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Abstract

We classify all circulant weighing matrices whose order and weight

are products of powers of 2 and 3. In particular, we show that proper

CW(v, 36)’s exist for all v ≡ 0 (mod 48), all of which are new.

1



1 Introduction

A circulant weighing matrix of order v is a square matrix of the form

M =


a1 a2 · · · av

av a1 · · · av−1

· · · · · · · · · · · ·
a2 a3 · · · a1


with ai ∈ {−1, 0, 1} for all i and MMT = nI where n is a positive integer and

I is the identity matrix. The integer n is called the weight of the matrix. A

circulant weighing matrix of order v and weight n is denoted by CW(v, n).

Circulant weighing matrices have been studied intensively, see [2] for a

survey and [11] for more background on weighing matrices in general. There

are only a few infinite families [3, 8, 13] and sporadic examples [2, 4] of

circulant weighing matrices known. Circulant weighing matrices of weight

less than or equal to 16 have been classified, see [1, 4, 5, 9, 10, 19].

In the present paper, we classify all circulant weighing matrices whose

order and weight are products of powers of 2 and 3. In principle, this is

made possible by the “F-bound” [18] and the results on orthogonal families

in [14] which together imply that there is a finite algorithm for this prob-

lem. However, we need to employ further tools such as cyclotomic integers

of prescribed absolute value and rational idempotents (the latter concept is

implicitly used in Section 6) to keep the arguments and computations man-

ageable. We note that all our results are computer free.

The complete classification of circulant weighing matrices whose order

and weight are products of powers of 2 and 3 is given in Theorem 6.10 at the

end of our paper.

2 Preliminaries

Let Cv denote the cyclic group of order v. For a divisor u of v we always

view Cu as a subgroup of Cv.
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To study circulant weighing matrices we use the group ring language.

The elements of the integral group ring Z[Cv] have the form

X =
∑
h∈Cv

ahh

with ah ∈ Z. The set

{h ∈ Cv : ah 6= 0}

is called the support of X, and the integers ah are called the coefficients of

X. We write |X| =
∑

h∈Cv
ah and

X(t) =
∑
h∈Cv

ahh
t

for t ∈ Z. We identify a subset S of Cv with the element
∑

h∈S h of Z[Cv].

A circulant matrix M as defined in Section 1 satisfies MMT = nI if and

only if DD(−1) = n where D is the element of Z[Cv] defined by D =
∑v

i=1 aig
i.

Thus a circulant weighing matrix of order v and weight n is equivalent to an

element D of Z[Cv] with coefficients −1, 0, 1 only and DD(−1) = n. This is

the formulation we will use in the rest of our paper. Note that the weight of

a circulant weighing matrix must be a square as |
∑
ai|2 = n.

For every multiple w of v, any CW(v, n) can trivially be embedded in

Z[Cw] and thus be viewed as a CW(w, n). One usually ignores these triv-

ial extensions by concentrating on proper circulant weighing matrices, i.e.

circulant weighing matrices D ∈ Z[Cv] for which there is no g ∈ Cv and no

proper divisor u of v with Dg ∈ Z[Cu].

In this paper, we call two circulant weighing matrices D,E ∈ Z[Cv]

equivalent if there are t, x ∈ Z with (t, v) = 1 and E = ±D(t) + x.

For an abelian group G, we denote the group of complex characters of G

by G∗. The following is a standard result [6, Chapter VI, Lemma 3.5].

Result 2.1 Let G be a finite abelian group and D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈G∗

χ(Dg−1)

for all g ∈ G.
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The next result is a well known consequence of Result 2.1.

Result 2.2 Suppose D ∈ Z[Cv] has coefficients ±1, 0 only. Then D is a

CW(v, n) if and only if |χ(D)|2 = n for all χ ∈ C∗v .

We will need the following result on kernels of characters on group rings.

See [12, Theorem 2.2] for a proof.

Result 2.3 Let χ be a character of Cv of order v. Then the kernel of χ on

Z[Cv] is

{
r∑
i=1

CpiXi : Xi ∈ Z[Cv]}

where p1, ..., pr are the distinct prime divisors of v.

For a prime p and a positive integer t let νp(t) be defined by pνp(t)|| t, i.e.

pνp(t) is the highest power of p dividing t. By D(t) we denote the set of prime

divisors of t. The following definition is necessary for the application of the

field descent method [17] which we will do in the next section.

Definition 2.4 Let v, n be integers greater than 1. For q ∈ D(n) let

vq :=

{ ∏
p∈D(v)\{q} p if v is odd or q = 2,

4
∏

p∈D(v)\{2,q} p otherwise.

Set

b(2, v, n) = max
q∈D(n)\{2}

{
ν2(q

2 − 1) + ν2(ordvq(q))− 1
}

and

b(r, v, n) = max
q∈D(n)\{r}

{
νr(q

r−1 − 1) + νr(ordvq(q))
}

for primes r > 2 with the convention that b(2, v, n) = 2 if D(n) = {2} and

b(r, v, n) = 1 if D(n) = {r}. We define

F (v, n) := gcd(v,
∏

p∈D(v)

pb(p,v,n)).

The following result was proved in [17].
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Result 2.5 Assume XX = n for X ∈ Z[ζm] where n and m are positive

integers. Then

Xζjm ∈ Z[ζF (m,n)]

for some j.

The following is [18, Thm. 3.2.3]. By ϕ we denote the Euler totient

function.

Result 2.6 (F-bound) Let X ∈ Z[ζm] be of the form

X =
m−1∑
i=0

aiξ
i
m

with 0 ≤ ai ≤ C for some constant C and assume that n := XX is an

integer. Then

n ≤ C2F (m,n)2

4ϕ(F (m,n))
.

Definition 2.7 Let p be a prime, let m be a positive integer, and write m =

pam′ with (p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 ( mod m′),

then p is called self-conjugate modulo m. A composite integer n is called

self-conjugate modulo m if every prime divisor of n has this property.

Result 2.8 (Turyn [20]) Assume that A ∈ Z[ζm] satisfies

AA ≡ 0 mod t2b

where b, t are positive integers, and t is self-conjugate modulo m. Then

A ≡ 0 mod tb.

The following result is due to Ma [15], see also [6, VI, Cor. 13.5] or [16,

Cor. 1.2.14].

Result 2.9 (Ma) Let p be a prime and let G be a finite abelian group with

a cyclic Sylow p-subgroup S. If Y ∈ Z[G] satisfies

χ(Y ) ≡ 0 mod pa
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for all characters χ of G of order divisible by |S|, then there exist X1, X2 ∈
Z[G] such that

Y = paX1 + PX2,

where P is the unique subgroup of order p of G.

The next result is [14, Thm. 4.3].

Result 2.10 Let v = w
∏r

i=1 p
ai
i where the ai’s and w are positive integers

and the pi’s are distinct primes coprime to w. Let g be a generator of Cv.

Let bi ≤ ai be positive integers, write k =
∏r

i=1 p
bi
i . Suppose that X ∈ Z[Cv]

with the property for every τ ∈ C∗v there is a root of unity η(τ) with

η(τ)τ(X) ∈ Z[ζwk].

Furthermore, assume that |τ(X)|2 ≤ n for all τ ∈ C∗v for some constant n.

Write k′ = w
∏r

i=1 p
ci
i where

ci =

{
min{ai, bi + log n/ log pi} if log n/ log pi is an integer and

min{ai, dbi − 1 + log n/ log pie} otherwise.

Then X =
∑v/k′−1

i=0 Xig
i with Xi ∈ Z[Ck′ ], and XiXj = 0 for all i 6= j.

We will need the following result of Kronecker. See [7, Section 2.3, Thm. 2]

for a proof.

Result 2.11 An algebraic integer all of whose conjugates have absolute value

1 is a root of unity.

3 Results

We start with a lemma on cyclotomic integers of prescribed absolute value.

Lemma 3.1 Write β = 1 + ζ8 + ζ38 . Let v = 2a · 3b for some nonnegative

integers a, b, and let X ∈ Z[ζv] with |X|2 = 9. Then there is a root of unity

η such that

Xη ∈ {3, (ζ3 − ζ23 )β, (ζ3 − ζ23 )β̄, β2, β̄2}. (1)

Furthermore, if Y ∈ Z[ζv] with |Y |2 = 36, then Y = 2Z for some Z ∈ Z[ζv]

with |Z|2 = 9.
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Proof By [18, Thm. 2.2.2] there is a root of unity ζ such that Xζ ∈ Z[ζ8]

or X = (ζ3 − ζ23 )Y with Y ∈ Z[ζ8] and |Y |2 = 3. �

Case 1: Xζ ∈ Z[ζ8]. The prime ideal factorization of (3) over Z[ζ8] is (3) =

(β)(β̄) (see e.g. [7] for the background in algebraic number theory). Hence

(Z) = (3), (Z) = (β2), or (Z) = (β̄2). Now Result 2.11 implies Xη ∈
{3, β2, β̄2} for some root of unity η.

Case 2: X = (ζ3 − ζ23 )Y with Y ∈ Z[ζ8] and |Y |2 = 3. Similarly as in Case 1

we conclude (Y ) = (β) or (Y ) = (β̄) and thus Xη ∈ {(ζ3 − ζ23 )β, (ζ3 − ζ23 )β̄}
for some root of unity η. This proves (1).

The last statement of Lemma 3.1 follows from Result 2.8 since 2 is self-

conjugate modulo 3b. �

Lemma 3.2 Suppose both n and v are products of powers of 2 and 3. If a

CW(v, n) exists, then n ≤ 64.

Proof Let D be a CW(v, n), i.e. D ∈ Z[Cv] with coefficients ±1, 0 and

DD(−1) = n. We use the F-bound to establish an upper bound on n as

follows. Recall that we assume v and n have no prime divisors different from

2 or 3. Let us first assume that v and n are both divisible by 6. Using

Definition 2.4, we find v2 = 3 and v3 = 4. Hence

b(2, v, n) = ν2(3
2 − 1) + ν2(ord4(3))− 1 = 3 + 1− 1 = 3

and

b(3, v, n) = ν3(2
2 − 1) + ν3(ord3(2)) = 1.

Hence F (v, n) divides 24 by Definition 2.4. It is straightforward to check

that F (v, n) also divides 24 if v and n are not both divisible by 6. Hence

F (v, n) divides 24 in all cases.

Let χ be a character of Cv of order v. Then |χ(D)|2 = n and χ(D) =∑v−1
i=0 aiζ

i
v with |ai| ≤ 1. Since

∑v−1
i=0 ζ

i
v = 0, we have χ(D) =

∑v−1
i=0 (ai + 1)ζ iv

with 0 ≤ 1 + ai ≤ 2. Thus the F-bound implies

n ≤ 22 · 242

4ϕ(24)
= 72.

Since n is a square, we conclude n ≤ 64. �
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Theorem 3.3 Suppose both n and v are products of powers of 2 and 3. If a

CW(v, n) exists, then n ∈ {4, 9, 36}.

Proof By Lemma 3.2 it suffices to show n 6= 16 and n 6= 64. Thus assume

n ∈ {16, 64}. Since 2 is self-conjugate modulo v, we have

χ(D) ≡ 0 (mod 4) (2)

by Result 2.8. If v is odd, then D ≡ 0 (mod 4) by Result 2.1. This is

impossible since D has coefficients ±1, 0 only. Hence v is even. In view of

(2), Ma’s Lemma implies

D = 4X + PY

with X, Y ∈ Z[Cv] where P is the subgroup of Cv of order 2. But this means

that the coefficients of D are constant modulo 4 on each coset of P . Since

D has coefficients ±1, 0 only, this shows that, in fact, that the coefficients

of D are constant on each coset of P . Thus D = PZ with Z ∈ Z[Cv]. But

then χ(D) = 0 for every character χ of Cv which is nontrivial on P . This

contradicts DD(−1) = n. Hence n 6∈ {16, 64}. �

In the following sections, we treat the cases n = 4, 9, 36 separately.

4 Weight 4

All circulant weighing matrices of weight 4 have been classified in [9]:

Result 4.1 Let D be a proper CW(v, 4). Then one of the following occurs.

(i) v > 2, v ≡ 0 (mod 2) and D is equivalent to (1 + g) + (1− g)h where

g is an element of Cv of order 2 and h ∈ Cv \ 〈g〉.

(ii) v = 7 and D is equivalent to −1 +k3 +k5 +k6 where k is a generator

of C7.

5 Weight 9

Let D be a proper CW(v, 9) where v is a product of powers of 2 and 3. By

[1, Thm. 3] (see also [19]), we have v = 24.
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Theorem 5.1 Let α and δ be elements of order 3, respectively 8, in C24.

Every CW(24, 9) is equivalent to

−1 + (1− δ4)(δ + δ3) + (α + α2)(1 + δ4).

Proof Let D be a CW(24, 9), and let χ be a character of C24 of order 24.

By Lemma 3.1 we can assume

χ(D) ∈ {3, (ζ3 − ζ23 )β, (ζ3 − ζ23 )β̄, β2, β̄2}

where β = 1 + ζ8 + ζ38 . Suppose χ(D) ∈ {3, (ζ3 − ζ23 )β, (ζ3 − ζ23 )β̄}. Then

χ(D) ≡ 0 (mod 1 − ζ3), i.e. χ(D) = (1 − ζ3)X for some X ∈ Z[ζ24]. Let a

be the element order 3 of C24 with χ(a) = ζ3, and choose A ∈ Z[C24] with

χ(A) = X. By Result 2.3, we have D = (1 − a)A + Y C2 + ZC3 for some

Y, Z ∈ Z[C24]. Let τ = χ3. Then τ(C2) = 0, τ(C3) = 3, and τ(a) = 1. Hence

τ(D) ≡ 0 (mod 3). This implies ψ(D) ≡ 0 (mod 3) for all characters ψ of

C24 of order 8. Note that 3 is self-conjugate modulo 4. Hence by Result 2.8,

ψ(D) ≡ 0 (mod 3) for all characters of C24 of order dividing 4. In summary,

we have shown ψ(D) ≡ 0 (mod 3) for characters of C24 of order dividing 8.

In view of Result 2.1, this implies ρ(D) ≡ 0 ( mod 3) where ρ : C24 → C24/C3

is the natural epimorphism. But since D has coefficients ±1 and 0 only, this

implies D = (1 − a)B + TC3 for some B, T ∈ Z[C24] with coeffients 0,±1

only, where the elements in the support of B are in distinct cosets of C3, and

T ∈ Z[C8]. Since |γ(D)|2 = 9 for all γ ∈ C∗24 , we conclude |γ(T )| = 1 for all

γ ∈ C∗24 with γ(a) = 1. This implies T = ±g for some g ∈ C8 by Result 2.1.

As the support of D contains exactly 9 elements and the supports of (1−a)B

and TC3 must be disjoint, this implies that the support of B contains exactly

3 elements. As D = (1 − a)B + TC3, we have |γ(B)|2 = 3 for all γ ∈ C∗24
which are nontrivial on C3. But this is not possible since the support of B

contains exactly 3 elements, a contradiction.

Hence we have shown χ(D) ∈ {β2, β̄2}. Replacing D by D(−1), if neces-

sary, we can assume

χ(D) = β2 = −1 + 2ζ8 + 2ζ38 .

Furthermore, by replacing D by −Dδ4 if necessary, we can assume |D| = 3.

Moreover, we can choose the element δ of C24 of order 8 such that χ(δ) = ζ8.

9



Result 2.3 shows that

D = −1 + 2δ + 2δ3 +XC2 + Y C3 (3)

with X, Y ∈ Z[C24]. Let τ = χ3. Then

τ(D) = −1 + 2ζ8 + 2ζ38 + 3τ(Y ) ≡ −1 + 2ζ8 + 2ζ38 (mod 1− ζ3).

In view of Lemma 3.1, this implies τ(D) = −1+2ζ8+2ζ38 and thus τ(Y ) = 0.

Using Result 2.3 we conclude Y C3 = Y ′C2C3 for some Y ′ ∈ Z[C24]. Hence

we can rewrite (3) as

D = −1 + 2δ + 2δ3 + ZC2 (4)

for some Z ∈ Z[C24]. Since D has coefficients ±1 and 0 only, all elements of

δC2 ∪ δ3C2 must have coefficient −1 in ZC2. Hence we can rewrite (4) as

D = −1 + δ + δ3 − δ5 − δ7 + Z ′C2 (5)

for some Z ′ ∈ Z[C24] such that Z ′C2 and δ + δ3 − δ5 − δ7 have disjoint

supports. Note that |Z ′| = 2 since we assume |D| = 3. Since the support

of D consists only of 9 elements, this implies that the support of Z ′ consists

of exactly 2 elements. Now let ψ be a character of C24 of order 3, 6, or 12.

Then ψ(D) = −1 + 2ψ(Z ′) by (5). Furthermore, by Lemma 3.1, there is a

root of unity η(ψ) such that

ψ(D) = −1 + 2ψ(Z ′) = 3η(ψ).

Hence 1 + η(ψ) ≡ 0 (mod 2) which implies η(ψ) = ±1. Suppose η(ψ) = 1.

Then ψ(Z ′) = 2. But since the support of Z ′ only contains 2 elements, this

implies that the support of Z ′ is contained in C8. But then the support of D

is contained in C8 which is impossible. Thus η(ψ) = −1 and ψ(Z ′) = −1 for

all characters ψ of C24 of order 3, 6, and 12. It is straightforward to check

that this implies Z ′C2 = (α + α2)C2. Substituting this into (5) completes

the proof. �

6 Weight 36

Lemma 6.1 Assume that v is a product of powers of 2 and 3, and that a

CW(v, 36) exists. Then v ≡ 0 (mod 8).
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Proof Let D be a CW(v, 36). If v is not divisible by 8, then 3 is self-conjugate

modulo v. Let Q be the subgroup of Cv of order 3. We have D = 3X +QY

with X, Y ∈ Z[Cv] by Results 2.8, 2.9. Now the same argument as in the

proof of Theorem 3.3 leads to a contradiction. �.

We will use the following notation in the next result. Let S ⊂ Cv and

A =
∑

h∈Cv
ahh ∈ Z[Cv]. We write

A ∩ S :=
∑
h∈A

ahh.

Lemma 6.2 Let D be a CW(v, 36) where v = 2a ·3b and a, b are nonnegative

integers. Let g be the element of Cv of order 2, and let ρ : Cv → Cv/〈g〉 be

the natural epimorphism.

Then a ≥ 4, b ≥ 1, and there is an h ∈ Cv such that

Dh = (1− g)X + (1 + g)Y (6)

with X, Y ∈ Z[Cv] such that ρ(Y ) is a CW(24, 9). Furthermore, X has

coefficients ±1, 0 only and its support consists of representatives of distinct

cosets of 〈g〉 in Cv.

Proof Note that 2 is self-conjugate modulo v and thus χ(D) ≡ 0 (mod 2)

by Result 2.8. Hence, if a = 0, then D ≡ 0 (mod 2) by Result 2.1, a

contradiction. We conclude a ≥ 1.

Ma’s Lemma implies

D = 2A+ (1 + g)B

with A,B ∈ Z[Cv]. We can assume that the support of B consists of repre-

sentatives of distinct cosets of 〈g〉 in Cv, and that all coefficients of B are in

{−1, 0, 1}. This implies that A also has coefficients −1, 0, 1 only.

Now fix k ∈ Cv and suppose that k has coefficient 1 in B. Then A ∩
{k, kg} ∈ {0,−k,−kg,−k− kg}, i.e., D ∩ {k, gk} ∈ {0, (1 + g)k,±(1− g)k}.
Similarly, if k has coefficient 0 or −1 in B, then D ∩ {k, gk} ∈ {0,−(1 +

g)k,±(1−g)k}, too. Now let Y ′ be the sum of all terms ±(1+g)k which occur

as D ∩ {k, gk} when k runs through a complete set of coset representatives

11



of 〈g〉 in Cv, and let X ′ be the sum of all terms ±(1− g)k which occur. Set

X = X ′/(1− g) and Y = Y ′/(1 + g). Then

D = (1− g)X + (1 + g)Y, (7)

X and Y have coefficients ±1, 0 only, and the support of X consists of rep-

resentatives of distinct cosets of 〈g〉 in Cv.

It remains to show that we can find w ∈ Cv such that ρ(Y w) is a

CW(24, 9). Note that ρ(Y ) has coefficients ±1, 0 only since the support of

Y consists of representatives of distinct cosets of 〈g〉. Furthermore, χ(Y ) =

χ(D)/2 for all characters of Cv which are trivial on 〈g〉 by (7). Hence ρ(Y )

is a CW(v/2, 9) by Result 2.2 (we are identifying Cv/〈g〉 with Cv/2 here).

By [1, Thm. 3] there is a u ∈ Cv/2 such that ρ(Y )u is a CW(24, 9). This

concludes the proof. �

Lemma 6.3 We use the notation of Lemma 6.2. Write u = 28 · 34, and let

v′ = lcm(u, v). There are a positive integer k and Z1, ..., Zk ∈ Cu, a1, ..., ak ∈
Cv′ such that

(1− g)X =
k∑
i=1

Ziai (8)

and ZiZj = 0 for i 6= j. Furthermore, the supports of the elements Ziai,

i = 1, ..., k, are pairwise disjoint.

Proof Note that we can view D as an element of Z[Cv′ ]. Since |χ(D)|2 = 36

for all characters χ of Cv′ , we have |χ((1 − g)X)|2 = 36 for all characters χ

of Cv′ with χ(g) = −1 and |χ((1−g)X)|2 = 0 for all characters χ of Cv′ with

χ(g) = 1. Furthermore, by Lemma 3.1, we have χ(D)η ∈ Z[ζ24] for some

root of unity η (depending on χ) for all characters χ of Cv′ .

In summary, we have shown |χ((1−g)X)|2 ≤ 36 and χ((1−g)X)η ∈ Z[ζ24]

for some root of unity η for all characters χ of Cv′ . Hence we can apply Result

2.10 with w = 1, p1 = 2, p2 = 3, b1 = 3, b2 = 1, k = 24, n = 36, and find

c1 = 8, c2 = 4. Hence

(1− g)X =

v′/u−1∑
i=0

Xiα
i
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with Xi ∈ Z[Cu] and XiXj = 0 for i 6= j where α is a generator of Cv. This

implies (8). �

Fix i and let Zi be from (8). Note that Zi has coefficients ±1, 0 only

because (1− g)X has coefficients ±1, 0 only. Recall that |χ((1− g)X)|2 = 36

for all characters χ of Cv′ with χ(g) = −1 and |χ((1 − g)X)|2 = 0 for all

characters χ of Cv′ with χ(g) = 1. Hence, in summary,

Zi ∈ Z[Cu] and Zi has coefficients ±1, 0 only,

χ(Zi) = 0 for all characters χ of Cu with χ(g) = 1 and

|χ(Zi)| ∈ {0, 36} for all characters χ of Cu with χ(g) = −1.

(9)

Lemma 6.4 Let u = 28 · 34 and assume that Zi ∈ Z[Cu] satisfies (9). Let χ

be any character of Cu. Then there is a root of unity η such that

χ(Zi)η ∈ {0, 6, 2(ζ3 − ζ23 )β, 2(ζ3 − ζ23 )β̄}

where β = 1 + ζ8 + ζ38 .

Proof Assume the contrary. Then, by Lemma 3.1 and (9), we have

χ(Zi)η ∈ {2β2, 2β̄2}. (10)

for some root of unity η. By replacing Zi by Z
(a)
i g for some a ∈ {−1, 1},

g ∈ Cv, if necessary, we can assume

χ(Zi) = 2β2. (11)

Note that the order of χ must be divisible by 28 by (9) and (11). Let τ be a

character of Cu of order 3b, 0 ≤ b ≤ 4. Write Zi =
∑

g∈Cu
agg with ag ∈ Z.

Then

χτ(Zi)− χ(Zi) =
∑
g∈Cu

agχ(g)(τ(g)− 1).

Note that τ(g) − 1 ≡ 0 (mod 1 − ζ81) for all g because τ(g) is an 81st root

of unity. Hence

χτ(Zi) ≡ χ(Zi) (mod 1− ζ81). (12)
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We claim that 2β2 6≡ 0 ( mod 1−ζ81). Assume that contrary, i.e., −2+4ζ8 +

4ζ38 = (1 − ζ81)T with T ∈ Z[ζ8·81]. Write T =
∑3

i=0 ζ
i
8Ti with Ti ∈ Z[ζ81].

Then

−2 + 4ζ8 + 4ζ38 =
3∑
i=0

ζ i8Ti(1− ζ81).

Since {1, ζ8, ζ28 , ζ38} is linearly independent over Q(ζ81), we get 2 ≡ 0 (mod

1− ζ81), a contradiction. Thus

2β2 6≡ 0 (mod 1− ζ81). (13)

Similarly, we see that

2(β2 − ηβ̄2) 6≡ 0 (mod 1− ζ81) (14)

for all uth roots of unity η. Recall that |τχ(Zi)| ∈ {0, 36} by (9) and thus

τχ(Zi)η ∈ {0, 6, 2(ζ3 − ζ23 )β, 2(ζ3 − ζ23 )β̄, 2β2, 2β̄2} (15)

for some root of unity η by Lemma 3.1. However, if τχ(Zi) 6= 2β2, then

τχ(Zi)−χ(Zi) 6≡ 0 (mod 1− ζ81) by (11), (13), (14), and (15). This contra-

dicts (12). Hence

τχ(Zi)η = 2β2 (16)

for some root of unity η.

Recall that the order of χ is divisible by 28 and that the above arguments

works for every character τ of Cu of order dividing 81. Hence, in summary,

we have shown

ψτ(Zi)η = 2β2 (17)

for some root of unity η (depending on ψ and τ) for all characters ψ of order

28 and all characters τ of order dividing 81. Let τ0 be a character of order

81, and let ψ be a character of order 28. W.l.o.g. assume ψτ0(Zi) = 2β2. By

Result 2.3, the kernel of ψτ0 on Z[Cu] is

{AC2 +BC3 : A,B ∈ Z[Cu]}.

Hence

Zi = 2(−1 + 2x2 + 2x4) + AC2 +BC3 (18)
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with A,B ∈ Z[Cu] where x is the element of Cu of order 8 with ψ(x) =

ζ8. Applying ψτ 3 to (18), we find ψτ 3(Zi) = 2β2 + 3ψτ1(B). Recall that

ψτ 3(Zi) = 2η̄β2 for some root of unity η by (17). Hence 2β2(1 − η) ≡
0 (mod 3). This implies η = 1. Hence ψτ 3(Zi) = 2β2. Let ρ : Cu →
Cu/C3 be the natural epimorphism. Using the same argument again, with Zi

replaced by ρ(Zi), τ replaced by τ 3, and τ 3 replaced by τ 9, we find ψτ 9(Zi) =

2β2. Continuing this, we see that ψτ 3
a
(Zi) = 2β2 for a = 0, ..., 4. Hence,

applying Galois automorphisms of Q(ζ81) to these identities, we find

ψτ j(Zi) = 2β2 (19)

for j = 0, ..., 80. Now write Zi =
∑80

k=0Akt
k with Ak ∈ Z[C28 ] where t is an

element of Cu of order 81. Then

80∑
j=0

ψτ j(Zi) =
80∑
j=0

80∑
k=0

ψτ j(Ak)ψτ
j(tk)

=
80∑
k=0

ψ(Ak)
80∑
j=0

τ j(tk)

= 81ψ(A0).

Combining this with (19), we find ψ(A0) = 2β2. Note that A0 has coefficients

±1, 0 only because Zi has coefficients ±1, 0 only. Hence ψ(A0) =
∑255

i=0 aiζ
i
256

with |ai| ≤ 1. Note that 1, ζ256, ..., ζ
127
256 are linearly independent over Q and

2β2 = −2 + 4ζ8 + 4ζ38 = ψ(A0) =
127∑
i=0

(ai − ai+128)ζ
i
256.

This is a contradiction because |ai − ai+128| ≤ 2 < 4 for all i. �

Lemma 6.5 Let u = 28 · 34 and assume that Zi ∈ Z[Cu] satisfies (9). Let χ

be a character of Cu of order 28t where t divides 27, and let τ be a character

of Cu of order 28 · 34. Then the following hold.

(a) There is a root of unity η such that χ(Zi)η ∈ {0, 6}.

(b) There is a root of unity η such that τ(Zi)η ∈ {0, 2(ζ3− ζ23 )β, 2(ζ3− ζ23 )β̄}.
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Proof Let σ be a character of Cu of order 28t such that χ = σ3. By Lemma

6.4 we have σ(Zi) ≡ 0 (mod 1 − ζ3). Let K = {h ∈ Cu : σ(h) = 1} and let

ρ : Cu → Cu/K be the canonical epimorphism. Note that σ and thus χ can

be viewed as a character of Cu/K, too. By Result 2.3, the kernel of σ on

Z[Cu/K] is

{XU2 + Y U3 : X, Y ∈ Z[Cu/K]}

where U2 and U3 are subgroups of order 2, respectively 3, of Cu/K. Hence

ρ(Zi) = (1− a)A+XU2 + Y U3 with A,X, Y ∈ Z[Cu/K]} and where a is an

element of Cu/K with σ(a) = ζ3. Note that χ(a) = σ(a)3 = 1, χ(U2) = 0,

and χ(U3) = 3. Hence

χ(Zi) = χ(ρ(Zi)) = 3χ(Y ) ≡ 0 (mod 3).

In view of Lemma 6.4, this implies (a).

Now assume that (b) does not hold. Then by part (a), (9), and Lemma

6.4, we have ψ(Zi) ≡ 0 (mod 6) for all characters ψ of Cu. Thus Zi =

3X + C3Y with X, Y ∈ Z[Cu] by Ma’s Lemma. Since Zi has coefficients

±1, 0 only, this implies that Zi is a multiple of C3. But this implies τ(Zi) = 0

contradicting our assumption. �

Lemma 6.6 Let u = 28 · 34 and assume that Zi ∈ Z[Cu] satisfies (9). Let α

and δ be elements of Cu of order 3, respectively 8. Write

A = (1 + δ + δ3)(α− α2),

B = (1− δ − δ3)(α− α2).

There are c, d ∈ Cu and x, y ∈ {−1, 0, 1} such that

Zi = (1− δ4)(cxA+ dyC3) or Zi = (1− δ4)(xcB + dyC3). (20)

Proof For j = 0, ..., 4, let χj be a character of Cu of order 28 ·3j. By Lemma

6.5 there are hj ∈ Cu and εj ∈ {−1, 0, 1} such that

χj(Zi) = 6εjχj(hj), j = 0, ..., 3. (21)

Let h4 be any element of Z[Cu] with

χ4(h4) = χ4(Zi)/2. (22)
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We claim that

27Zi = (1− δ4)[ε0h0C81 + ε1h1(3C27 − C81) + ε2h2(9C9 − 3C27)

+ ε3h3(27C3 − 9C9) + h4(27− 9C3)]. (23)

By Result 2.1, to verify (23), we need to show that the character values of

both sides of (23) are the same for all characters of Cu. But this follows from

(9), (21), and (22). Thus (23) holds.

Considering (23) modulo 3 we find (1− δ4)(ε0h0C81− ε1h1C81) ≡ 0 (mod

3). This implies ε0h0C81 = ε1h1C81. Similarly, we deduce ε1h1C27 = ε2h2C27

and ε2h2C9 = ε3h3C9. Hence we have

27Zi = (1− δ4)(27ε3h3C3 + h4(27− 9C3)). (24)

If χ4(Zi) = 0, then we can choose h4 = 0. Then Zi = (1 − δ4)ε3h3C3 and

thus (20) holds.

Now assume χ4(Zi) 6= 0. By Lemma 6.5 (b) there is a root of unity η

such that χ4(Zi)η ∈ {2(ζ3− ζ23 )β, 2(ζ3− ζ23 )β̄} where β = 1 + ζ8 + ζ38 . Hence

we can choose

h4 = ±c(α− α2)(1 + δ + δ3) or h4 = ±c(α− α2)(1− δ − δ3) (25)

for some c ∈ Cu. Note h4C3 = 0. Thus substituting (25) into (24) gives

Zi = (1− δ4)(ε3h3C3± c(α−α2)(1 + δ+ δ3)) or Zi = (1− δ4)(ε3h3C3± c(α−
α2)(1− δ − δ3)). Thus (20) holds in all cases. �

The following two theorems completely classify circulant weighing matri-

ces CW(v, 36) where v is a product of a power of 2 and a power of 3.

Theorem 6.7 Let D be a CW(v, 36) where v is a product of a power of 2

and a power of 3. Let α and γ be elements of Cv of order 3, respectively 16.

Write

A1 = (1 + γ2 + γ6)(α− α2),

A2 = (1− γ2 − γ6)(α− α2),

B = −1 + (1− γ4)(γ + γ3) + (α + α2)(1 + γ4).
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Then, up to equivalence,

D = (1 + γ8)B + (1− γ8)(cAi + dC3) (26)

with i ∈ {1, 2}, c, d ∈ Cv. Furthermore, the supports of B, (1− γ8)cAi, and

(1− γ8)dC3 are pairwise disjoint.

Proof Using the notation of Lemma 6.2, we can assume

D = (1− γ8)X + (1 + γ8)Y (27)

with X, Y ∈ Z[Cv] such that ρ(Y ) is a CW(24, 9). Furthermore, in view

of Theorem 5.1, we can assume Y = B. So it only remains to show that

(1− γ8)X can be written in the form

(1− γ8)X = (1− γ8)(cAi + dC3). (28)

Write u = 28 · 34 and v′ = lcm(u, v). Using the notation of Lemma 6.3, we

have

(1− γ8)X =
k∑
i=1

Ziai (29)

with Z1, ..., Zk ∈ Cu, a1, ..., ak ∈ Cv′ . Furthermore, we can assume Zi 6= 0

for all i and that the supports of the elements Ziai, i = 1, ..., k, are pairwise

disjoint. Note that, by (27), the support of (1 − γ8)X consists of exactly

18 elements since the support of D, respectively Y , consists of exactly 36

respectively 9, elements. Recall that

Zi = (1− γ8)(cxA+ dyC3) or Zi = (1− γ8)(xcB + dyC3).

by Lemma 6.6 (where c, d, x, y depend on i).

Using the notation of Lemma 6.6, we divide the Zi into types as follows:

Type 1: x 6= 0, y = 0

Type 2: x = 0, y 6= 0

Type 3: x 6= 0, y 6= 0.

Suppose Zi is of Type 3. Note that there cannot be any overlap in the

supports of the terms comprising Zi since otherwise Zi would have a coef-

ficient ±2. Hence the support of Zi consists of exactly 18 elements. This

implies k = 1, and thus (28) holds.
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Now assume there is no Zi of Type 3. Since the support of (1 − γ8)X

consists of exactly 18 elements, one of the following must occur.

Case 1: There are three Zi’s of Type 2 and no Zi of Type 1. But then χ(D) =

0 for all characters of Cv with χ(γ8) = −1 and χ(α) = ζ3 contradicting Result

2.2. Thus Case 1 cannot occur.

Case 2: There is exactly one Zi of Type 1 and exactly one Zi of Type 2.

Then (28) holds.

We have shown that (28) holds in all cases which concludes the proof. �

Theorem 6.8 Write

M1 = {γ, γ3, γ5, γ7},
M2 = {γ2, γ6, γ10, γ14},
M3 = {γ, γ3, γ4, γ5, γ7}.

If the supports of B, (1−γ8)cAi, and (1−γ8)dC3 in (26) are pairwise disjoint,

then D is a CW(v, 36). This occurs if and only if one of the following holds.

(i) c 6∈ C48 and d 6∈ C48 ∪ C48c.

(ii) c 6∈ C48 and d ∈M2C3.

(iii) c 6∈ C48 and d ∈ cM3C3 ∪ cγ8M3C3.

(iv) c ∈M1 ∪M1γ
8 and d 6∈ C48.

(v) c ∈M1 ∪M1γ
8 and d ∈M2C3.

Proof If the supports of B, (1−γ8)cAi, and (1−γ8)dC3 in (26) are pairwise

disjoint, then D has coefficients ±1, 0 only. Straightforward checking shows

that |χ(D)|2 = 36 for all characters χ of Cv. Hence D is a CW(v, 36). The

necessary and sufficient condition for the disjointness of supports also follows

by straightforward checking. �

Corollary 6.9 There exist proper CW(v, 36) for all v ≡ 0 (mod 48).
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Proof Condition (i) of Theorem 6.8 shows that there are proper CW(48, 36)’s.

Condition (iv) guarantees the existence of proper CW(v, 36) for all v > 48

divisible by 48. �

We conclude our paper by a theorem summarizing our results.

Theorem 6.10 Let D be a proper CW(v, n) where both v and n are products

of powers of 2 and 3. Then n ∈ {4, 9, 36}.

(a) If n = 4, then one of the following holds.

(i) v > 2, v ≡ 0 (mod 2) and D is equivalent to (1 + g) + (1− g)h where g

is an element of Cv of order 2 and h ∈ Cv \ 〈g〉.
(ii) v = 7 and D is equivalent to −1 + k3 + k5 + k6 where k is a generator of

C7.

(b) If n = 9, then v = 24 and D is equivalent to

−1 + (1− δ4)(δ + δ3) + (α + α2)(1 + δ4).

where α and δ are elements of order 3, respectively 8, in C24.

(c) If n = 36, then D is equivalent to

D = (1 + γ8)B + (1− γ8)(cAi + dC3)

where i ∈ {1, 2}, α and γ are elements of Cv of order 3, respectively 16,

A1 = (1 + γ2 + γ6)(α− α2),

A2 = (1− γ2 − γ6)(α− α2),

B = −1 + (1− γ4)(γ + γ3) + (α + α2)(1 + γ4),

and c, d ∈ Cv, such that one of the following conditions is satisfied.

(i) c 6∈ C48 and d 6∈ C48 ∪ C48c.

(ii) c 6∈ C48 and d ∈M2C3.

(iii) c 6∈ C48 and d ∈ cM3C3 ∪ cγ8M3C3.

(iv) c ∈M1 ∪M1γ
8 and d 6∈ C48.
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(v) c ∈M1 ∪M1γ
8 and d ∈M2C3.

Here

M1 = {γ, γ3, γ5, γ7},
M2 = {γ2, γ6, γ10, γ14},
M3 = {γ, γ3, γ4, γ5, γ7}.
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