ito [6] constructed relative (4t, 2, 4t, 2t)-difference sets in Qg; for all ¢ such
that 4t—1 is a prime power. This construction is of special interest since these
relative difference sets cannot be derived from known families of Williamson
matrices. It is not known whether Williamson matrices of order 4¢, 4t — 1 a
prime power, exist in general. A computer search [3] showed that there is no
Williamson matrix of order 4 - 35 such that the four matrices A, B, C, D are
symmetric. However, it seems quite plausible that (without the symmetry
condition) Williamson matrices exist for all orders 4t even for general ¢.

In the following, we give a simpler alternative to Ito’s construction of relative
(4t, 2, 4t, 2t)-difference sets in Qg; for all ¢ such that 4¢ — 1 is a prime power.

Theorem 3.3 ([6]) There is a relative (4t, 2, 4t, 2t)-difference set in Qg; for
all t such that q := 4t — 1 is a prime power.

Proof Let U be the subgroup of order (¢ —1)/2 of F;, where Fg. is the
finite field of order ¢*. Let ¢r denote the trace function of F relative to F,.

We choose o € F2 with tr(a) = 0 and denote the set of nonzero squares in
F, by Q. Then [12, Thm. 2.2.12] implies that

R:={Uz :tr(azx) € Q}

is a relative (¢ + 1,2, ¢q, (¢ — 1)/2)-difference set in W := ]FZQ/U. Let g be a
generator of W and write

R = R1 —+ Rgg (13)
with R; C (g?). Lemma 1.1 implies
- _ -1
R + RpRETY = g+ T—=((g%) — (9")). (14)

If the multiplicative order of d € F;, divides ¢+1, then tr(ad) = ad+a?d? =
ad — adt = —tr(ad~!) since tr(a) = 0. Thus R\ = g*R;. Note 1 ¢ R;

since tr(a) = 0. Thus
Byt Ry = (") = (")- (15)

We identify the cyclic subgroup of order 4t of Qg; with (g2), i.e. we write
Qst = (a,bla* = b = 1,a% = b?,b7Lab = a7 ') with a = ¢g?. Define S :=
(R1 + 1) + Ryb € Z[Qsg;]. Using Lemma 1.1, equations (14), (15), and the
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fact that both Ry + 1 and R, contain exactly one element of each coset of
N := (a®) in (a), it is straightforward to verify that S is a (4t,2, 4t, 2t)-
difference set in Qg; relative to N. O

Remark 3.4 The arguments above can be used to give an interesting proof
of the well known number theoretic fact that every prime power ¢ = 3 (mod 8)
is a sum of three odd squares two of which are equal. To see this, we first note
that ¢t = (¢+1)/4 is odd if ¢ = 3 (mod 8). Thus we may write R = R; + Rag’
with R; C {g?) instead of (13). From the proof of Theorem 3.3 we know

RUY = Rih (16)
where h := ¢*. In the same way, we obtain

(Rggt)(_l) = Rggt. (17)

Now we write B = X1 + Xo¢% and Ry = X3 + X9 with X; C (¢*). From
(16) and (17) we get

—1
Yo 2 9
Equation (14) implies
4
SoxxEY =g+ T2t — () (19
i=1

Let x be a character of (g) of order eight. Then x(h) = —1 and x(f) =
x(f~1) € {~1,1} for all f € (g*). Thus x(X;) = x(X\ ) for all i. Moreover,

X(X1) = 0 and x(X3) = —x(X4) by (18). Note that x(X;) is odd for i =
2,3,4 since X; has exactly t elements for ¢ = 2,3,4. Now (19) implies

q = x(X3)? + 2x(X3)?
which is the desired decomposition of ¢ into the sum of three odd squares.
Ito [7] obtained relative (4t, 2, 4t, 2t)-difference sets in Qg for all ¢ such that

qg:=2t—1=1 (mod 4) is a prime power. We give a simpler alternative
construction which also works for ¢ = 3 (mod 4).
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Theorem 3.5 There is a relative (4t,2, 4t, 2t)-difference set in Qg for all t
such that q :== 2t — 1 is a prime power.

Proof Let G = (a) be cyclic of order 4¢. By [12, Thm. 2.2.12] there is a
(g+1,2,q, (¢ — 1)/2)-difference set R in G relative to N := (a?!). Replacing
R by Rg for some appropriate g € G if necessary, we may assume RN N = ().
We define

S:=(R+1)+ (R+a®)b € Z|Qg]
where Qg; = (a,bla* = b* = 1,a* = b, b~ 'ab = a!). Using Lemma 1.1 it is
straightforward to verify that S is the desired relative difference set. 0.

Combining Corollary 2.3 and Theorems 3.2, 3.3, 3.5, we get the following
result.

Corollary 3.6 Let m be a positive integer such that 2m — 1 or4m — 1 s a
prime power or m is odd and there is a Williamson matriz over Z,,. Then
there is a relative (4t,2,4t, 2t)-difference set in Qg for every t of the form

t=12%-10-26°-m
with a,b,c > 0.

Remark 3.7 Williamson matrices over Z,, are known for many m including
all m of the form m = ¢"(¢+ 1)/2 where ¢ = 1 (mod 4) is a prime power and
r is any nonnegative integer, see [13, 14, 16]. Moreover, Williamson matrices
over Zi, exist for all m < 33 and for m = 39,43, see [1, 3.

In [5], a computer search was carried out which showed that (4t,2, 4¢, 2t)-
difference sets in (g exist for ¢ < 11. Combining Corollary 3.6 and Remark
3.7 we can improve this result considerably.

Corollary 3.8 There are relative (4t, 2, 4t, 2t)-difference sets in Qg for all
t < 46.
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